Evaluation of the Validity and Reliability of NeuroSkin’s Wearable Sensor Gait Analysis Device in Healthy Individuals
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Gait Analysis Systems
2.3. Walking Test Procedure and Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HS | Heel strike |
TO | Toe off |
ICC | Intraclass correlation coefficient |
QGA | Quantitative gait analysis |
MFES | Multi-channel functional electrical stimulation |
IMU | Inertial measurement unit |
GDPR | General data protection regulation |
CI | Confidence interval |
ARE | Absolute relative error |
BCa | Bias-corrected and accelerated bootstrap |
MDC | Minimal detectable changes |
References
- Muro-de-la-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef]
- Nonnekes, J.; Goselink, R.J.M.; Růžička, E.; Fasano, A.; Nutt, J.G.; Bloem, B.R. Neurological disorders of gait, balance and posture: A sign-based approach. Nat. Rev. Neurol. 2018, 14, 183–189. [Google Scholar] [CrossRef]
- van Uden, C.J.; Besser, M.P. Test-retest reliability of temporal and spatial gait characteristics measured with an instrumented walkway system (GAITRite). BMC Musculoskelet. Disord. 2004, 5, 13. [Google Scholar] [CrossRef]
- Bilney, B.; Morris, M.; Webster, K. Concurrent related validity of the GAITRite† walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture 2003, 17, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Webster, K.E.; Wittwer, J.E.; Feller, J.A. Validity of the GAITRite® walkway system for the measurement of averaged and individual step parameters of gait. Gait Posture 2005, 22, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; von Zitzewitz, J. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef] [PubMed]
- Vítečková, S.; Horáková, H.; Poláková, K.; Krupička, R.; Růžička, E.; Brožová, H. Agreement between the GAITRite R System and the Wearable Sensor BTS G-Walk R for measurement of gait parameters in healthy adults and Parkinson’s disease patients. PeerJ 2020, 8, e8835. [Google Scholar] [CrossRef]
- Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait Analysis Using Wearable Sensors. Sensors 2012, 12, 2255–2283. [Google Scholar] [CrossRef]
- Renggli, D.; Graf, C.; Tachatos, N.; Singh, N.; Meboldt, M.; Taylor, W.R.; Stieglitz, L.; Schmid Daners, M. Wearable Inertial Measurement Units for Assessing Gait in Real-World Environments. Front. Physiol. 2020, 11, 90. [Google Scholar] [CrossRef]
- Prisco, G.; Pirozzi, M.A.; Santone, A.; Esposito, F.; Cesarelli, M.; Amato, F.; Donisi, L. Validity of Wearable Inertial Sensors for Gait Analysis: A Systematic Review. Diagnostics 2025, 15, 36. [Google Scholar] [CrossRef]
- Benson, L.C.; Clermont, C.A.; Bošnjak, E.; Ferber, R. The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review. Gait Posture 2018, 63, 124–138. [Google Scholar] [CrossRef]
- Olsen, S.; Rashid, U.; Barbado, D.; Suresh, P.; Alder, G.; Niazi, I.K.; Taylor, D. The validity of smartphone-based spatiotemporal gait measurements during walking with and without head turns: Comparison with the GAITRite® system. J. Biomech. 2024, 162, 111899. [Google Scholar] [CrossRef]
- Jacobs, D.; Farid, L.; Ferré, S.; Herraez, K.; Gracies, J.-M.; Hutin, E. Evaluation of the validity and reliability of connected insoles to measure gait parameters in healthy adults. Sensors 2021, 21, 6543. [Google Scholar] [CrossRef]
- Ghai, S. Novel Methods for Managing and Assessing Gait and Posture in Pediatric Population. Children 2023, 10, 2–4. [Google Scholar] [CrossRef]
- Jafari, E.; Metani, A.; Moreau, B.; Nollot, R.; Feppon, N.; Vergnes-Blanquer, L.; Di Marco, J.; Popović Maneski, L. AI-Powered FES-Walking for Gait Rehabilitation After Stroke. In Proceedings of the IFFESS 2024 International Conference, 1–3 September 2024, Bath, UK.
- Metani, A.; Popovi, L.; Seguin, P.; Di Marco, J. NeuroSkin ®: A Multicenter Feasibility Study of AI-Driven Wearable FES for Gait Recovery After Stroke. Public Health Healthc. 2025. [Google Scholar] [CrossRef]
- Zijlstra, W.; Hof, A.L. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 2003, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, R.; Lebleu, J.; Willems, T.; De Blaiser, C.; Detrembleur, C.; Roosen, P. Concurrent validity of a commercial wireless trunk triaxial accelerometer system for gait analysis. J. Sport Rehabil. 2019, 28, 57–60. [Google Scholar] [CrossRef]
- Byun, S.; Han, J.W.; Kim, T.H.; Kim, K.W.; Fasano, A. Test-retest reliability and concurrent validity of a single tri-axial accelerometer-based gait analysis in older adults with normal cognition. PLoS ONE 2016, 11, e0158956. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Parati, M.; Ambrosini, E.; DE Maria, B.; Gallotta, M.; Vecchia, L.A.D.; Ferriero, G.; Ferrante, S. The reliability of gait parameters captured via instrumented walkways: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2022, 58, 363–377. [Google Scholar] [CrossRef]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 153. [Google Scholar] [CrossRef]
- Kirk, C.; Küderle, A.; Micó-Amigo, M.E.; Bonci, T.; Paraschiv-Ionescu, A.; Ullrich, M.; Soltani, A.; Gazit, E.; Salis, F.; Alcock, L.; et al. Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device. Sci. Rep. 2024, 14, 1754. [Google Scholar] [CrossRef]
- Ghai, S.; Ghai, I.; Lamontagne, A. Virtual reality training enhances gait poststroke: A systematic review and meta-analysis. Ann. N. Y. Acad. Sci. 2020, 1478, 18–42. [Google Scholar] [CrossRef]
- Ghai, S.; Ghai, I. Effects of (music-based) rhythmic auditory cueing training on gait and posture post-stroke: A systematic review & dose-response meta-analysis. Sci. Rep. 2019, 9, 2183. [Google Scholar] [CrossRef]
- Ghai, S.; Ghai, I.; Effenberg, A.O. Effect of rhythmic auditory cueing on aging gait: A systematic review and meta-analysis. Aging Dis. 2018, 9, 901–200. [Google Scholar] [CrossRef]
GAITRite & NeuroSkin | |||
---|---|---|---|
Participants (P) | Step Count | Distance (cm) | Ambulation Time (Seconds) |
P1 | 8 | 531.6 | 5.66 |
P2 | 7 | 512.8 | 3.82 |
P3 | 7 | 488.7 | 3.90 |
P4 | 6 | 485.7 | 3.25 |
P5 | 7 | 501.6 | 3.94 |
P6 | 7 | 581.4 | 4.45 |
P7 | 9 | 559.4 | 5.08 |
P8 | 8 | 556.3 | 4.82 |
P9 | 9 | 573.2 | 5.60 |
Total | 7.5 ± 1 | 532.3 ± 36.7 | 4.50 ± 0.84 |
Both Legs | ||||||
Gait Parameters | GAITRite | NeuroSkin | MDC95 | ICC (3,1) (95% CI) | SRE (95% CI) | ARE (95% CI) |
Speed (cm/s) | 123.9 ± 18.2 | 124.8 ± 18.5 | 3.41 | 0.99 [0.96–1] | 0.8% [−0.5%, 1.7%] | 1.4% [0.8–2.3%] |
Cadence (steps/min) | 104.1 ± 9.1 | 103.8 ± 8.8 | 0.96 | 1 [0.98–1] | −0.3% [−0.7%, 0.1%] | 0.6% [0.4–0.9%] |
Stride time (seconds) | 1.150 ± 0.1 | 1.156 ± 0.1 | 0.013 | 1 [0.98–1] | 0.5% * [0.1%, 1.0%] | 0.6% [0.4–1.2%] |
Stride length (cm) | 143.14 ± 13.87 | 142.73 ± 14.51 | 3.13 | 0.99 [0.95–1] | −0.3% [−1.3%, 0.7%] | 1.2% [0.6–1.9%] |
Step time (seconds) | 0.581 ± 0.05 | 0.585 ± 0.05 | 0.007 | 1 [0.97–1] | 0.6% * [0.2%, 1.3%] | 0.6% [0.2–1.3%] |
Step length (cm) | 71.31 ± 7.01 | 71.15 ± 7.11 | 1.33 | 0.99 [0.96–1] | −0.2% [−1.3%, 0.4%] | 1% [0.6–1.8%] |
Swing time (seconds) | 0.483 ± 0.04 | 0.42 ± 0.04 | 0.03 | 0.87 [0.55–0.97] | −1.6% [−4.5%, 1.0%] | 3.9% [2.4–5.7%] |
Stance time (seconds) | 0.723 ± 0.07 | 0.738 ± 0.07 | 0.03 | 0.94 [0.71–0.99] | 2.1% * [0.4%, 4.0%] | 2.7% [1.4–4.3%] |
Left Leg | Right Leg | ||||||||
---|---|---|---|---|---|---|---|---|---|
Gait Parameters | GAITRite | NeuroSkin | ICC (3,1) (95% CI) | ARE (95% CI) | GAITRite | NeuroSkin | ICC (3,1) (95% CI) | ARE (95% CI) | |
Stride time (seconds) | 1.15 ± 0.11 | 1.16 ± 0.11 | 0.98 [0.9–0.99] | 1.6% [0.7–2%5] | 1.15 ± 0.1 | 1.15 ± 0.1 | 0.96 [0.82–0.99] | 1.6% [0.8–3.8%] | |
Stride length (cm) | 143.25 ± 14.22 | 142.95 ± 14.9 | 0.98 [0.9–1] | 1.7% [1.3–2.6%] | 143.03 ± 14.3 | 142.51 ± 14.93 | 0.99 [0.95–1] | 1.3% [0.8–2.1%] | |
Step time (seconds) | 0.58 ± 0.05 | 0.59 ± 0.05 | 0.96 [0.83–0.99] | 2.4% [1.3–3.6%] | 0.58 ± 0.05 | 0.58 ± 0.06 | 0.96 [0.85–0.99] | 2.4% [1.6–3.6%] | |
Step length (cm) | 71.08 ± 7.86 | 70.51 ± 8.06 | 0.98 [0.93–1] | 1.4% [0.7–3.1%] | 71.54 ± 6.51 | 71.79 ± 6.44 | 0.98 [0.92–1] | 1.6% [1.1–2.4%] | |
Swing time (seconds) | 0.43 ± 0.04 | 0.42 ± 0.05 | 0.8 [0.37–0.95] | 4.7% [2.5–7.9%] | 0.43 ± 0.04 | 0.42 ± 0.01 | 0.79 [0.32–0.95] | 4.9% [3.2–6.6%] | |
Stance time (seconds) | 0.72 ± 0.08 | 0.74 ± 0.07 | 0.91 [0.61–0.95] | 3.3% [2–5.5%] | 0.72 ± 0.07 | 0.73 ± 0.07 | 0.86 [0.53–0.97] | 4.3% [2.9–6.8%] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Descollonges, M.; Moreau, B.; Feppon, N.; Abdoun, O.; Séguin, P.; Popovic-Maneski, L.; Di Marco, J.; Metani, A. Evaluation of the Validity and Reliability of NeuroSkin’s Wearable Sensor Gait Analysis Device in Healthy Individuals. Bioengineering 2025, 12, 960. https://doi.org/10.3390/bioengineering12090960
Descollonges M, Moreau B, Feppon N, Abdoun O, Séguin P, Popovic-Maneski L, Di Marco J, Metani A. Evaluation of the Validity and Reliability of NeuroSkin’s Wearable Sensor Gait Analysis Device in Healthy Individuals. Bioengineering. 2025; 12(9):960. https://doi.org/10.3390/bioengineering12090960
Chicago/Turabian StyleDescollonges, Maël, Baptiste Moreau, Nicolas Feppon, Oussama Abdoun, Perrine Séguin, Lana Popovic-Maneski, Julie Di Marco, and Amine Metani. 2025. "Evaluation of the Validity and Reliability of NeuroSkin’s Wearable Sensor Gait Analysis Device in Healthy Individuals" Bioengineering 12, no. 9: 960. https://doi.org/10.3390/bioengineering12090960
APA StyleDescollonges, M., Moreau, B., Feppon, N., Abdoun, O., Séguin, P., Popovic-Maneski, L., Di Marco, J., & Metani, A. (2025). Evaluation of the Validity and Reliability of NeuroSkin’s Wearable Sensor Gait Analysis Device in Healthy Individuals. Bioengineering, 12(9), 960. https://doi.org/10.3390/bioengineering12090960