Smart Microbiomes: How AI Is Revolutionizing Personalized Medicine
Abstract
1. Introduction
1.1. The Gut Microbiota in Human Diseases
1.2. The Use of Gut Microbiota as a Potential Treatment Option
2. Methodology
3. Technologies Used in Microbiome Studies
Investigating AI-Powered Techniques and Machine Learning Resources to Analyze the Intricate Microbiota
4. Machine Learning
5. Ethical, Legal, and Social Implications
6. Existing Challenges and Future Directions for AI in Microbiome-Based Healthcare
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Madhogaria, B.; Bhowmik, P.; Kundu, A. Correlation between human gut microbiome and diseases. Infect. Med. 2022, 1, 180–191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DeGruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm. Bowel Dis. 2016, 22, 1137–1150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gebrayel, P.; Nicco, C.; Al Khodor, S.; Bilinski, J.; Caselli, E.; Comelli, E.M.; Egert, M.; Giaroni, C.; Karpinski, T.M.; Loniewski, I.; et al. Microbiota medicine: Towards clinical revolution. J. Transl. Med. 2022, 20, 111. [Google Scholar] [CrossRef]
- Ullah, H.; Arbab, S.; Tian, Y.; Liu, C.Q.; Chen, Y.; Qijie, L.; Khan, M.I.U.; Hassan, I.U.; Li, K. The gut microbiota-brain axis in neurological disorder. Front. Neurosci. 2023, 17, 1225875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pahwa, R.; Goyal, A.; Jialal, I. Chronic Inflammation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK493173/ (accessed on 12 June 2025).
- Shan, Y.; Lee, M.; Chang, E.B. The Gut Microbiome and Inflammatory Bowel Diseases. Annu. Rev. Med. 2022, 73, 455–468. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Probul, N.; Huang, Z.; Saak, C.C.; Baumbach, J.; List, M. AI in microbiome-related healthcare. Microb. Biotechnol. 2024, 17, e70027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chechkin, A.; Pleshakova, E.; Gataullin, S. A Hybrid KAN-BiLSTM Transformer with Multi-Domain Dynamic Attention Model for Cybersecurity. Technologies 2025, 13, 223. [Google Scholar] [CrossRef]
- Baranwal, M.; Clark, R.L.; Thompson, J.; Sun, Z.; Hero, A.O.; Venturelli, O.S. Recurrent neural networks enable design of multifunctional synthetic human gut microbiome dynamics. Elife 2022, 11, e73870. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hermosilla, P.; Berríos, S.; Allende-Cid, H. Explainable AI for Forensic Analysis: A Comparative Study of SHAP and LIME in Intrusion Detection Models. Appl. Sci. 2025, 15, 7329. [Google Scholar] [CrossRef]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, B.; Lorusso, E.; Fosso, B.; Pesole, G. A comprehensive overview of microbiome data in the light of machine learning applications: Categorization, accessibility, and future directions. Front. Microbiol. 2024, 15, 1343572. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinart, M.; Dötsch, A.; Schlicht, K.; Laudes, M.; Bouwman, J.; Forslund, S.K.; Pischon, T.; Nimptsch, K. Gut Microbiome Composition in Obese and Non-Obese Persons: A Systematic Review and Meta-Analysis. Nutrients 2021, 14, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deli, C.K.; Fatouros, I.G.; Poulios, A.; Liakou, C.A.; Draganidis, D.; Papanikolaou, K.; Rosvoglou, A.; Gatsas, A.; Georgakouli, K.; Tsimeas, P.; et al. Gut Microbiota in the Progression of Type 2 Diabetes and the Potential Role of Exercise: A Critical Review. Life 2024, 14, 1016. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Kapila, D.; Taha, R.S.I.; El-Sayed, S.; Mahen, M.R.A.; Taha, R.; Alrubaiy, L. The Role of the Gut Microbiome in Inflammatory Bowel Disease: The Middle East Perspective. J. Pers. Med. 2024, 14, 652. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avuthu, N.; Guda, C. Meta-Analysis of Altered Gut Microbiota Reveals Microbial and Metabolic Biomarkers for Colorectal Cancer. Microbiol. Spectr. 2022, 10, e0001322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Sig. Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Jabeen, Z.; Bukhari, S.A.; Malik, S.A.; Hussain, G.; Kamal, S. Improved gut microbiota escalates muscle function rehabilitation and ameliorates oxidative stress following mechanically induced peripheral nerve injury in mice. Pak. Vet. J. 2023, 43, 707–713. [Google Scholar] [CrossRef]
- Ghosh, T.S.; Rampelli, S.; Jeffery, I.B.; Santoro, A.; Neto, M.; Capri, M.; Giampieri, E.; Jennings, A.; Candela, M.; Turroni, S.; et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries. Gut 2020, 69, 1218–1228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, Q.; Zhang, Y.; Zhang, Z.; Gong, S.; Mo, Q.; Li, J. Characteristics and dynamic changes of gut microbiota in cats with colitis. Pak. Vet. J. 2024, 44, 414–422. [Google Scholar] [CrossRef]
- de Groot, P.; Scheithauer, T.; Bakker, G.J.; Prodan, A.; Levin, E.; Khan, M.T.; Herrema, H.; Ackermans, M.; Serlie, M.J.M.; de Brauw, M.; et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut 2020, 69, 502–512. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ayesha, I.E.; Monson, N.R.; Klair, N.; Patel, U.; Saxena, A.; Patel, D.; Venugopal, S. Probiotics and Their Role in the Management of Type 2 Diabetes Mellitus (Short-Term Versus Long-Term Effect): A Systematic Review and Meta-Analysis. Cureus 2023, 15, e46741. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nachum, Z.; Perlitz, Y.; Shavit, L.Y.; Magril, G.; Vitner, D.; Zipori, Y.; Weiner, E.; Alon, A.S.; Ganor-Paz, Y.; Nezer, M.; et al. The effect of oral probiotics on glycemic control of women with gestational diabetes mellitus-a multicenter, randomized, double-blind, placebo-controlled trial. Am. J. Obs. Gynecol. MFM 2024, 6, 101224. [Google Scholar] [CrossRef] [PubMed]
- Zhen, J.; Zhou, Z.; He, M.; Han, H.X.; Lv, E.H.; Wen, P.B.; Liu, X.; Wang, Y.T.; Cai, X.C.; Tian, J.Q.; et al. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front. Endocrinol. 2023, 14, 1085041. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Majumder, S.; Sen, K.; Karanjai, R. Artificial Intelligence-Based Target for Personalized Interventions of Atherosclerosis from Gut Microbiota Signature. SynBio 2025, 3, 2. [Google Scholar] [CrossRef]
- Alsayed, A.R.; Abed, A.; Khader, H.A.; Al-Shdifat, L.M.H.; Hasoun, L.; Al-Rshaidat, M.M.D.; Alkhatib, M.; Zihlif, M. Molecular Accounting and Profiling of Human Respiratory Microbial Communities: Toward Precision Medicine by Targeting the Respiratory Microbiome for Disease Diagnosis and Treatment. Int. J. Mol. Sci. 2023, 24, 4086. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pérez-Cobas, A.E.; Gomez-Valero, L.; Buchrieser, C. Metagenomic approaches in microbial ecology: An update on whole-genome and marker gene sequencing analyses. Microb Genom. 2020, 6, mgen000409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aplakidou, E.; Vergoulidis, N.; Chasapi, M.; Venetsianou, N.K.; Kokoli, M.; Panagiotopoulou, E.; Iliopoulos, I.; Karatzas, E.; Pafilis, E.; Georgakopoulos-Soares, I.; et al. Visualizing metagenomic and metatranscriptomic data: A comprehensive review. Comput. Struct. Biotechnol. J. 2024, 23, 2011–2033. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, X.; Peng, T.; Xu, M.; Lin, S.; Hu, B.; Chu, T.; Liu, B.; Xu, Y.; Ding, W.; Li, L.; et al. Spatial multi-omics: Deciphering technological landscape of integration of multi-omics and its applications. J. Hematol. Oncol. 2024, 17, 72. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Winand, R.; D’hooge, E.; Van Uffelen, A.; Bogaerts, B.; Van Braekel, J.; Hoffman, S.; Roosens, N.H.C.J.; Becker, P.; De Keersmaecker, S.C.J.; Vanneste, K. Investigating fungal diversity through metabarcoding for environmental samples: Assessment of ITS1 and ITS2 Illumina sequencing using multiple defined mock communities with different classification methods and reference databases. BMC Genom. 2025, 26, 729. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, Z.; Yin, H.; Van Nostrand, J.D.; Voordeckers, J.W.; Tu, Q.; Deng, Y.; Yuan, M.; Zhou, A.; Zhang, P.; Xiao, N.; et al. Functional Gene Array-Based Ultrasensitive and Quantitative Detection of Microbial Populations in Complex Communities. mSystems 2019, 4, e00296-e19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cao, Z.; Zuo, W.; Wang, L.; Chen, J.; Qu, Z.; Jin, F.; Dai, L. Spatial profiling of microbial communities by sequential FISH with error-robust encoding. Nat. Commun. 2023, 14, 1477. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Almeida, A.; Nayfach, S.; Boland, M.; Strozzi, F.; Beracochea, M.; Shi, Z.J.; Pollard, K.S.; Sakharova, E.; Parks, D.H.; Hugenholtz, P.; et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 2021, 39, 105–114. [Google Scholar] [CrossRef]
- Kashaf, S.S.; Proctor, D.M.; Deming, C.; Saary, P.; Hölzer, M.; Program, N.C.S.; Mullikin, J.; Thomas, J.; Young, A.; Bouffard, G.; et al. Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions. Nat. Microbiol. 2022, 7, 169–179. [Google Scholar] [CrossRef]
- Cuber, P.; Chooneea, D.; Geeves, C.; Salatino, S.; Creedy, T.J.; Griffin, C.; Sivess, L.; Barnes, I.; Price, B.; Misra, R. Comparing the accuracy and efficiency of third generation sequencing technologies, Oxford Nanopore Technologies, and Pacific Biosciences, for DNA barcode sequencing applications. Ecol. Genet. Genom. 2023, 28, 100181. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Babalola, O.O. Metagenomics methods for the study of plant-associated microbial communities: A review. J. Microbiol. Methods 2020, 170, 105860. [Google Scholar] [CrossRef]
- Scientific image and illustration software|BioRender. Available online: https://www.biorender.com/ (accessed on 12 June 2025).
- Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hajjo, R.; Sabbah, D.A.; Al Bawab, A.Q. Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers. Diagnostics 2022, 12, 1742. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marcos-Zambrano, L.J.; Karaduzovic-Hadziabdic, K.; Loncar Turukalo, T.; Przymus, P.; Trajkovik, V.; Aasmets, O.; Berland, M.; Gruca, A.; Hasic, J.; Hron, K.; et al. Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment. Front. Microbiol. 2021, 12, 634511. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mazumder, M.H.H.; Hussain, S. Air-Pollution-Mediated Microbial Dysbiosis in Health and Disease: Lung–Gut Axis and Beyond. J. Xenobiotics 2024, 14, 1595–1612. [Google Scholar] [CrossRef]
- Koteluk, O.; Wartecki, A.; Mazurek, S.; Kołodziejczak, I.; Mackiewicz, A. How Do Machines Learn? Artificial Intelligence as a New Era in Medicine. J. Pers. Med. 2021, 11, 32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Badrulhisham, F.; Pogatzki-Zahn, E.; Segelcke, D.; Spisak, T.; Vollert, J. Machine learning and artificial intelligence in neuroscience: A primer for researchers. Brain Behav. Immun. 2024, 115, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Sarmina, B.G.; Sun, G.-H.; Dong, S.-H. Principal Component Analysis and t-Distributed Stochastic Neighbor Embedding Analysis in the Study of Quantum Approximate Optimization Algorithm Entangled and Non-Entangled Mixing Operators. Entropy 2023, 25, 1499. [Google Scholar] [CrossRef]
- Rahnenführer, J.; De Bin, R.; Benner, A.; Ambrogi, F.; Lusa, L.; Boulesteix, A.L.; Migliavacca, E.; Binder, H.; Michiels, S.; Sauerbrei, W.; et al. Statistical analysis of high-dimensional biomedical data: A gentle introduction to analytical goals, common approaches and challenges. BMC Med. 2023, 21, 182. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ng, S.; Masarone, S.; Watson, D.; Barnes, M.R. The benefits and pitfalls of machine learning for biomarker discovery. Cell Tissue Res. 2023, 394, 17–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patil, A.; Singh, N.; Patwekar, M.; Patwekar, F.; Patil, A.; Gupta, J.K.; Elumalai, S.; Priya, N.S.; Sahithi, A. AI-driven insights into the microbiota: Figuring out the mysterious world of the gut. Intell. Pharm. 2025, 3, 46–52. [Google Scholar] [CrossRef]
- Tunali, V.; Arslan, N.Ç.; Ermiş, B.H.; Derviş Hakim, G.; Gündoğdu, A.; Hora, M.; Nalbantoğlu, Ö.U. A Multicenter Randomized Controlled Trial of Microbiome-Based Artificial Intelligence-Assisted Personalized Diet vs Low-Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols Diet: A Novel Approach for the Management of Irritable Bowel Syndrome. Am. J. Gastroenterol. 2024, 119, 1901–1912. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopes, C.M.; de Jesus Monteiro, C.S.; Duarte, A.P.; dos Santos, J.L. Probiotics and Prebiotics for the Treatment of Irritable Bowel Syndrome—A Narrative Review. J. Clin. Med. 2024, 13, 6337. [Google Scholar] [CrossRef]
- Han, X.; Liu, Q.; Li, Y.; Zhang, M.; Liu, K.; Kwok, L.; Zhang, H.; Zhang, W. Synergizing Artificial Intelligence and Probiotics: A Comprehensive review of emerging applications in health promotion and industrial innovation. Trends Food Sci. Technol. 2025, 159, 104938. [Google Scholar] [CrossRef]
- Dixon, D.; Sattar, H.; Moros, N.; Kesireddy, S.R.; Ahsan, H.; Lakkimsetti, M.; Fatima, M.; Doshi, D.; Sadhu, K.; Junaid Hassan, M. Unveiling the Influence of AI Predictive Analytics on Patient Outcomes: A Comprehensive Narrative Review. Cureus 2024, 16, e59954. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Asar, R.; Erenler, S.; Devecioglu, D.; Ispirli, H.; Karbancioglu-Guler, F.; Ozturk, H.I.; Dertli, E. Understanding the Functionality of Probiotics on the Edge of Artificial Intelligence (AI) Era. Fermentation 2025, 11, 259. [Google Scholar] [CrossRef]
- Anuyah, N.S.; Singh, N.M.K.; Nyavor, N.H. Advancing clinical trial outcomes using deep learning and predictive modelling: Bridging precision medicine and patient-centered care. World J. Adv. Res. Rev. 2024, 24, 001–025. [Google Scholar] [CrossRef]
- Maheshwari, K.; Musyuni, P.; Moulick, A.; Mishra, H.; Ekielski, A.; Mishra, P.K.; Aggarwal, G. Unveiling the microbial symphony: Next-Gen sequencing and bioinformatics insights into the human gut microbiome. Health Sci. Rev. 2024, 11, 100173. [Google Scholar] [CrossRef]
- Cordis, C. Metagenomics of the Human Intestinal Tract. CORDIS|European Commission. 11 July 2011. Available online: https://cordis.europa.eu/project/id/201052/reporting (accessed on 12 June 2025).
- Li, J.; Jia, H.; Cai, X.; Zhong, H.; Feng, Q.; Sunagawa, S.; Arumugam, M.; Kultima, J.R.; Prifti, E.; Nielsen, T.; et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 2014, 32, 834–841. [Google Scholar] [CrossRef]
- Hiseni, P.; Rudi, K.; Wilson, R.C.; Hegge, F.T.; Snipen, L. HumGut: A comprehensive human gut prokaryotic genomes collection filtered by metagenome data. Microbiome 2021, 9, 165. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Pan, D.; Wang, X.; Xu, Y.; Yan, J.; Wang, L.; Yang, X.; Yang, M.; Liu, G.P. Applications of multi-omics analysis in human diseases. MedComm 2023, 4, e315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matthewman, C.; Narin, A.; Huston, H.; Hopkins, C.E. Systems to model the personalized aspects of microbiome health and gut dysbiosis. Mol. Asp. Med. 2022, 91, 101115. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, G.P.; Kuruvalli, G.; Syed, K.; Reddy, V.D. An Updated Review on Probiotic Production and Applications. Gastroenterol. Insights 2024, 15, 221–236. [Google Scholar] [CrossRef]
- Saxena, R.; Sharma, V.; Saxena, A.R.; Patel, A. Harnessing AI and gut microbiome research for precision health. J. Artif. Intell. Gen. Sci. 2024, 3, 74–88. [Google Scholar] [CrossRef]
- Hughes, R.L.; Marco, M.L.; Hughes, J.P.; Keim, N.L.; Kable, M.E. The role of the gut microbiome in predicting response to diet and the Development of Precision Nutrition Models—Part I: Overview of Current Methods. Adv. Nutr. 2019, 10, 953–978. [Google Scholar] [CrossRef]
- Baig, Y.; Ma, H.R.; Xu, H.; You, L. Autoencoder neural networks enable low dimensional structure analyses of microbial growth dynamics. Nat. Commun. 2023, 14, 7937. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khosravi, M.; Zare, Z.; Mojtabaeian, S.M.; Izadi, R. Artificial Intelligence and Decision-Making in Healthcare: A Thematic Analysis of a Systematic Review of Reviews. Health Serv. Res. Manag. Epidemiol. 2024, 11, 23333928241234863. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teixeira, M.; Silva, F.; Ferreira, R.M.; Pereira, T.; Figueiredo, C.; Oliveira, H.P. A review of machine learning methods for cancer characterization from microbiome data. NPJ Precis. Oncol. 2024, 8, 123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghannam, R.B.; Techtmann, S.M. Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring. Comput. Struct. Biotechnol. J. 2021, 19, 1092–1107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Little, L. A Guide to Multi-Omics—Front Line Genomics. 6 February 2024. Available online: https://frontlinegenomics.com/a-guide-to-multi-omics/#:~:text=A%20multi%2Domics%20approach%20involves,molecular%20mechanisms%20that%20underpin%20biology (accessed on 12 June 2025).
- Nasteski, V. An overview of the supervised machine learning methods. Horiz. B 2017, 4, 51–62. [Google Scholar] [CrossRef]
- Ono, S.; Goto, T. Introduction to supervised machine learning in clinical epidemiology. Ann. Clin. Epidemiol. 2022, 4, 63–71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohalder, R.N.; Hossain, M.A.; Hossain, N. CLASSIFYING THE SUPERVISED MACHINE LEARNING AND COMPARING THE PERFORMANCES OF THE ALGORITHMS. Int. J. Adv. Res. 2024, 12, 422–438. [Google Scholar] [CrossRef] [PubMed]
- Eckhardt, C.M.; Madjarova, S.J.; Williams, R.J.; Ollivier, M.; Karlsson, J.; Pareek, A.; Nwachukwu, B.U. Unsupervised machine learning methods and emerging applications in healthcare. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, T.; Elahi, A.; Wijns, W.; Shahzad, A. Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress Detection. Front. Med. Technol. 2022, 4, 782756. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmed, F.; Shamsuddin, M.; Sultana, T.; Shamsuddin, R. Semi-Supervised Machine Learning Method for Predicting Observed Individual Risk Preference Using Gallup Data. Math. Comput. Appl. 2024, 29, 21. [Google Scholar] [CrossRef]
- Reddy, Y.C.a.P.; Viswanath, P.; Reddy, B.E. Semi-supervised learning: A brief review. Int. J. Eng. Technol. 2018, 7, 81. [Google Scholar] [CrossRef]
- van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [Google Scholar] [CrossRef]
- Sivamayil, K.; Rajasekar, E.; Aljafari, B.; Nikolovski, S.; Vairavasundaram, S.; Vairavasundaram, I. A Systematic Study on Reinforcement Learning Based Applications. Energies 2023, 16, 1512. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, Y.; Zhu, Z.; Sun, F. Increasing prediction performance of colorectal cancer disease status using random forests classification based on metagenomic shotgun sequencing data. Synth. Syst. Biotechnol. 2022, 7, 574–585. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Asnicar, F.; Berry, S.E.; Valdes, A.M.; Nguyen, L.H.; Piccinno, G.; Drew, D.A.; Leeming, E.; Gibson, R.; Le Roy, C.; Khatib, H.A.; et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 2021, 27, 321–332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McLeish, E.; Slater, N.; Mastaglia, F.L.; Needham, M.; Coudert, J.D. From data to diagnosis: How machine learning is revolutionizing biomarker discovery in idiopathic inflammatory myopathies. Brief Bioinform. 2023, 25, bbad514. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Azzam, N.; Shatnawi, I. Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Breast Cancer. Ann. Med. Surg. 2021, 62, 53–64. [Google Scholar] [CrossRef]
- Gentleman, R.; Carey, V.J. Unsupervised Machine Learning. In Bioconductor Case Studies; Springer: New York, NY, USA, 2008; pp. 137–157. [Google Scholar] [CrossRef]
- Lepakshi, V.A. Machine Learning and Deep Learning based AI Tools for Development of Diagnostic Tools. In Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection; Academic Press: Cambridge, MA, USA, 2022; pp. 399–420. [Google Scholar] [CrossRef] [PubMed Central]
- Walczyna, T.; Jankowski, D.; Piotrowski, Z. Enhancing Anomaly Detection Through Latent Space Manipulation in Autoencoders: A Comparative Analysis. Appl. Sci. 2025, 15, 286. [Google Scholar] [CrossRef]
- Zeller, G.; Tap, J.; Voigt, A.Y.; Sunagawa, S.; Kultima, J.R.; Costea, P.; Bork, P. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 2014, 10, 766. [Google Scholar] [CrossRef]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef]
- Wirbel, J.; Pyl, P.T.; Kartal, E.; Zych, K.; Kashani, A.; Milanese, A.; Fleck, J.S.; Voigt, A.Y.; Palleja, A.; Ponnudurai, R.; et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 2019, 25, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Pasolli, E.; Truong, D.T.; Malik, F.; Waldron, L.; Segata, N. Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights. PLoS Comput. Biol. 2016, 12, e1004977. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Topçuoğlu, B.D.; Lesniak, N.A.; Ruffin, M.T.; Wiens, J.; Schloss, P.D. A framework for Effective Application of Machine Learning to Microbiome-Based Classification Problems. mBio 2020, 11, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Asgari, E.; Garakani, K.; McHardy, A.C.; Mofrad, M.R.K. MicroPheno: Predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples. Bioinformatics 2018, 34, i32–i42, Erratum in Bioinformatics 2019, 35, 1082. https://doi.org/10.1093/bioinformatics/bty652. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vilne, B.; Ķibilds, J.; Siksna, I.; Lazda, I.; Valciņa, O.; Krūmiņa, A. Could Artificial Intelligence/Machine Learning and inclusion of Diet-Gut microbiome interactions improve disease risk prediction? Case study: Coronary artery disease. Front. Microbiol. 2022, 13, 627892. [Google Scholar] [CrossRef]
- Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergström, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Bäckhed, F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013, 498, 99–103. [Google Scholar] [CrossRef]
- Reitmeier, S.; Kiessling, S.; Clavel, T.; List, M.; Almeida, E.L.; Ghosh, T.S.; Neuhaus, K.; Grallert, H.; Linseisen, J.; Skurk, T.; et al. Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes. Cell Host Microbe 2020, 28, 258–272.e6. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Zhao, M.; Wang, F.; Li, Y.; Li, H.; Zheng, J.; Chen, X.; Zhao, X.; Ji, L.; Gao, X.; et al. Integrating Choline and Specific Intestinal Microbiota to Classify Type 2 Diabetes in Adults: A Machine Learning Based Metagenomics Study. Front. Endocrinol. 2022, 13, 906310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papoutsoglou, G.; Tarazona, S.; Lopes, M.B.; Klammsteiner, T.; Ibrahimi, E.; Eckenberger, J.; Novielli, P.; Tonda, A.; Simeon, A.; Shigdel, R.; et al. Machine learning approaches in microbiome research: Challenges and best practices. Front. Microbiol. 2023, 14, 1261889. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Schluter, J.; Zhang, L.; Cao, X.; Jenq, R.R.; Feng, H.; Haines, J.; Zhang, L. Review and revamp of compositional data transformation: A new framework combining proportion conversion and contrast transformation. Comput. Struct. Biotechnol. J. 2024, 23, 4088–4107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guccione, C.; Patel, L.; Tomofuji, Y.; McDonald, D.; Gonzalez, A.; Sepich-Poore, G.D.; Sonehara, K.; Zakeri, M.; Chen, Y.; Dilmore, A.H.; et al. Incomplete human reference genomes can drive false sex biases and expose patient-identifying information in metagenomic data. Nat. Commun. 2025, 16, 825. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, J.X.; Peng, Y.; Yu, Q.Y.; Yang, J.J.; Zhang, Y.H.; Zhang, H.Y.; Adams, C.A.; Willing, C.E.; Wang, C.; Li, Q.S.; et al. Gene horizontal transfers and functional diversity negatively correlated with bacterial taxonomic diversity along a nitrogen gradient. NPJ Biofilms Microbiomes 2024, 10, 128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, X.; Hu, T.; Chen, J.; Liang, H.; Zhou, J.; Wu, Z.; Ye, C.; Jin, X.; Xu, X.; Zhang, W.; et al. The genomic landscape of reference genomes of cultivated human gut bacteria. Nat. Commun. 2023, 14, 1663. [Google Scholar] [CrossRef] [PubMed]
- Shoer, S.; Reicher, L.; Zhao, C.; Pollard, K.S.; Pilpel, Y.; Segal, E. Pangenomes of human gut microbiota uncover links between genetic diversity and stress response. Cell Host Microbe 2024, 32, 1744–1757.e2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cross, J.L.; Choma, M.A.; Onofrey, J.A. Bias in medical AI: Implications for clinical decision-making. PLOS Digit. Health 2024, 3, e0000651. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghasemian, M.; Gerido, L.H.; Ayday, E. Safeguarding Privacy in Genome Research: A Comprehensive Framework for Authors. AMIA Jt. Summits Transl. Sci. Proc. 2025, 2025, 177–186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bašić-Čičak, D.; Hasić Telalović, J.; Pašić, L. Utilizing Artificial Intelligence for Microbiome Decision-Making: Autism Spectrum Disorder in Children from Bosnia and Herzegovina. Diagnostics 2024, 14, 2536. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.; Wirbel, J.; Ansorge, R.; Schudoma, C.; Ducarmon, Q.R.; Narbad, A.; Zeller, G. Machine learning-based meta-analysis reveals gut microbiome alterations associated with Parkinson’s disease. Nat. Commun. 2025, 16, 4227. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, P.; Ghorbani, A. Exploring the synergy of artificial intelligence in microbiology: Advancements, challenges, and future prospects. Comput. Struct. Biotechnol. Rep. 2024, 1, 100005. [Google Scholar] [CrossRef]
Technology | Benefits | Limitations |
---|---|---|
16S rRNA profiling [28] | - Offers high sensitivity for microbial identification | - Limited taxonomic resolution - Susceptible to PCR amplification biases - Functional insights rely on indirect extrapolation |
Reference-based metagenomics [29] | - Enables species- and strain-level classification for certain taxa - Integrates functional data - Does not require amplification | - Strongly influenced by the quality and diversity of reference databases - Unable to distinguish between expressed and non-expressed genes |
Metagenome-assembled genomes (MAGs) [30] | - No need for amplification - Identifies species and evolutionary relationships within a sample - Helps expand reference databases | - Challenges in handling complex datasets - Difficulties in assembling repetitive sequences |
Multi-omic analysis [31] | - Detects functional genes, RNA transcripts, proteins, and metabolites - Provides insights into potential biological mechanisms | - Complex data integration - Issues related to temporal and spatial variations in sampling |
ITS sequencing (Internal Transcribed Spacer) [32] | High resolution for fungal community profiling; complementary to 16S rRNA for bacterial communities | Limited to fungal identification; subject to PCR biases; less standardized databases |
Microarrays (PhyloChip, GeoChip) [33] | High-throughput; detects thousands of taxa/functional genes simultaneously; reproducible results | Limited to predefined probes; cannot detect novel organisms; requires robust probe design |
FISH (Fluorescence In Situ Hybridization) [34] | Visualizes microbes in situ; provides spatial organization; no need for cultivation | Lower sensitivity for rare taxa; requires specific probes; limited multiplexing |
Category | Description | Function | What it Can Be Used? |
---|---|---|---|
Predictive analysis [50] | AI forecasts how various probiotic strains interact with the gut microbiome and their potential effects on health, using past clinical trials and datasets [51] | It can determine the most effective probiotic strains for specific health conditions or demographic groups. | An AI model may predict that a specific combination of Lactobacillus and Bifidobacterium strains effectively alleviates IBS symptoms in adults [52]. |
Customized probiotic suggestions [53] | AI enables tailored probiotic recommendations based on an individual’s microbiome composition and overall health status. | AI designs personalized probiotic formulations suited for each patient using genomic, metabolomic, and clinical information. | AI proposes a specialized probiotic formula to restore microbial equilibrium for individuals with an imbalanced gut microbiome and metabolic issues. |
AI-assisted clinical guidance [54] | AI helps healthcare providers choose appropriate probiotic therapies by analyzing patient records and predicting treatment outcomes. | AI-driven systems offer data-supported recommendations for probiotic interventions, aiding in chronic disease management or post-antibiotic recovery. | AI assesses patient data to recommend probiotics that reduce the risk of antibiotic-associated diarrhea and enhance gut health. |
AI-driven probiotic strain discovery [55] | Machine-learning algorithms identify novel probiotic strains with desirable metabolic or immunomodulatory traits. | Screens microbial genomes and predicts beneficial functionalities. | AI discovers new probiotic candidates with anti-inflammatory or cholesterol-lowering properties for targeted therapies. |
Clinical trial simulation & validation [56] | AI models simulate probiotic interventions and predict trial outcomes before or alongside human studies. | Reduces trial costs and accelerates validation of probiotic efficacy. | AI predicts probiotic success rates in T2D management or validates formulations in silico before moving to clinical phases. |
ML Type | Description | Labeled Data? | Output Type | Common Algorithms | Where it Can Be Used? |
---|---|---|---|---|---|
Supervised learning [71,72,73] | Models are trained on labeled datasets with known inputs and outputs to make predictions. | Yes (fully labeled) | Classification labels, regression values | Linear/Logistic Regression, Decision Trees, Random Forests, Support Vector Machines (SVM), Gradient Boosting | Disease diagnosis (e.g., cancer classification from microbiome), biomarker discovery, clinical outcome prediction, medical imaging analysis |
Unsupervised learning [74,75] | Finds hidden structures or patterns in unlabeled data. | No | Clusters, latent structures, reduced feature spaces | K-means clustering, Hierarchical clustering, Self-Organizing Maps, Neural Networks, Dimensionality reduction (PCA, ICA, t-SNE) | Identification of gut enterotypes, discovery of microbial community patterns, patient stratification for personalized treatment |
Semi-supervised learning [76,77,78] | Uses both labeled and unlabeled data to improve performance. | Yes (partially labeled) | Improved predictive models leveraging partial labels | Self-training, Co-training, Graph-based methods | Rare disease classification, clinical trial predictions with incomplete data, microbiome classification when full annotations are missing |
Reinforcement learning [79,80] | An agent learns by interacting with the environment and receiving feedback (rewards/penalties). | No | Policies, reward signals | Q-learning, Deep Reinforcement Learning | Optimizing personalized treatment plans, adaptive probiotic recommendations, drug–microbiome interaction modeling |
Study | Algorithm | Data Type | Application/Outcome |
---|---|---|---|
Zeller et al. [88] | Random forest | Metagenomic sequencing | Disease classification: identified microbial signatures distinguishing colorectal cancer from controls |
Qin et al. [89] | Support Vector machines | Metagenomic | Type 2 diabetes classification and biomarker discovery from gut microbiome profiles |
Arumugam et al. [90] | Clustering/Unsupervised learning | Metagenomic | Discovery of human gut enterotypes across populations |
Wirbel et al. [91] | Random forest, LASSO regression | Metagenomic | Developed multi-cohort model for colorectal cancer prediction and validated across external cohorts |
Pasolli et al. [92] | Deep-learning neural networks | Shotgun metagenomic | Improved disease classification (IBD, obesity, CRC) across large-scale microbiome datasets |
Topçuoğlu et al. [93] | Logistic regression, Random forest | 16S rRNA amplicon | Predictive modeling of host phenotypes and experimental outcomes from microbiome data |
Asgari et al. [94] | Convolutional neural networks | Metagenomic | Biomarker discovery for host–microbiome associations and disease prediction |
Vilne et al. [95] | Reinforcement learning models | Diet–microbiome interaction data | Optimized microbiome-based risk prediction models for coronary artery disease |
Study | Sample Size (N) | Data Type | Algorithm(s) | Validation | Performance Metric(s) |
---|---|---|---|---|---|
Zeller et al. [88] | 335 (France, Germany, Italy, Austria) | Metagenomic | Random forest | Cross-cohort | Metagenomics + fecal occult blood test (FOBT) sensitivity increased >45% vs. FOBT alone at matched specificity |
Wirbel et al. [91] | 768 metagenomes, 3 validation cohorts | Metagenomic | Random forest, LASSO | Multi-study CV + external validation | Cross-study AUCs stable with multi-study training; identified 29 robust CRC-associated species |
Qin et al. [89] | 345 (Chinese adults) | Metagenomic | SVM | Train/validation split | Gene markers classified T2D vs. controls with significant separation |
Karlsson et al. [96] | 145 (European women) | Metagenomic | SVM, logistic regression | Internal CV | High accuracy for T2D vs. controls; identified pre-diabetic individuals as “diabetes-like” |
Pasolli et al. [92] | 2424 metagenomes across 8 studies | Shotgun metagenomic | Deep learning, Random forest, SVM | Cross-validation + cross-study | Cirrhosis AUC = 0.945; CRC AUC = 0.873; IBD AUC = 0.890 |
Topçuoğlu et al. [93] | 490 stool 16S rRNA | RF, logistic regression, others | Repeated CV | RF AUROC = 0.695 (IQR 0.651–0.739); Logistic regression AUROC = 0.680 (0.625–0.735) | |
Arumugam et al. [90] | Multi-country cohorts | Metagenomic | Clustering (k-means, PCA) | Replication across cohorts | Identified 3 reproducible enterotypes, stable across populations |
Asgari et al. [94] | 16S datasets, multiple environments | Deep learning (MicroPheno) | Cross-validation | Macro-F1 = 0.88 (18 environments); 0.87 (5 organismal environments) | |
Vilne et al. [95] | Diet + metagenomic cohort (CAD study) | Multi-omic | Reinforcement learning | Case study analysis | Optimized diet–microbiome interactions for CAD risk prediction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandrescu, L.; Tofolean, I.T.; Condur, L.M.; Tofolean, D.E.; Nicoara, A.D.; Serbanescu, L.; Rusu, E.; Twakor, A.N.; Dumitru, E.; Dumitru, A.; et al. Smart Microbiomes: How AI Is Revolutionizing Personalized Medicine. Bioengineering 2025, 12, 944. https://doi.org/10.3390/bioengineering12090944
Alexandrescu L, Tofolean IT, Condur LM, Tofolean DE, Nicoara AD, Serbanescu L, Rusu E, Twakor AN, Dumitru E, Dumitru A, et al. Smart Microbiomes: How AI Is Revolutionizing Personalized Medicine. Bioengineering. 2025; 12(9):944. https://doi.org/10.3390/bioengineering12090944
Chicago/Turabian StyleAlexandrescu, Luana, Ionut Tiberiu Tofolean, Laura Maria Condur, Doina Ecaterina Tofolean, Alina Doina Nicoara, Lucian Serbanescu, Elena Rusu, Andreea Nelson Twakor, Eugen Dumitru, Andrei Dumitru, and et al. 2025. "Smart Microbiomes: How AI Is Revolutionizing Personalized Medicine" Bioengineering 12, no. 9: 944. https://doi.org/10.3390/bioengineering12090944
APA StyleAlexandrescu, L., Tofolean, I. T., Condur, L. M., Tofolean, D. E., Nicoara, A. D., Serbanescu, L., Rusu, E., Twakor, A. N., Dumitru, E., Dumitru, A., Tocia, C., Herlo, L. F., Alexandrescu, D. M., & Stanigut, A. M. (2025). Smart Microbiomes: How AI Is Revolutionizing Personalized Medicine. Bioengineering, 12(9), 944. https://doi.org/10.3390/bioengineering12090944