Cranial Bone Repair and Regeneration After Trauma: Forensic and Clinical Medico-Legal Consequences
Abstract
1. Introduction
2. Classification and Assessment of Cranial Defects
3. Materials Used for Cranial Bone Reconstruction
3.1. Autologous Grafts
3.2. Allogenic Materials
3.3. Xenogenic Materials
3.4. Bioceramics
3.5. Other Materials
4. Forensic Consequences of the Materials Used in Cranial Reconstruction
4.1. Radiographic Identification and Imaging Artifacts
4.2. Material-Specific Forensic Signatures
4.3. Thermal Resistance
4.4. Postmortem Material Degradation and Environmental Effects
5. Medical Malpractice Related to Cranial Reconstruction Materials
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-Dimensional |
45S5 | Specific Bioglass formulation |
13-93 | Bioactive glass type |
β-TCP | Beta-Tricalcium Phosphate |
BMP2 | Bone Morphogenetic Protein 2 |
CBCT | Cone-Beam Computed Tomography |
CRANIOTOP® | Commercial titanium implant system |
CSD/CSDs | Critical-Size Defect/Critical-Size Defects |
CT | Computed Tomography |
kVp | Kilovolt peak |
MR/MRI | Magnetic Resonance/Magnetic Resonance Imaging |
PCL | Polycaprolactone |
PEEK | Polyetheretherketone |
PGLA | Poly(glycolide-co-lactide) |
PMMA | Polymethylmethacrylate |
TBIs | Traumatic Brain Injuries |
USD | United States Dollar |
VEGF | Vascular Endothelial Growth Factor |
References
- Yan, J.; Wang, C.; Sun, B. Global, Regional, and National Burdens of Traumatic Brain Injury from 1990 to 2021. Front. Public Health 2025, 13, 1556147. [Google Scholar] [CrossRef]
- Szpalski, C.; Barr, J.; Wetterau, M.; Saadeh, P.B.; Warren, S.M. Cranial Bone Defects: Current and Future Strategies. Neurosurg. Focus 2010, 29, E8. [Google Scholar] [CrossRef]
- Zhang, J.K.; Botterbush, K.S.; Bagdady, K.; Lei, C.H.; Mercier, P.; Mattei, T.A. Blast-Related Traumatic Brain Injuries Secondary to Thermobaric Explosives: Implications for the War in Ukraine. World Neurosurg. 2022, 167, 176–183.e4. [Google Scholar] [CrossRef]
- Sirko, A.; Berlin, C.; Tsang, S.; Naik, B.I.; Armonda, R.A. Wartime Penetrating Traumatic Brain Injury of the Anterior Skull Base Involving the Paranasal Sinuses: A Single-Center, First-Year Experience from Dnipro, Ukraine. J. Neurosurg. 2024, 142, 829–838. [Google Scholar] [CrossRef]
- Lawry, L.L.; Korona-Bailey, J.; Hamm, T.E.; Maddox, J.; Janvrin, M.; Juman, L.; Berezyuk, O.; Smolinski, G.; Brim, W.; Koehlmoos, T.P. A Qualitative Assessment of War-Related Rehabilitation Needs and Gaps in Ukraine. J. Health Popul. Nutr. 2025, 44, 175. [Google Scholar] [CrossRef]
- Heide, S.; Hosein-Woodley, R.; Morency, J.; Williams, J.; Etienne, M. Unveiling the Impact: Exploring the Influence of Traumatic Brain Injury on Quality of Life and Life Satisfaction (P2-14.018). Neurology 2024, 102, 7. [Google Scholar] [CrossRef]
- Rabinowitz, A.R.; Levin, H.S. Cognitive Sequelae of Traumatic Brain Injury. Psychiatr. Clin. N. Am. 2014, 37, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sveikata, L.; Vasung, L.; El Rahal, A.; Bartoli, A.; Bretzner, M.; Schaller, K.; Schnider, A.; Leemann, B. Syndrome of the Trephined: Clinical Spectrum, Risk Factors, and Impact of Cranioplasty on Neurologic Recovery in a Prospective Cohort. Neurosurg. Rev. 2022, 45, 1431–1443. [Google Scholar] [CrossRef] [PubMed]
- Ashayeri, K.; Jackson, E.M.; Huang, J.; Brem, H.; Gordon, C.R. Syndrome of the Trephined: A Systematic Review. Neurosurgery 2016, 79, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Pruzinsky, T. Social and Psychological Effects of Major Craniofacial Deformity. Cleft Palate Craniofac. J. 1992, 29, 578–584. [Google Scholar] [CrossRef]
- Sahoo, N.K.; Tomar, K.; Bhat, S. Classification of the Residual Cranial Defects and Selection of Reconstruction Materials. J. Craniofac. Surg. 2017, 28, 1694–1701. [Google Scholar] [CrossRef]
- Uygur, S.; Eryilmaz, T.; Cukurluoglu, O.; Ozmen, S.; Yavuzer, R. Management of Cranial Bone Defects: A Reconstructive Algorithm according to Defect Size. J. Craniofac. Surg. 2013, 24, 1606–1609. [Google Scholar] [CrossRef]
- Nikolopoulou, A.; Dontas, I.; Chronopoulos, E.; Zafeiris, C. Reconstruction of Defects of the Cranial Vault. J. Res. Pract. Musculoskelet. Syst. 2024, 08, 71–76. [Google Scholar] [CrossRef]
- Yılmaz, E.; Yetim, A.; Erol, O.B.; Pekcan, M.; Yekeler, E. Multiple Occipital, Parietal, Temporal, and Frontal Foramina: A Variant of Enlarged Parietal Foramina in an Infant. Balk. Med. J. 2014, 31, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Skolnick, G.B.; Murthy, S.; Patel, K.B.; Huang, Z.; Naidoo, S.D.; Ju, T.; Smyth, M.D.; Woo, A.S. Long-Term Characterization of Cranial Defects after Surgical Correction for Single-Suture Craniosynostosis. Ann. Plast. Surg. 2019, 82, 679–685. [Google Scholar] [CrossRef]
- Stanculescu, S.; Hostiuc, S. Minimizing Subjective and Objective Interferences in the Quantification of Esthetic Prejudice. Rom. J. Leg. Med. 2009, 17, 151–155. [Google Scholar] [CrossRef]
- Stanculescu, S.; Hostiuc, S.; Dermengiu, D. Utilitatea Scalelor Estetimetrice in Evaluarea Prejudiciului Estetic. Rom. J. Leg. Med. 2008, 16, 117–122. [Google Scholar]
- Hodin, D. Esthetimeter: Facial esthetimetric scale. Med. Leg. Dommage Corpor. 1973, 6, 111–116. [Google Scholar]
- Yano, T.; Okazaki, M.; Tanaka, K.; Iida, H.; Aoyagi, M.; Tsunoda, A.; Kishimoto, S. A New Concept for Classifying Skull Base Defects for Reconstructive Surgery. J. Neurol. Surg. B Skull Base 2012, 73, 125–131. [Google Scholar] [CrossRef]
- Yano, T.; Mutsumi, O.; Tanaka, K.; Kishimoto, S. A New Classification Concept for the Anterior Skull Base Defect. Skull Base 2011, 21, A145. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, T.; Cong, P.; Lv, H.; Cui, C. Surgical Reconstruction of a Large Defect after Excision of Infiltrative Squamous Cell Carcinoma in the Scalp and Occipital Region: A Case Report. Proc. Anticancer Res. 2024, 8, 36–41. [Google Scholar] [CrossRef]
- Tamulevicius, M.; Vogt, P.M.; Maerz, V. Full-Thickness Scalp and Skull Defect with Dura Mater Exposure due to Dissociation of Pain Sensation and Anankastic Personality Disorder: A Case Report. Case Rep. Plast. Surg. Hand Surg. 2023, 10, 2285058. [Google Scholar] [CrossRef]
- Park, H.; Min, J.; Oh, T.S.; Jeong, W.S.; Choi, J.-W. Scalp Reconstruction Strategy Based on the Etiology of the Scalp Defects. J. Craniofac. Surg. 2022, 33, 2450–2454. [Google Scholar] [CrossRef]
- Shonka, D.C., Jr.; Potash, A.E.; Jameson, M.J.; Funk, G.F. Successful Reconstruction of Scalp and Skull Defects: Lessons Learned from a Large Series. Laryngoscope 2011, 121, 2305–2312. [Google Scholar] [CrossRef]
- Hanada, M.; Kadota, H.; Yoshida, S.; Takeuchi, N.; Okada, T.; Matsumoto, Y.; Nakashima, Y. Large-Defect Resurfacing: A Comparison of Skin Graft Results Following Sarcoma Resection and Traumatic Injury Repair. Wounds 2019, 31, 184–192. [Google Scholar]
- Mehrara, B.J.; Disa, J.J.; Pusic, A. Scalp Reconstruction. J. Surg. Oncol. 2006, 94, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.I.; Hanasono, M.M.; Disa, J.J.; Cordeiro, P.G.; Mehrara, B.J. Scalp Reconstruction: A 15-Year Experience. Ann. Plast. Surg. 2004, 52, 501–506; discussion 506. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Olsen, B.R. The Roles of Vascular Endothelial Growth Factor in Bone Repair and Regeneration. Bone 2016, 91, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Soucacos, P.N.; Kokkalis, Z.T.; Piagkou, M.; Johnson, E.O. Vascularized Bone Grafts for the Management of Skeletal Defects in Orthopaedic Trauma and Reconstructive Surgery. Injury 2013, 44 (Suppl. 1), S70–S75. [Google Scholar] [CrossRef]
- Schmitz, J.P.; Hollinger, J.O. The Critical Size Defect as an Experimental Model for Craniomandibulofacial Nonunions. Clin. Orthop. Relat. Res. 1986, 205, 299–308. [Google Scholar] [CrossRef]
- Gagan, J.R.; Tholpady, S.S.; Ogle, R.C. Cellular Dynamics and Tissue Interactions of the Dura Mater during Head Development. Birth Defects Res. C Embryo Today 2007, 81, 297–304. [Google Scholar] [CrossRef]
- Li, D.; Jiang, X.; Xiao, J.; Liu, C. A Novel Perspective of Calvarial Development: The Cranial Morphogenesis and Differentiation Regulated by Dura Mater. Front. Cell Dev. Biol. 2024, 12, 1420891. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, J.A.; Mehrara, B.; Spector, J.; Chin, G.; Steinbrech, D.; Saadeh, P.; Luchs, J.; Paccione, M.F.; Gittes, G.; Longaker, M. Biomolecular Mechanisms of Calvarial Bone Induction: Immature versus Mature Dura Mater. Plast. Reconstr. Surg. 2000, 105, 1382–1392. [Google Scholar]
- An, R.; Shao, G.; Zhang, C. Effect of Dura Mater on Enhancement of Cranial Osteogenesis in Rats. Chin. J. Tissue Eng. Res. 2024, 28, 3478. [Google Scholar]
- Yu, J.C.; McClintock, J.; Gannon, F.; Gao, X.; Mobasser, J.-P.; Sharawy, M. Regional Differences of Dura Osteoinduction: Squamous Dura Induces Osteogenesis, Sutural Dura Induces Chondrogenesis and Osteogenesis. Plast. Reconstr. Surg. 1997, 100, 23–31. [Google Scholar] [CrossRef]
- Zhang, M.; Fukushima, Y.; Nozaki, K.; Nakanishi, H.; Deng, J.; Wakabayashi, N.; Itaka, K. Enhancement of Bone Regeneration by Coadministration of Angiogenic and Osteogenic Factors Using Messenger RNA. Inflamm. Regen. 2023, 43, 32. [Google Scholar] [CrossRef]
- Omar, O.; Engstrand, T.; Kihlström Burenstam Linder, L.; Åberg, J.; Shah, F.A.; Palmquist, A.; Birgersson, U.; Elgali, I.; Pujari-Palmer, M.; Engqvist, H.; et al. In Situ Bone Regeneration of Large Cranial Defects Using Synthetic Ceramic Implants with a Tailored Composition and Design. Proc. Natl. Acad. Sci. USA 2020, 117, 26660–26671. [Google Scholar] [CrossRef] [PubMed]
- Choung, P.H.; Nam, I.W.; Kim, K.S. Vascularized Cranial Bone Grafts for Mandibular and Maxillary Reconstruction. The Parietal Osteofascial Flap. J. Craniomaxillofac. Surg. 1991, 19, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Zhou, Z.; Xing, X.; Nuzzle, M.; Zhang, X. Differential Bone and Vessel Type Formation at Superior and Dura Periosteum during Cranial Bone Defect Repair. Bone Res. 2025, 13, 8. [Google Scholar] [CrossRef]
- Vajgel, A.; Mardas, N.; Farias, B.C.; Petrie, A.; Cimões, R.; Donos, N. A Systematic Review on the Critical Size Defect Model. Clin. Oral Implant. Res. 2014, 25, 879–893. [Google Scholar] [CrossRef]
- Hostiuc, S.; Teodoru, D.; Isailă, O.; Buda, O.; Costescu, M. Tratat de Medicină Legală Odontostomatologică; Hostiuc, S., Ed.; All: București, Romania, 2020. [Google Scholar]
- Guo, T.; Yuan, X.; Li, X.; Liu, Y.; Zhou, J. Bone Regeneration of Mouse Critical-Sized Calvarial Defects with Human Mesenchymal Stem Cell Sheets Co-Expressing BMP2 and VEGF. J. Dent. Sci. 2023, 18, 135–144. [Google Scholar] [CrossRef]
- Lopez-Letayf, S.; Arie, I.; Araidy, S.; Abu El-Naaj, I.; Pitaru, S.; Arzate, H. Human Oral Mucosa-Derived Neural Crest-like Stem Cells Differentiate into Functional Osteoprogenitors That Contribute to Regeneration of Critical Size Calvaria Defects. J. Periodontal Res. 2022, 57, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Levi, B.; James, A.W.; Nelson, E.R.; Vistnes, D.; Wu, B.; Lee, M.; Gupta, A.; Longaker, M.T. Human Adipose Derived Stromal Cells Heal Critical Size Mouse Calvarial Defects. PLoS ONE 2010, 5, e11177. [Google Scholar] [CrossRef]
- Chadha, A. A Guide to the Bones of the Cranium: Anatomy Explained. Available online: https://www.diginerve.com/blogs/a-guide-to-the-bones-of-the-cranium-anatomy-explained/ (accessed on 21 June 2025).
- Preston, T. An Overview of Cranial Bone Anatomy. Integrative Works. 2021. Available online: https://integrativeworks.com/overview-of-cranial-bone-anatomy/ (accessed on 21 June 2025).
- Su, N.; Villicana, C.; Barati, D.; Freeman, P.; Luo, Y.; Yang, F. Stem Cell Membrane-Coated Microribbon Scaffolds Induce Regenerative Innate and Adaptive Immune Responses in a Critical-Size Cranial Bone Defect Model. Adv. Mater. 2023, 35, e2208781. [Google Scholar] [CrossRef]
- Hudieb, M.; Haddad, A.; Bakeer, M.; Alkhazaaleh, A.; AlKhader, M.; Taani, D.; Kasugai, S. Influence of Age on Calvarial Critical Size Defect Dimensions: A Radiographic and Histological Study: A Radiographic and Histological Study. J. Craniofac. Surg. 2021, 32, 2896–2900. [Google Scholar] [CrossRef]
- Gomes, P.S.; Fernandes, M.H. Rodent Models in Bone-Related Research: The Relevance of Calvarial Defects in the Assessment of Bone Regeneration Strategies. Lab. Anim. 2011, 45, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Bosch, C.; Melsen, B.; Vargervik, K. Importance of the Critical-Size Bone Defect in Testing Bone-Regenerating Materials. J. Craniofac. Surg. 1998, 9, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Llano, C.-H.; López-Tenorio, D.; Saavedra, M.; Zapata, P.; Grande-Tovar, C. Comparison of Two Bovine Commercial Xenografts in the Regeneration of Critical Cranial Defects. Molecules 2022, 27, 5745. [Google Scholar] [CrossRef]
- Dvoracek, L.A.; Lee, J.Y.; Ayyash, A.; Losee, J.E.; Goldstein, J.A. Demineralized Bone Matrix and Resorbable Mesh Bilaminate Cranioplasty Is Ineffective for Secondary Reconstruction of Large Pediatric Cranial Defects. Plast. Reconstr. Surg. 2020, 145, 137e–141e. [Google Scholar] [CrossRef]
- Zaed, I.; Cardia, A.; Stefini, R. From Reparative Surgery to Regenerative Surgery: State of the Art of Porous Hydroxyapatite in Cranioplasty. Int. J. Mol. Sci. 2022, 23, 5434. [Google Scholar] [CrossRef]
- Frautschi, R.S.; Halasa, B.; Kwiecien, G.; Krebs, J.; Recinos, V.; Onwuzulike, K.; Rampazzo, A.; Papay, F.; Zins, J.E.; Bassiri Gharb, B. Reconstruction of Secondary Calvarial Defects with Ex Situ Split Calvarial Bone Grafts: Long-Term Evaluation of Outcomes: Long-Term Evaluation of Outcomes. Plast. Reconstr. Surg. 2019, 143, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraj, P. Split Calvarial Grafting for Closure of Large Cranial Defects: The Ideal Option? J. Maxillofac. Oral Surg. 2019, 18, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Papay, F.A.; Zins, J.; Hahn, J.F. Split Calvarial Bone Graft in Cranio-Orbital Sphenoid Wing Reconstruction. J. Craniofac. Surg. 1996, 7, 133–139. [Google Scholar] [CrossRef]
- Rudy, H.L.; Herman, S.; Stern, C.S.; Staffenberg, D.A.; Dowling, K.; Goodrich, J.T.; Tepper, O.M. Optimizing Reconstruction in Craniosynostosis: Review of Nonsyndromic Patients Treated with a Novel Technique. J. Craniofac. Surg. 2020, 31, 1312–1317. [Google Scholar] [CrossRef]
- Hong, S.H.; Lim, S.Y. Calvarial Reconstruction with Autologous Sagittal Split Rib Bone Graft and Latissimus Dorsi Rib Myoosseocutaneous Free Flap. J. Craniofac. Surg. 2020, 31, e103–e107. [Google Scholar] [CrossRef]
- Chandra, S.R.; Pillai, V. Hard Tissue Reconstruction of the Maxillofacial Region. In Oral and Maxillofacial Surgery for the Clinician; Springer Nature Singapore: Singapore, 2021; pp. 1997–2008. ISBN 9789811513459. [Google Scholar]
- Siddique, S.A.; Mathog, R.H. A Comparison of Parietal and Iliac Crest Bone Grafts for Orbital Reconstruction. J. Oral Maxillofac. Surg. 2002, 60, 44–50; discussion 50–52. [Google Scholar] [CrossRef]
- Tubbs, R.S.; Loukas, M.; Shoja, M.M.; Salter, F.; Salter, E.G.; Oakes, W.J. Use of Autologous Scapula for Cranioplasty: Cadaveric Feasibility Study. Childs. Nerv. Syst. 2008, 24, 955–959. [Google Scholar] [CrossRef]
- Bhaskar, I.P.; Yusheng, L.; Zheng, M.; Lee, G.Y.F. Autogenous Skull Flaps Stored Frozen for More than 6 Months: Do They Remain Viable? J. Clin. Neurosci. 2011, 18, 1690–1693. [Google Scholar] [CrossRef] [PubMed]
- Canzi, G.; Talamonti, G.; Mazzoleni, F.; Bozzetti, A.; Sozzi, D. Homologous Banked Bone Grafts for the Reconstruction of Large Cranial Defects in Pediatric Patients. J. Craniofac. Surg. 2018, 29, 2038–2042. [Google Scholar] [CrossRef]
- Prolo, D.; Oklund, S. The Use of Bone Grafts and Alloplastic Materials in Cranioplasty. Clin. Orthop. Relat. Res. 1991, 268, 270–278. [Google Scholar]
- Clark, R.P.; Pham, P.M.; Ciminello, F.S.; Hagge, R.J.; Drobny, S.; Wong, G.B. Nasal Dorsal Augmentation with Freeze-Dried Allograft Bone: 10-Year Comprehensive Review. Plast. Reconstr. Surg. 2019, 143, 49e–61e. [Google Scholar] [CrossRef]
- Vanaclocha, V.; Bazan, A.; Saiz-Sapena, N.; Paloma, V.; Idoate, M. Use of Frozen Cranial Vault Bone Allografts in the Repair of Extensive Cranial Bone Defects. Acta Neurochir. 1997, 139, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Oh, J.S. Demineralized Bone Matrix (DBM) and Bone Grafts. In Translating Biomaterials for Bone Graft; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Gruskin, E.; Doll, B.A.; Futrell, F.W.; Schmitz, J.P.; Hollinger, J.O. Demineralized Bone Matrix in Bone Repair: History and Use. Adv. Drug Deliv. Rev. 2012, 64, 1063–1077. [Google Scholar] [CrossRef]
- Edward, M.; Mahyudin, F.; Basuki, M.H.; Suroto, H.; Perwira, F.D. Growth Factor Comparison in Cortical Demineralized Bone Matrix That Demineralized Using Chloric and Acetic Acid. J. Orthop. Traumatol. Surabaya 2023, 12, 1–9. [Google Scholar] [CrossRef]
- Oliveira Pinho, F.; Pinto Joazeiro, P.; Santos, A.R., Jr. Evaluation of the Growth and Differentiation of Human Fetal Osteoblasts (hFOB) Cells on Demineralized Bone Matrix (DBM). Organogenesis 2021, 17, 136–149. [Google Scholar] [CrossRef]
- Zhu, Y.; Wei, S.-M.; Yan, K.-X.; Gu, Y.-X.; Lai, H.-C.; Qiao, S.-C. Bovine-Derived Xenografts Immobilized with Cryopreserved Stem Cells from Human Adipose and Dental Pulp Tissues Promote Bone Regeneration: A Radiographic and Histological Study. Front. Bioeng. Biotechnol. 2021, 9, 646690. [Google Scholar] [CrossRef]
- Bae, E.-B.; Kim, H.-J.; Ahn, J.-J.; Bae, H.-Y.; Kim, H.-J.; Huh, J.-B. Comparison of Bone Regeneration between Porcine-Derived and Bovine-Derived Xenografts in Rat Calvarial Defects: A Non-Inferiority Study. Materials 2019, 12, 3412. [Google Scholar] [CrossRef]
- Long, B.; Dan, L.; Jian, L.; Yunyu, H.; Shu, H.; Zhi, Y. Evaluation of a Novel Reconstituted Bone Xenograft Using Processed Bovine Cancellous Bone in Combination with Purified Bovine Bone Morphogenetic Protein: Evaluation of RBX. Xenotransplantation 2012, 19, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Salama, R. Xenogeneic Bone Grafting in Humans. Clin. Orthop. Relat. Res. 1983, 174, 113–121. [Google Scholar] [CrossRef]
- Barbeck, M.; Unger, R.; Witte, F.; Wenisch, S.; Schnettler, R. Xenogeneic Bone Grafting Materials. Int. Mag. Oral Implantol. 2017, 3, 34–36. [Google Scholar]
- Sharifi, M.; Kheradmandi, R.; Salehi, M.; Alizadeh, M.; Ten Hagen, T.L.M.; Falahati, M. Criteria, Challenges, and Opportunities for Acellularized Allogeneic/xenogeneic Bone Grafts in Bone Repairing. ACS Biomater. Sci. Eng. 2022, 8, 3199–3219. [Google Scholar] [CrossRef]
- Sprio, S.; Fricia, M.; Maddalena, G.F.; Nataloni, A.; Tampieri, A. Osteointegration in Cranial Bone Reconstruction: A Goal to Achieve. J. Appl. Biomater. Funct. Mater. 2016, 14, e470–e476. [Google Scholar] [CrossRef]
- Brie, J.; Chartier, T.; Chaput, C.; Delage, C.; Pradeau, B.; Caire, F.; Boncoeur, M.-P.; Moreau, J.-J. A New Custom Made Bioceramic Implant for the Repair of Large and Complex Craniofacial Bone Defects. J. Craniomaxillofac. Surg. 2013, 41, 403–407. [Google Scholar] [CrossRef]
- Frassanito, P.; De Bonis, P.; Mattogno, P.P.; Mangiola, A.; Novello, M.; Brinchi, D.; Pompucci, A.; Anile, C. The Fate of a Macroporous Hydroxyapatite Cranioplasty Four Years after Implantation: Macroscopical and Microscopical Findings in a Case of Recurrent Atypical Meningioma. Clin. Neurol. Neurosurg. 2013, 115, 1496–1498. [Google Scholar] [CrossRef] [PubMed]
- Fricia, M.; Passanisi, M.; Salamanna, F.; Parrilli, A.; Giavaresi, G.; Fini, M. Osteointegration in Custom-Made Porous Hydroxyapatite Cranial Implants: From Reconstructive Surgery to Regenerative Medicine. World Neurosurg. 2015, 84, 591.e11–591.e16. [Google Scholar] [CrossRef]
- Shash, Y.H. Assessment of Cranial Reconstruction Utilizing Various Implant Materials: Finite Element Study. J. Mater. Sci. Mater. Med. 2024, 35, 50. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Zhou, J.; Ning, J.; Li, M.; Yao, Y.; Wang, X.; Jian, Y.; Zhao, K. The Polycaprolactone/silk Fibroin/carbonate Hydroxyapatite Electrospun Scaffold Promotes Bone Reconstruction by Regulating the Polarization of Macrophages. Regen. Biomater. 2022, 9, rbac035. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Shu, M.; Yan, J.; Liu, X.; Wang, R.; Hou, Z.; Lin, J. Luminescent Net-like Inorganic Scaffolds with Europium-Doped Hydroxyapatite for Enhanced Bone Reconstruction. Nanoscale 2021, 13, 1181–1194. [Google Scholar] [CrossRef]
- Biskup, N.I.; Singh, D.J.; Beals, S.; Joganic, E.F.; Manwaring, K. Pediatric Cranial Vault Defects: Early Experience with Beta-Tricalcium Phosphate Bone Graft Substitute. J. Craniofac. Surg. 2010, 21, 358–362. [Google Scholar] [CrossRef]
- Hollier, L.; Stal, S. Calcium Phosphate Cement Cranioplasty: Clinical and Radiographic Follow-Up. Internet J. Plast. Surg. 2003, 2, 1–6. Available online: https://ispub.com/print/10337 (accessed on 21 June 2025).
- Foster, K.A.; Shin, S.S.; Prabhu, B.; Fredrickson, A.; Sekula, R.F., Jr. Calcium Phosphate Cement Cranioplasty Decreases the Rate of Cerebrospinal Fluid Leak and Wound Infection Compared with Titanium Mesh Cranioplasty: Retrospective Study of 672 Patients. World Neurosurg. 2016, 95, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Ogino, A.; Nakamichi, M.; Takeda, K.; Onishi, K. Cranial Reconstruction Using Antibiotic-Impregnated Calcium Phosphate Bone Cement with a Titanium Mesh Sheet. J. Craniofac. Surg. 2020, 31, 1452–1454. [Google Scholar] [CrossRef] [PubMed]
- Cacciotti, I.; Lombardi, M.; Bianco, A.; Ravaglioli, A.; Montanaro, L. Sol-Gel Derived 45S5 Bioglass: Synthesis, Microstructural Evolution and Thermal Behaviour. J. Mater. Sci. Mater. Med. 2012, 23, 1849–1866. [Google Scholar] [CrossRef]
- Bretcanu, O.; Chatzistavrou, X.; Paraskevopoulos, K.; Conradt, R.; Thompson, I.; Boccaccini, A.R. Sintering and Crystallisation of 45S5 Bioglass® Powder. J. Eur. Ceram. Soc. 2009, 29, 3299–3306. [Google Scholar] [CrossRef]
- Chen, Q.Z.; Thompson, I.D.; Boccaccini, A.R. 45S5 Bioglass-Derived Glass-Ceramic Scaffolds for Bone Tissue Engineering. Biomaterials 2006, 27, 2414–2425. [Google Scholar] [CrossRef]
- Liu, X.; Rahaman, M.N.; Fu, Q. Bone Regeneration in Strong Porous Bioactive Glass (13-93) Scaffolds with an Oriented Microstructure Implanted in Rat Calvarial Defects. Acta Biomater. 2013, 9, 4889–4898. [Google Scholar] [CrossRef]
- Shao, Y.; Deng, F.; Chang, Y.; Shi, S.; Li, H.; Yuan, Y. Silicocarnotite: Novel Silicate Bioceramic with Osteogenic Property for Repairing Rat Cranial Critical-Sized Bone Defects. Front. Mater. 2022, 9, 919029. [Google Scholar] [CrossRef]
- Höhne, J.; Brawanski, A.; Gassner, H.G.; Schebesch, K.-M. Feasibility of the Custom-Made Titanium Cranioplasty CRANIOTOP®. Surg. Neurol. Int. 2013, 4, 88. [Google Scholar] [CrossRef]
- Sane, V.D.; Kadam, P.; Jadhav, A.; Saddiwal, R.; Merchant, Y. Multidisciplinary Approach for Reconstruction of Cranial Defect with Polymethyl Methacrylate Resin Reinforced with Titanium Mesh. J. Indian Prosthodont. Soc. 2016, 16, 294–297. [Google Scholar] [CrossRef]
- Hitoshi, Y.; Yamashiro, S.; Yoshida, A.; Mukasa, A. Cranial Reconstruction with Titanium Mesh for Open Depressed Skull Fracture in Children: Reports of Two Cases with Long-Term Observation. Kurume Med. J. 2020, 66, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Mommaerts, M.Y.; Depauw, P.R.; Nout, E. Ceramic 3D-Printed Titanium Cranioplasty. Craniomaxillofac. Trauma Reconstr. 2020, 13, 329–333. [Google Scholar] [CrossRef]
- Di Cosmo, L.; Pellicanò, F.; Choueiri, J.E.; Schifino, E.; Stefini, R.; Cannizzaro, D. Meta-Analyses of the Surgical Outcomes Using Personalized 3D-Printed Titanium and PEEK vs. Standard Implants in Cranial Reconstruction in Patients Undergoing Craniectomy. Neurosurg. Rev. 2025, 48, 312. [Google Scholar] [CrossRef]
- Saceleanu, V.; Paz, R.; García, J.; Rivero, Y.; Cîndea, C.-N.; Cacciotti, I.; Monzón, M. Production of Synthetic Models for Neuro-Oncology Training by Additive Manufacturing. Appl. Sci. 2021, 11, 11823. [Google Scholar] [CrossRef]
- Gonzalez Matheus, I.; Hutmacher, D.W.; Olson, S.; Redmond, M.; Sutherland, A.; Wagels, M. A Medical-Grade Polycaprolactone and Tricalcium Phosphate Scaffold System with Corticoperiosteal Tissue Transfer for the Reconstruction of Acquired Calvarial Defects in Adults: Protocol for a Single-Arm Feasibility Trial. JMIR Res. Protoc. 2022, 11, e36111. [Google Scholar] [CrossRef]
- Park, H.; Choi, J.W.; Jeong, W.S. Clinical Application of Three-Dimensional Printing of Polycaprolactone/beta-Tricalcium Phosphate Implants for Cranial Reconstruction. J. Craniofac. Surg. 2022, 33, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Schiller, C.; Rasche, C.; Wehmöller, M.; Beckmann, F.; Eufinger, H.; Epple, M.; Weihe, S. Geometrically Structured Implants for Cranial Reconstruction Made of Biodegradable Polyesters and Calcium Phosphate/calcium Carbonate. Biomaterials 2004, 25, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhou, X.; Wang, H.; Zhou, G.; Yu, X. Fabrication and Evaluation of PCL/PLGA/β-TCP Spiral-Structured Scaffolds for Bone Tissue Engineering. Bioengineering 2024, 11, 732. [Google Scholar] [CrossRef]
- Pérez-Davila, S.; Garrido-Gulías, N.; González-Rodríguez, L.; López-Álvarez, M.; Serra, J.; López-Periago, J.E.; González, P. Physicochemical Properties of 3D-Printed Polylactic Acid/hydroxyapatite Scaffolds. Polymers 2023, 15, 2849. [Google Scholar] [CrossRef]
- Fuckner, J.; Mueller, K.M.A.; Bruyas, A.; Mela, P. Extrusion-based Additive Manufacturing of Cranial Implants Using High-performance Polymers: A Comparative Study on Mechanical Performance and Dimensional Accuracy. Adv. Eng. Mater. 2024, 26, 2401520. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, T.; Wang, X.; Liu, D. Functional Hydrogels and Their Applications in Craniomaxillofacial Bone Regeneration. Pharmaceutics 2022, 15, 150. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Lin, S.; Bai, Y.; Moeinzadeh, S.; Kim, S.; Huang, J.; Lee, U.; Huang, N.F.; Yang, Y.P. Dual Delivery of BMP2 and IGF1 through Injectable Hydrogel Promotes Cranial Bone Defect Healing. Tissue Eng. Part A 2022, 28, 760–769. [Google Scholar] [CrossRef]
- Kretlow, J.D.; Young, S.; Klouda, L.; Wong, M.; Mikos, A.G. Injectable Biomaterials for Regenerating Complex Craniofacial Tissues. Adv. Mater. 2009, 21, 3368–3393. [Google Scholar] [CrossRef]
- Hona, T.W.P.T.; Olditch, C.; Byrd, J.E.; Stephan, C.N. Infra-Cranial Radiographic Comparison for Human Identification: A Study of Analyst Expertise. J. Forensic Sci. 2021, 66, 2126–2137. [Google Scholar] [CrossRef]
- Manigandan, T.; Sumathy, C.; Elumalai, M.; Sathasivasubramanian, S.; Kannan, A. Forensic Radiology in Dentistry. J. Pharm. Bioallied Sci. 2015, 7, S260–S264. [Google Scholar] [CrossRef]
- Spetzger, U.; Vougioukas, V.; Schipper, J. Materials and Techniques for Osseous Skull Reconstruction. Minim. Invasive Ther. Allied Technol. 2010, 19, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.; Khalid, S.I.; Dorafshar, A.H.; Byrne, R.W. The Materials Utilized in Cranial Reconstruction: Past, Current, and Future. Plast. Surg. 2021, 29, 184–196. [Google Scholar] [CrossRef]
- Klinke, T.; Daboul, A.; Maron, J.; Gredes, T.; Puls, R.; Jaghsi, A.; Biffar, R. Artifacts in Magnetic Resonance Imaging and Computed Tomography Caused by Dental Materials. PLoS ONE 2012, 7, e31766. [Google Scholar] [CrossRef]
- Ondrejová, B.; Rajťúková, V.; Šavrtková, K.; Galajdová, A.; Živčák, J.; Hudák, R. Analysis of MRI Artifacts Induced by Cranial Implants in Phantom Models. Healthcare 2025, 13, 803. [Google Scholar] [CrossRef]
- De Crop, A.; Casselman, J.; Van Hoof, T.; Dierens, M.; Vereecke, E.; Bossu, N.; Pamplona, J.; D’Herde, K.; Thierens, H.; Bacher, K. Analysis of Metal Artifact Reduction Tools for Dental Hardware in CT Scans of the Oral Cavity: kVp, Iterative Reconstruction, Dual-Energy CT, Metal Artifact Reduction Software: Does It Make a Difference? Neuroradiology 2015, 57, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Grandmougin, A.; Bakour, O.; Villani, N.; Baumann, C.; Rousseau, H.; Gondim Teixeira, P.A.; Blum, A. Metal Artifact Reduction for Small Metal Implants on CT: Which Image Reconstruction Algorithm Performs Better? Eur. J. Radiol. 2020, 127, 108970. [Google Scholar] [CrossRef] [PubMed]
- Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J.W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J.H. High-Fidelity Artifact Correction for Cone-Beam CT Imaging of the Brain. Phys. Med. Biol. 2015, 60, 1415–1439. [Google Scholar] [CrossRef]
- Adserias-Garriga, J.; Feirstein, S.; Bell, D.; Skropits, H.; Dirkmaat, D.C. Human Identification through Forensic Skeletal Analysis: Three Case Reviews. Forensic Sci. Res. 2024, 9, owae053. [Google Scholar] [CrossRef]
- Ubelaker, D.H.; Shamlou, A.; Kunkle, A. Contributions of Forensic Anthropology to Positive Scientific Identification: A Critical Review. Forensic Sci. Res. 2019, 4, 45–50. [Google Scholar] [CrossRef]
- Bennett, J.L.; Benedix, D.C. Positive Identification of Cremains Recovered from an Automobile Based on Presence of an Internal Fixation Device. J. Forensic Sci. 1999, 44, 1296–1298. [Google Scholar] [CrossRef] [PubMed]
- Prado, F.B.; Freire, A.R.; Rondon, B.C.S.; Costa, S.T.; Rossi, A.C.; Daruge, J.E. Analysis of the Frontal Sinus Morphology and the Titanium Plates Shape in Skull Fracture for Human Identification. Int. J. Odontostomatol. 2016, 10, 303–308. [Google Scholar] [CrossRef]
- Palazzo, E.; Andreola, S.; Battistini, A.; Gentile, G.; Zoja, R. Release of Metals from Osteosynthesis Implants as a Method for Identification: Post-Autopsy Histopathological and Ultrastructural Forensic Study. Int. J. Leg. Med. 2011, 125, 21–26. [Google Scholar] [CrossRef]
- Francesquini Júnior, L.; Ulbricht, V.; Martins, A.L.; Silva, R.F.; Pereira Neto, J.S.; Daruge Júnior, E. Charred: Forensic Dental Identification and Scanning Electron Microscope. J. Forensic Dent. Sci. 2018, 10, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Boyle, B.; Love, C.J.; Marine, J.E.; Chrispin, J.; Barth, A.S.; Rickard, J.W.; Spragg, D.D.; Berger, R.; Calkins, H.; Sinha, S.K. Radiographic Identification of Cardiac Implantable Electronic Device Manufacturer: Smartphone Pacemaker-ID Application versus X-Ray Logo. J. Innov. Card. Rhythm Manag. 2022, 13, 5104–5110. [Google Scholar] [CrossRef]
- Kavousinejad, S.; Yazdanian, M.; Kanafi, M.M.; Tahmasebi, E. A Novel Algorithm for Forensic Identification Using Geometric Cranial Patterns in Digital Lateral Cephalometric Radiographs in Forensic Dentistry. Diagnostics 2024, 14, 1840. [Google Scholar] [CrossRef]
- Zain-Alabdeen, E.H.; Felemban, D.F. Artificial Intelligence and Skull Imaging Advancements in Forensic Identification. Saudi J. Health Sci. 2023, 12, 171–177. [Google Scholar] [CrossRef]
- Lemons, J.; Brott, B.; Eberhardt, A. Human Postmortem Device Retrieval and Analysis--Orthopaedic, Cardiovascular, and Dental Systems. J. Long Term Eff. Med. Implant. 2010, 20, 81–85. [Google Scholar] [CrossRef]
- Jakoi, A.M.; Iorio, J.A.; Cahill, P.J. Autologous Bone Graft Harvesting: A Review of Grafts and Surgical Techniques. Musculoskelet. Surg. 2015, 99, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Becker, W.; Urist, M.; Becker, B.E.; Jackson, W.; Parry, D.A.; Bartold, M.; Vincenzzi, G.; De Georges, D.; Niederwanger, M. Clinical and Histologic Observations of Sites Implanted with Intraoral Autologous Bone Grafts or Allografts. 15 Human Case Reports. J. Periodontol. 1996, 67, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Kinard, M.; McGiffert, L. Medical Device Tracking-How It Is and How It Should Be. JAMA Intern. Med. 2020, 181, 305–306. [Google Scholar] [CrossRef]
- Hennessy, J.E. A Method for Implementation of Manufacturing Traceability in Orthopaedic Implants. Doctoral Dissertation, University of Limerick, Limerick, Ireland, 2020. [Google Scholar]
- Bukhamseen, A.H.; Aldhameen, A.A.; Alzayyat, N.T.; Alqadeeb, M.M.; Alotaibi, B.K.; Aljohani, R.I.; Menezes, R.G. The Use of Orthopedic Surgical Devices for Forensic Identification: A Systematic Review. Acta Biomed. 2022, 93, e2022082. [Google Scholar]
- Jaiswani, A.K.; Dere, R.; Kukde, H.; Sabale, M.; Savardekar, R.R. Metal Implant-A Hidden Clue to Identification-A Case Report. J. Indian Acad. Forensic Med. 2017, 39, 322. [Google Scholar] [CrossRef]
- Bonetti, C.; Taveira Bachur, A.; de Oliveira-Santos, C.; da Silva, R.; Pires-de-Souza, F. Photographic, Radiographic, and Microscopic Assessment of Dental Implants after Simulated Heating, Burial, and Immersion in Water. Czas. Stomatol. 2020, 73, 118–122. [Google Scholar] [CrossRef]
- Serrano-Esteban, A.I.; Requena-Gómez, E.; Mena-Alvarez, J.; Rodríguez, C.; Bufalá-Pérez, M.; Aragoneses, J.M. Cadaveric Identification through Macroscopic Analysis of Dental Implants Subjected to High Temperatures-an Experimental Model. J. Funct. Biomater. 2023, 14, 107. [Google Scholar] [CrossRef]
- Afifi, A.M.; Gordon, C.R.; Pryor, L.S.; Sweeney, W.; Papay, F.A.; Zins, J.E. Calcium Phosphate Cements in Skull Reconstruction: A Meta-Analysis. Plast. Reconstr. Surg. 2010, 126, 1300–1309. [Google Scholar] [CrossRef]
- Kwarcinski, J.; Boughton, P.; Ruys, A.; Doolan, A.; Van Gelder, J. Cranioplasty and Craniofacial Reconstruction: A Review of Implant Material, Manufacturing Method and Infection Risk. Appl. Sci. 2017, 7, 276. [Google Scholar] [CrossRef]
- Martins, T.; Moreira, C.D.F.; Costa-Júnior, E.S.; Pereira, M.M. In Vitro Degradation of Chitosan Composite Foams for Biomedical Applications and Effect of Bioactive Glass as a Crosslinker. Biomed. Glas. 2018, 4, 45–56. [Google Scholar] [CrossRef]
- Lewin, S.; Kihlström Burenstam Linder, L.; Birgersson, U.; Gallinetti, S.; Åberg, J.; Engqvist, H.; Persson, C.; Öhman-Mägi, C. Monetite-Based Composite Cranial Implants Demonstrate Long-Term Clinical Volumetric Balance by Concomitant Bone Formation and Degradation. Acta Biomater. 2021, 128, 502–513. [Google Scholar] [CrossRef]
- Shen, C.; Wang, M.M.; Witek, L.; Tovar, N.; Cronstein, B.N.; Torroni, A.; Flores, R.L.; Coelho, P.G. Transforming the Degradation Rate of β-Tricalcium Phosphate Bone Replacement Using 3-Dimensional Printing. Ann. Plast. Surg. 2021, 87, e153–e162. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, H.; Wu, L.; Ma, L.; Xing, F.; Kong, Q.; Fan, Y.; Zhou, C.; Zhang, X. 3D Printing of Calcium Phosphate Bioceramic with Tailored Biodegradation Rate for Skull Bone Tissue Reconstruction. Biodes. Manuf. 2019, 2, 161–171. [Google Scholar] [CrossRef]
- Chmal-Fudali, E.; Basińska, D.; Kucharska-Jastrząbek, A.; Struszczyk, M.H.; Muzalewska, M.; Wyleżoł, M.; Wątrobiński, M.; Andrzejewski, J.; Tarzyńska, N.; Gzyra-Jagieła, K. Effect of the Advanced Cranial and Craniofacial Implant Fabrication on Their Degradation Affinity. Materials 2023, 16, 6070. [Google Scholar] [CrossRef]
- Gambini, L.; Fonseca, G.M. Implantes Dentales Para La Identificación Forense En Incineraciones: Recomendaciones a Partir de Una Revisión Con Búsqueda Sistemática. Odontoestomatologia 2022, 24, 1–14. [Google Scholar] [CrossRef]
- Wessapan, T.; Rattanadecho, P. Thermal Effects of Metal Implants Embedded in Different Layers of Human Tissues Exposed to Electromagnetic Fields. Case Stud. Therm. Eng. 2023, 53, 103771. [Google Scholar] [CrossRef]
- Nazhat, S.N. Principles and Applications of Thermal Analysis, 1st ed.; Gabbott, P., Ed.; Wiley-Blackwell: Chichester, UK, 2008; ISBN 9781405131711. [Google Scholar]
- Regí, M.; Esbrit, P.; Salinas, A. Degradative Effects of the Biological Environment on Ceramic Biomaterials. In Biomaterials Science; Academic Press: Cambridge, MA, USA, 2020; pp. 955–971. [Google Scholar]
- Gremillard, L.; Meille, S.; Chevalier, J.; Zhao, J.; Fridrici, V.; Kapsa, P.; Geringer, J.; Uribe, J. Degradation of Bioceramics. In Degradation of Implant Materials; Springer: New York, NY, USA, 2012; pp. 195–252. ISBN 9781461439417. [Google Scholar]
- Mndlovu, H.; Kumar, P.; du Toit, L.C.; Choonara, Y.E. A Review of Biomaterial Degradation Assessment Approaches Employed in the Biomedical Field. npj Mater. Degrad. 2024, 8, 66. [Google Scholar] [CrossRef]
- Çarıkçıoğlu, B.; Misilli, T.; Deniz, Y.; Aktaş, Ç. Effects of High Temperature on Dental Restorative Materials for Forensic Purposes. Forensic Sci. Med. Pathol. 2021, 17, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Lesniewicz, A.; Gackiewcz, L.; Zyrnicki, W. Biodegradation of Metallic Surgical Implants Investigated Using an Ultrasound-Assisted Process Combined with ICP-OES and XRD. Int. Biodeterior. Biodegrad. 2010, 64, 81–85. [Google Scholar] [CrossRef]
- Brown, R.P.; Fowler, B.A.; Fustinoni, S.; Nordberg, M. Toxicity of Metals Released from Implanted Medical Devices. In Handbook on the Toxicology of Metals; Elsevier: Amsterdam, The Netherlands, 2015; pp. 113–122. ISBN 9780444594532. [Google Scholar]
- Janaway, R.C. The Decomposition of Materials Associated with Buried Cadavers. In Soil Analysis in Forensic Taphonomy; CRC Press: Boca Raton, FL, USA, 2008; pp. 165–214. ISBN 9780429249495. [Google Scholar]
- Yadav, V.K.; Nigam, K.; Srivastava, A. Forensic Investigation of Arson Residue by Infrared and Raman Spectroscopy: From Conventional to Non-Destructive Techniques. Med. Sci. Law 2020, 60, 206–215. [Google Scholar] [CrossRef]
- Jena, A.B.; Seabury, S.; Lakdawalla, D.; Chandra, A. Malpractice Risk according to Physician Specialty. Surv. Anesthesiol. 2012, 56, 49–50. [Google Scholar] [CrossRef]
- Larkin, C.J.; Roumeliotis, A.G.; Karras, C.L.; Murthy, N.K.; Karras, M.F.; Tran, H.M.; Yerneni, K.; Potts, M.B. Overview of Medical Malpractice in Neurosurgery. Neurosurg. Focus 2020, 49, E2. [Google Scholar] [CrossRef]
- Taylor, C.L. Neurosurgical Practice Liability. Neurosurgery 2014, 75, 609–613. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, N.; Garrett, M.C.; Emami, L.; Foss, S.K.; Klohn, J.L.; Martin, N.A. Integrating Risk Management Data in Quality Improvement Initiatives within an Academic Neurosurgery Department. J. Neurosurg. 2016, 124, 199–206. [Google Scholar] [CrossRef]
- Beez, T.; Steiger, H.-J.; Weber, B.; Ahmadi, S.A. Pediatric Neurosurgery Malpractice Claims in Germany. Childs. Nerv. Syst. 2019, 35, 337–342. [Google Scholar] [CrossRef]
- Shlobin, N.; Sheldon, M.; Lam, S. Informed Consent in Neurosurgery: A Systematic Review. Neurosurg. Focus 2020, 49, E6. [Google Scholar] [CrossRef]
- Hostiuc, S. Tratat de Bioetică Generală și Stomatologică; C.H. Beck: Bucharest, Romania, 2022. [Google Scholar]
- Aufschnaiter-Hiessboeck, K.M.; Stefanits, H.; Rossmann, T.; Aichholzer, M.; Senker, W.; Rauch, P.; Wagner, H.; Hermann, P.; Gmeiner, M.; Gruber, A.; et al. Challenging Frontiers in Neuroplastic Cranial Reconstruction: Addressing Neurosurgical Wound Healing Complications through Interdisciplinary Collaboration—An Observational Study. Acta Neurochir. 2024, 166, 432. [Google Scholar] [CrossRef] [PubMed]
- Weinzweig, J.; Baker, S.; Whitaker, L.; Sutton, L.; Bartlett, S. Delayed Cranial Vault Reconstruction for Sagittal Synostosis in Older Children: An Algorithm for Tailoring the Reconstructive Approach to the Craniofacial Deformity. Plast. Reconstr. Surg. 2002, 110, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Saber, N.R.; Phillips, J.; Looi, T.; Usmani, Z.; Burge, J.; Drake, J.; Kim, P.C.W. Generation of Normative Pediatric Skull Models for Use in Cranial Vault Remodeling Procedures. Childs. Nerv. Syst. 2012, 28, 405–410. [Google Scholar] [CrossRef]
- Geoffroy, M.; François, P.-M.; Khonsari, R.H.; Laporte, S. Paediatric Skull Growth Models: A Systematic Review of Applications to Normal Skulls and Craniosynostoses. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, e533–e543. [Google Scholar] [CrossRef]
- Kapp-Simon, K.A.; Speltz, M.L.; Cunningham, M.L.; Patel, P.K.; Tomita, T. Neurodevelopment of Children with Single Suture Craniosynostosis: A Review. Childs. Nerv. Syst. 2007, 23, 269–281. [Google Scholar] [CrossRef]
- Johnston, D.T.; Lohmeier, S.J.; Langdell, H.C.; Pyfer, B.J.; Komisarow, J.; Powers, D.B.; Erdmann, D. Current Concepts in Cranial Reconstruction: Review of Alloplastic Materials. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4466. [Google Scholar] [CrossRef]
- Mendonca, D.A.; Gopal, S.; Gujjalanavar, R.; Deraje, V.; Sunil, H.R.; Ramamurthy, V. Endoscopic versus Open Cranial Reconstruction Surgery for Anterior Craniosynostosis: Experience from South-East Asia. Face 2020, 1, 105–113. [Google Scholar] [CrossRef]
- Shah, A.M.; Jung, H.; Skirboll, S. Materials Used in Cranioplasty: A History and Analysis. Neurosurg. Focus 2014, 36, E19. [Google Scholar] [CrossRef] [PubMed]
- Khader, B.A.; Towler, M.R. Materials and Techniques Used in Cranioplasty Fixation: A Review. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 66, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, N.K.; Tomar, K.; Thakral, A.; Kumar, S. Failures in Cranioplasty—A Clinical Audit & Review. J. Oral Biol. Craniofac. Res. 2021, 11, 66–70. [Google Scholar] [PubMed]
- Solomon, S.S.; Park, E.; Unger, R.; Kenner, H.; Jukic, A.; Deaver, C.; Sleiman, C.; Qadri, H.M.; Bashir, R.; Bashir, A.; et al. Cranioplasty Approaches and Outcomes in Low-Middle Income Countries: A Systematic Review. J. Craniofac. Surg. 2025. [Google Scholar] [CrossRef]
- Shash, H. Paediatric Calvarial Healing and Synthetic Materials for Its Reconstruction. Ph.D. Dissertation, McGill University, Montreal, QC, Canada, 2015. [Google Scholar]
- Lewitz, M.; Fischer, S.; Nakamura, M.; Ewelt, C.; Fortmann, T.; Wilbers, E.; Sarkis, H.; Stroop, R.; Cinibulak, Z.; Welzel Saravia, H.; et al. Patient Satisfaction and Radiologic Assessability after Treatment of Complex Skull Defects with a Custom-Made Cranioplasty from a Thin Titanium Sheet. J. Craniofac. Surg. 2024, 35, 80–84. [Google Scholar] [CrossRef]
- Williams, L.R.; Fan, K.F.; Bentley, R.P. Custom-Made Titanium Cranioplasty: Early and Late Complications of 151 Cranioplasties and Review of the Literature. Int. J. Oral Maxillofac. Surg. 2015, 44, 599–608. [Google Scholar] [CrossRef]
- Al-Tamimi, Y.Z.; Sinha, P.; Trivedi, M.; Robson, C.; Al-Musawi, T.A.; Hossain, N.; Mumford, C.; Towns, G. Comparison of Acrylic and Titanium Cranioplasty. Br. J. Neurosurg. 2012, 26, 510–513. [Google Scholar] [CrossRef]
- Acciarri, N.; Palandri, G.; Cuoci, A.; Valluzzi, A.; Lanzino, G. Cranioplasty in Neurosurgery: Is There a Way to Reduce Complications? J. Neurosurg. Sci. 2020, 64, 1–15. [Google Scholar] [CrossRef]
- Halepas, S.; Muchemi, F.; Higham, Z.L.; Ferneini, E.M. The Past Decade in Courts, What Oral-Maxillofacial Surgery Should Know about Facial Cosmetic Surgery. J. Oral Maxillofac. Surg. 2021, 79, 1743–1749. [Google Scholar] [CrossRef] [PubMed]
- Svider, P.F.; Eloy, J.A.; Folbe, A.J.; Carron, M.A.; Zuliani, G.F.; Shkoukani, M.A. Craniofacial Surgery and Adverse Outcomes: An Inquiry into Medical Negligence: An Inquiry into Medical Negligence. Ann. Otol. Rhinol. Laryngol. 2015, 124, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.A.; Green, E.A.; Lee, A.D.; Palmer, S.K.; French, B.; Yu, J.W.; Nguyen, P.D.; Mathes, D.W.; Khechoyan, D.Y. Litigation in Craniofacial Surgery in the US: An Analysis of Lawsuits over 4 Decades. J. Craniofac. Surg. 2025, 36, 1570–1574. [Google Scholar] [CrossRef] [PubMed]
- Rayess, H.M.; Svider, P.; Hanba, C.; Patel, V.S.; Carron, M.; Zuliani, G. Adverse Events in Facial Implant Surgery and Associated Malpractice Litigation. JAMA Facial Plast. Surg. 2018, 20, 244–248. [Google Scholar] [CrossRef]
Location | Description | Reference Point | Reconstruction Approach | Critical Structures | Healing Characteristics | Special Considerations |
---|---|---|---|---|---|---|
Anterior Cranial Fossa—Localized | Confined to cribriform plate area | Cribriform plate | Locoregional flaps | Frontal lobes, olfactory apparatus, orbital contents | Variable | Most complex anatomical region [13,14,15,19,20] |
Anterior Cranial Fossa—Horizontal | Extended to the orbital roof | Cribriform plate | Free flap reconstruction | Frontal lobes, olfactory apparatus, orbital contents | Variable | Requires free flap due to orbital involvement [13,14,15,19,20]. Autologous grafts are the historical gold standard |
Anterior Cranial Fossa—Vertical | Extended to deep sinonasal cavity | Cribriform plate | Locoregional flaps | Frontal lobes, olfactory apparatus, orbital contents | Variable | Deep sinonasal involvement [13,14,15,19,20] |
Middle Cranial Fossa—Localized | Confined to the infratemporal fossa | Infratemporal fossa | Locoregional flaps | Carotid artery, internal jugular vein, multiple cranial nerves | Variable | Complex neurovascular anatomy [13,14,15,19] |
Middle Cranial Fossa—Horizontal | Involves pterygoid muscles or mandible | Infratemporal fossa | Free flap reconstruction | Carotid artery, internal jugular vein, multiple cranial nerves | Variable | Most extensive reconstruction required [13,14,15] |
Middle Cranial Fossa—Vertical | Extended to maxillary sinus or nasopharynx | Infratemporal fossa | Similar to localized defects | Carotid artery, internal jugular vein, multiple cranial nerves | Variable | Maxillary sinus/nasopharynx involvement [13,14,15] |
Posterior Cranial Fossa | Occipital region and posterior temporal bone | Occipital region | Minimal intervention, local tissue rearrangement | Well-vascularized soft tissue | Excellent—robust healing capacity | Positioning and access challenges [13,14,15,19] |
Frontal Bone | Frontal region defects | Frontal bone | Variable | Frontal sinuses | Variable | Aesthetic importance, sinus proximity [13,14,15] |
Parietal Bone | The most common traumatic location | Parietal bone | Variable | Minimal adjacent structures | Excellent (68.4% closure rate) | Robust blood supply, favorable healing [13,14,15] |
Fronto-Parietal | Combined frontal-parietal involvement | Frontal-parietal junction | Variable | Frontal sinuses, minimal parietal structures | Moderate (43.7% closure rate) | Lower healing than isolated parietal [13,14,15] |
Temporal Bone | Temporal region defects | Temporal bone | Variable | Middle meningeal artery, temporal muscle | Variable | Vascular anatomy considerations [13,14,15] |
Occipital Bone | Posterior skull defects | Occipital bone | Local tissue rearrangement | Minimal critical structures | Good | Patient positioning challenges [13,14,15] |
Barrier Category | Specific Limitations | Mechanisms | Clinical Impact |
---|---|---|---|
Cellular Barriers | Reduced osteoprogenitor cell density |
|
|
Vascular Limitations | Inadequate vascularization |
|
|
Growth Factor and Cytokine Signaling | Altered expression patterns |
|
|
Mechanical Environment | Inadequate mechanical stimulation |
|
|
Inflammatory Response | Constrained inflammatory environment |
|
|
Age-Related Barriers | Decreased regenerative capacity with aging |
|
|
Property | PLA (Polylactic Acid) | PCL (Polycaprolactone) | PLGA (Poly(lactic-co-glycolic acid)) |
---|---|---|---|
Degradation Rate | Moderate | Slow | Rapid |
Degradation Timeline | Variable | 12–24 months | Variable (controllable via lactide: glycolide ratio) |
Mechanical Properties | Variable | Excellent mechanical strength, maintains integrity during healing | Enhanced when in composite form |
Biocompatibility | Good | Excellent | Good |
Degradation Control | Limited information | Controlled degradation without harmful byproducts | Highly controllable (50:50 ratio provides rapid degradation) |
Manufacturing | 3D printing-compatible | 3D printing-compatible, patient-specific implants possible | 3D printing compatible |
Composite Applications | Limited information | PCL/β-tricalcium phosphate composites, PCL/PLGA/β-TCP blends | PCL/PLGA/β-TCP scaffolds show enhanced properties |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hostiuc, S.; Negoi, I.; Ciocan, V. Cranial Bone Repair and Regeneration After Trauma: Forensic and Clinical Medico-Legal Consequences. Bioengineering 2025, 12, 915. https://doi.org/10.3390/bioengineering12090915
Hostiuc S, Negoi I, Ciocan V. Cranial Bone Repair and Regeneration After Trauma: Forensic and Clinical Medico-Legal Consequences. Bioengineering. 2025; 12(9):915. https://doi.org/10.3390/bioengineering12090915
Chicago/Turabian StyleHostiuc, Sorin, Ionuț Negoi, and Veronica Ciocan. 2025. "Cranial Bone Repair and Regeneration After Trauma: Forensic and Clinical Medico-Legal Consequences" Bioengineering 12, no. 9: 915. https://doi.org/10.3390/bioengineering12090915
APA StyleHostiuc, S., Negoi, I., & Ciocan, V. (2025). Cranial Bone Repair and Regeneration After Trauma: Forensic and Clinical Medico-Legal Consequences. Bioengineering, 12(9), 915. https://doi.org/10.3390/bioengineering12090915