Finite Element Modeling in Left Ventricular Cardiac Biomechanics: From Computational Tool to Clinical Practice
Abstract
1. Introduction
2. Structural and Functional Consequences of Myocardial Infarction (MI)
2.1. Border Zone Contractility
2.2. Patient-Specific Contractility Mapping
3. Personalized Heart Failure Interventions: Geometry and Mechanical Unloading
3.1. Mechanical Circulatory Support Devices (LVADs)
3.2. Historical Surgical Approaches: Limitations of Volume Reduction
3.3. Novel Reinforcement Strategies: Hydrogel Injection Therapy
Strategy | Mechanism | FE Modeling Insights | Clinical Outcomes |
---|---|---|---|
Batista Ventriculectomy | Surgical excision of LV wall segments to reduce chamber volume [23] | Predicts transient reduction in volume and wall stress, with little improvement in LV function due to abnormal stress distribution [26] | Temporary improvements in EF; high recurrence of dilation; poor long-term survival [27] |
Surgical Ventricular Restoration (SVR) | Excludes dysfunctional LV segments [10] | FE models show increased sphericity, worsening mechanical efficiency [10] | Modest EF improvement; inconsistent outcomes; high reoperation rates [28] |
Alginate-Based Hydrogel Injection | Intramyocardial injection of hydrogel to create midwall structural reinforcement [24] | Predicts improved stress distribution, reduced ESV, and stabilized geometry [25] | Stabilized LV dimensions; improved systolic function; reduced progression of HF [24] |
4. Hydrogel Injections as a Midwall Passive Constraint for the LV Free Wall
4.1. Mechanisms and Clinical Advantages
4.2. Role of FE Modeling
4.3. Clinical Translation and Challenges
5. AI-Enhanced FE Models for Real-Time Clinical Applications
5.1. AI-Driven Surrogate Models
5.2. Clinical Integration and Rapid Decision-Making
5.3. Balancing Accuracy and Efficiency
6. Conclusions and Key Insights for Clinical Translation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Zhang, Z.; Li, T.; Chen, Y. A Review of Biomechanical Studies of Heart Valve Flutter. Fluids 2024, 9, 254. [Google Scholar] [CrossRef]
- Pfaller, M.R.; Hörmann, J.M.; Weigl, M.; Nagler, A.; Chabiniok, R.; Bertoglio, C.; Wall, W.A. The Importance of the Pericardium for Cardiac Biomechanics: From Physiology to Computational Modeling. Biomech. Model. Mechanobiol. 2019, 18, 503–529. [Google Scholar] [CrossRef] [PubMed]
- Stokke, M.; Rivelsrud, F.; Sjaastad, I.; Sejersted, O.; Swift, F. Fra global til lokal-ny forståelse av den elektromekaniske koblingen i hjertet. Tidsskr. Den Nor. Legeforening 2012, 132, 1457–1460. [Google Scholar] [CrossRef] [PubMed]
- Salman, H.E.; Ramazanli, B.; Yavuz, M.M.; Yalcin, H.C. Biomechanical Investigation of Disturbed Hemodynamics-Induced Tissue Degeneration in Abdominal Aortic Aneurysms Using Computational and Experimental Techniques. Front. Bioeng. Biotechnol. 2019, 7, 111. [Google Scholar] [CrossRef]
- Avesani, M.; Sabatino, J.; Borrelli, N.; Cattapan, I.; Leo, I.; Pelaia, G.; Moscatelli, S.; Bianco, F.; Bassareo, P.; Martino, F.; et al. The Mechanics of Congenital Heart Disease: From a Morphological Trait to the Functional Echocardiographic Evaluation. Front. Cardiovasc. Med. 2024, 11, 1301116. [Google Scholar] [CrossRef]
- Sutton, M.G.S.J.; Sharpe, N. Left Ventricular Remodeling After Myocardial Infarction: Pathophysiology and Therapy. Circulation 2000, 101, 2981–2988. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Standard Discrete System and Origins of the Finite Element Method. In The Finite Element Method: Its Basis and Fundamentals; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–20. ISBN 978-1-85617-633-0. [Google Scholar]
- Heller, M.O. Finite Element Analysis in Orthopedic Biomechanics. In Human Orthopaedic Biomechanics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 637–658. ISBN 978-0-12-824481-4. [Google Scholar]
- Sun, K.; Zhang, Z.; Suzuki, T.; Wenk, J.F.; Stander, N.; Einstein, D.R.; Saloner, D.A.; Wallace, A.W.; Guccione, J.M.; Ratcliffe, M.B. Dor Procedure for Dyskinetic Anteroapical Myocardial Infarction Fails to Improve Contractility in the Border Zone. J. Thorac. Cardiovasc. Surg. 2010, 140, 233–239.e4. [Google Scholar] [CrossRef]
- Lee, L.C.; Wenk, J.F.; Zhong, L.; Klepach, D.; Zhang, Z.; Ge, L.; Ratcliffe, M.B.; Zohdi, T.I.; Hsu, E.; Navia, J.L.; et al. Analysis of Patient-Specific Surgical Ventricular Restoration: Importance of an Ellipsoidal Left Ventricular Geometry for Diastolic and Systolic Function. J. Appl. Physiol. 2013, 115, 136–144. [Google Scholar] [CrossRef]
- Sun, K.; Stander, N.; Jhun, C.-S.; Zhang, Z.; Suzuki, T.; Wang, G.-Y.; Saeed, M.; Wallace, A.W.; Tseng, E.E.; Baker, A.J.; et al. A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep with Left Ventricular Aneurysm. J. Biomech. Eng. 2009, 131, 111001. [Google Scholar] [CrossRef]
- Peirlinck, M.; Costabal, F.S.; Yao, J.; Guccione, J.M.; Tripathy, S.; Wang, Y.; Ozturk, D.; Segars, P.; Morrison, T.M.; Levine, S.; et al. Precision Medicine in Human Heart Modeling: Perspectives, Challenges, and Opportunities. Biomech. Model. Mechanobiol. 2021, 20, 803–831. [Google Scholar] [CrossRef] [PubMed]
- Dabiri, Y.; Van Der Velden, A.; Sack, K.L.; Choy, J.S.; Kassab, G.S.; Guccione, J.M. Prediction of Left Ventricular Mechanics Using Machine Learning. Front. Phys. 2019, 7, 117. [Google Scholar] [CrossRef]
- Hall, M.; Smith, L.; Wu, J.; Hayward, C.; Batty, J.A.; Lambert, P.C.; Hemingway, H.; Gale, C.P. Health Outcomes after Myocardial Infarction: A Population Study of 56 Million People in England. PLoS Med. 2024, 21, e1004343. [Google Scholar] [CrossRef] [PubMed]
- Genet, M.; Chuan Lee, L.; Ge, L.; Acevedo-Bolton, G.; Jeung, N.; Martin, A.; Cambronero, N.; Boyle, A.; Yeghiazarians, Y.; Kozerke, S.; et al. A Novel Method for Quantifying Smooth Regional Variations in Myocardial Contractility Within an Infarcted Human Left Ventricle Based on Delay-Enhanced Magnetic Resonance Imaging. J. Biomech. Eng. 2015, 137, 081009. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sun, K.; Saloner, D.A.; Wallace, A.W.; Ge, L.; Baker, A.J.; Guccione, J.M.; Ratcliffe, M.B. The Benefit of Enhanced Contractility in the Infarct Borderzone: A Virtual Experiment. Front. Physiol. 2012, 3, 86. [Google Scholar] [CrossRef]
- Sack, K.L.; Aliotta, E.; Ennis, D.B.; Choy, J.S.; Kassab, G.S.; Guccione, J.M.; Franz, T. Construction and Validation of Subject-Specific Biventricular Finite-Element Models of Healthy and Failing Swine Hearts from High-Resolution DT-MRI. Front. Physiol. 2018, 9, 539. [Google Scholar] [CrossRef]
- Motiwale, S.; Zhang, W.; Feldmeier, R.; Sacks, M.S. A Neural Network Finite Element Approach for High Speed Cardiac Mechanics Simulations. Comput. Methods Appl. Mech. Eng. 2024, 427, 117060. [Google Scholar] [CrossRef]
- Choy, J.S.; Leng, S.; Acevedo-Bolton, G.; Shaul, S.; Fu, L.; Guo, X.; Zhong, L.; Guccione, J.M.; Kassab, G.S. Efficacy of Intramyocardial Injection of Algisyl-LVR for the Treatment of Ischemic Heart Failure in Swine. Int. J. Cardiol. 2018, 255, 129–135. [Google Scholar] [CrossRef]
- Upadhyay, R.; Alrayes, H.; Arno, S.; Kaushik, M.; Basir, M.B. Current Landscape of Temporary Percutaneous Mechanical Circulatory Support Technology. US Cardiol. Rev. 2021, 15, e21. [Google Scholar] [CrossRef]
- Sack, K.L.; Dabiri, Y.; Franz, T.; Solomon, S.D.; Burkhoff, D.; Guccione, J.M. Investigating the Role of Interventricular Interdependence in Development of Right Heart Dysfunction During LVAD Support: A Patient-Specific Methods-Based Approach. Front. Physiol. 2018, 9, 520. [Google Scholar] [CrossRef]
- Almeida Junior, G.L.G.D.; Jazbik, W.; Morgado, J.V.; Almeida, G.L.G.D. Fourteen Years’ Survival After Batista Operation: The Short History of a Long Journey. Int. J. Cardiovasc. Sci. 2019, 32, 650–654. [Google Scholar] [CrossRef]
- Starling, R.C.; McCarthy, P.M.; Buda, T.; Wong, J.; Goormastic, M.; Smedira, N.G.; Thomas, J.D.; Blackstone, E.H.; Young, J.B. Results of Partial Left Ventriculectomy for Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2000, 36, 2098–2103. [Google Scholar] [CrossRef]
- Lee, L.C.; Wall, S.T.; Klepach, D.; Ge, L.; Zhang, Z.; Lee, R.J.; Hinson, A.; Gorman, J.H.; Gorman, R.C.; Guccione, J.M. Algisyl-LVRTM with Coronary Artery Bypass Grafting Reduces Left Ventricular Wall Stress and Improves Function in the Failing Human Heart. Int. J. Cardiol. 2013, 168, 2022–2028. [Google Scholar] [CrossRef]
- Sack, K.L.; Aliotta, E.; Choy, J.S.; Ennis, D.B.; Davies, N.H.; Franz, T.; Kassab, G.S.; Guccione, J.M. Intra-Myocardial Alginate Hydrogel Injection Acts as a Left Ventricular Mid-Wall Constraint in Swine. Acta Biomater. 2020, 111, 170–180. [Google Scholar] [CrossRef]
- Guccione, J.M.; Moonly, S.M.; Wallace, A.W.; Ratcliffe, M.B. Residual Stress Produced by Ventricular Volume Reduction Surgery Has Little Effect on Ventricular Function and Mechanics: A Finite Element Model Study. J. Thorac. Cardiovasc. Surg. 2001, 122, 592–599. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, P.M.; Starling, R.C.; Wong, J.; Scalia, G.M.; Buda, T.; Vargo, R.L.; Goormastic, M.; Thomas, J.D.; Smedira, N.G.; Young, J.B. Early Results with Partial Left Ventriculectomy. J. Thorac. Cardiovasc. Surg. 1997, 114, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.H.; Velazquez, E.J.; Michler, R.E.; Sopko, G.; Oh, J.K.; O’Connor, C.M.; Hill, J.A.; Menicanti, L.; Sadowski, Z.; Desvigne-Nickens, P.; et al. Coronary Bypass Surgery with or without Surgical Ventricular Reconstruction. N. Engl. J. Med. 2009, 360, 1705–1717. [Google Scholar] [CrossRef]
- Wenk, J.F.; Ge, L.; Zhang, Z.; Mojsejenko, D.; Potter, D.D.; Tseng, E.E.; Guccione, J.M.; Ratcliffe, M.B. Biventricular Finite Element Modeling of the Acorn CorCap Cardiac Support Device on a Failing Heart. Ann. Thorac. Surg. 2013, 95, 2022–2027. [Google Scholar] [CrossRef] [PubMed]
- Henning, R.J.; Khan, A.; Jimenez, E. Chitosan Hydrogels Significantly Limit Left Ventricular Infarction and Remodeling and Preserve Myocardial Contractility. J. Surg. Res. 2016, 201, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Alter, P.; Koczulla, A.R.; Nell, C.; Figiel, J.H.; Vogelmeier, C.F.; Rominger, M.B. Wall Stress Determines Systolic and Diastolic Function—Characteristics of Heart Failure. Int. J. Cardiol. 2016, 202, 685–693. [Google Scholar] [CrossRef]
- Huang, A.L.; Dal-Bianco, J.P.; Levine, R.A.; Hung, J.W. Secondary Mitral Regurgitation: Cardiac Remodeling, Diagnosis, and Management. Struct. Heart 2023, 7, 100129. [Google Scholar] [CrossRef]
- Dabiri, Y.; Mahadevan, V.S.; Guccione, J.M.; Kassab, G.S. Machine Learning Used for Simulation of MitraClip Intervention: A Proof-of-Concept Study. Front. Genet. 2023, 14, 1142446. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, P.; Guccione, J. Finite Element Modeling in Left Ventricular Cardiac Biomechanics: From Computational Tool to Clinical Practice. Bioengineering 2025, 12, 913. https://doi.org/10.3390/bioengineering12090913
Hoang P, Guccione J. Finite Element Modeling in Left Ventricular Cardiac Biomechanics: From Computational Tool to Clinical Practice. Bioengineering. 2025; 12(9):913. https://doi.org/10.3390/bioengineering12090913
Chicago/Turabian StyleHoang, Patrick, and Julius Guccione. 2025. "Finite Element Modeling in Left Ventricular Cardiac Biomechanics: From Computational Tool to Clinical Practice" Bioengineering 12, no. 9: 913. https://doi.org/10.3390/bioengineering12090913
APA StyleHoang, P., & Guccione, J. (2025). Finite Element Modeling in Left Ventricular Cardiac Biomechanics: From Computational Tool to Clinical Practice. Bioengineering, 12(9), 913. https://doi.org/10.3390/bioengineering12090913