The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Review Design and Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Measured Variables
2.4. Data Extraction
2.5. Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Search Results and Main Characteristics of the Studies
3.2. Quality Assessment of the Included Studies
3.3. Meta-Analysis of Sensitivity, Specificity, and Area Under the Curve
3.4. Diagnostic Odds Ratio
3.5. Sensitivity Analyses and Publication Bias
4. Discussion
5. Limitations and Recommendations for Future Research
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
Abbreviation | Full Term |
ADC | Apparent Diffusion Coefficient |
APT | Amide Proton Transfer-Weighted Imaging |
AUC | Area Under the Curve |
CET1 | Contrast-Enhanced T1-Weighted Imaging |
(95%) CI | (95%) Confidence Interval |
CV | Cross-Validation |
DL | Deep Learning |
(log)DOR | (Logarithmic) Diagnostic Odds Ratio |
DWI | Diffusion-Weighted Imaging |
FN | False Negatives |
FP | False Positives |
HSROC | Hierarchical Summary Receiver Operating Characteristic |
KNN | k-Nearest Neighbor |
LGBM | Light Gradient Boosting Machine |
LR | Logistic Regression |
ML | Machine Learning |
MRI | Magnetic Resonance Imaging |
NB | Naïve Bayes |
NAT | Neoadjuvant Therapy |
pN | Pathological Nodal Status |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
QUADAS-2 | Quality Assessment of Diagnostic Accuracy Studies 2 |
RC | Rectal Cancer |
RF | Random Forest |
ROI | Region of Interest |
SE | Standard Error |
SVM | Support Vector Machine |
T1-DCE | T1 Dynamic Contrast-Enhanced |
TN | True Negatives |
TNM | Tumor–Node–Metastasis (classification) |
TP | True Positives |
References
- Roshandel, G.; Ghasemi-Kebria, F.; Malekzadeh, R. Colorectal Cancer: Epidemiology, Risk Factors, and Prevention. Cancers 2024, 16, 1530. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.G.; May, F.P.; Anderson, J.C.; Burke, C.A.; Dominitz, J.A.; Gross, S.A.; Jacobson, B.C.; Shaukat, A.; Robertson, D.J. Updates on Age to Start and Stop Colorectal Cancer Screening: Recommendations From the U.S. Multi-Society Task Force on Colorectal Cancer. Am. J. Gastroenterol. 2022, 117, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Benson, A.B.; Venook, A.P.; Adam, M.; Chang, G.; Chen, Y.-J.; Ciombor, K.K.; Cohen, S.A.; Cooper, H.S.; Deming, D.; Garrido-Laguna, I.; et al. Colon Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2024, 22, e240029. [Google Scholar] [CrossRef]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Azad, N.; Chen, Y.-J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Garrido-Laguna, I.; et al. Rectal Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 1139–1167. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-Q.; Lin, R.-X.; Ke, X.-H.; Deng, X.-H.; Ni, S.-X.; Tang, L. Radiomics in Rectal Cancer: Current Status of Use and Advances in Research. Front. Oncol. 2025, 14, 1470824. [Google Scholar] [CrossRef] [PubMed]
- Luengo Gómez, D.; Salmerón Ruiz, Á.; Medina Benítez, A.; Láinez Ramos-Bossini, A.J. Papel de La Resonancia Magnética En La Evaluación Del Cáncer de Recto Tras Terapia Neoadyuvante. Radiologia 2024, 101625. [Google Scholar] [CrossRef]
- Salmerón-Ruiz, A.; Luengo Gómez, D.; Medina Benítez, A.; Láinez Ramos-Bossini, A.J. Primary Staging of Rectal Cancer on MRI: An Updated Pictorial Review with Focus on Common Pitfalls and Current Controversies. Eur. J. Radiol. 2024, 175, 111417. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Moon, W.K. Contrast-Enhanced MR Imaging of Lymph Nodes in Cancer Patients. Korean J. Radiol. 2010, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Al-Sukhni, E.; Milot, L.; Fruitman, M.; Beyene, J.; Victor, J.C.; Schmocker, S.; Brown, G.; McLeod, R.; Kennedy, E. Diagnostic Accuracy of MRI for Assessment of T Category, Lymph Node Metastases, and Circumferential Resection Margin Involvement in Patients with Rectal Cancer: A Systematic Review and Meta-Analysis. Ann. Surg. Oncol. 2012, 19, 2212–2223. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wang, L.; Tan, Y.; Hu, H.; Shen, L.; Zheng, S.; Ding, K.; Zhang, S.; Yuan, Y. Accuracy of Magnetic Resonance Imaging in Staging Rectal Cancer with Multidisciplinary Team: A Single-Center Experience. J. Cancer 2019, 10, 6594–6598. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Shen, F.; Jia, Y.; Xia, Y.; Li, Q.; Lu, J. MRI-Based Radiomics of Rectal Cancer: Preoperative Assessment of the Pathological Features. BMC Med. Imaging 2019, 19, 86. [Google Scholar] [CrossRef] [PubMed]
- Martínez Barbero, J.P.; García, F.J.P.; López Cornejo, D.; García Cerezo, M.; Gutiérrez, P.M.J.; Balderas, L.; Lastra, M.; Arauzo-Azofra, A.; Benítez, J.M.; Ramos-Bossini, A.J.L. A Combined Approach Using T2*-Weighted Dynamic Susceptibility Contrast MRI Perfusion Parameters and Radiomics to Differentiate Between Radionecrosis and Glioma Progression: A Proof-of-Concept Study. Life 2025, 15, 606. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Hu, P.; Wang, J.; Shen, L.; Xia, F.; Qing, G.; Hu, W.; Zhang, Z.; Xin, C.; Peng, W.; et al. Radiomic Features of Pretreatment MRI Could Identify T Stage in Patients with Rectal Cancer: Preliminary Findings. J. Magn. Reson. Imaging 2018, 48, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Horvat, N.; Veeraraghavan, H.; Khan, M.; Blazic, I.; Zheng, J.; Capanu, M.; Sala, E.; Garcia-Aguilar, J.; Gollub, M.J.; Petkovska, I. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Radiologia 2018, 287, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Yuan, W.; Jia, Z.; Chen, J.; Li, L.; Yan, Z.; Liao, Y.; Mao, L.; Hu, S.; Liu, X.; et al. Preoperative MR Radiomics Based on High-Resolution T2-Weighted Images and Amide Proton Transfer-Weighted Imaging for Predicting Lymph Node Metastasis in Rectal Adenocarcinoma. Abdom. Radiol. 2022, 48, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Inthout, J.; Ioannidis, J.; Borm, G. The Hartung-Knapp-Sidik-Jonkman Method for Random Effects Meta-Analysis Is Straightforward and Considerably Outperforms the Standard DerSimonian-Laird Method. BMC Med. Res. Methodol. 2014, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.D.; Cai, T.T.; DasGupta, A. Interval Estimation for a Binomial Proportion. Stat. Sci. 2001, 16, 101–133. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Martínez Barbero, J.P.; Pérez García, F.J.; Jiménez Gutiérrez, P.M.; García Cerezo, M.; López Cornejo, D.; Olivares Granados, G.; Benítez, J.M.; Láinez Ramos-Bossini, A.J. The Value of Cerebral Blood Volume Derived from Dynamic Susceptibility Contrast Perfusion MRI in Predicting IDH Mutation Status of Brain Gliomas—A Systematic Review and Meta-Analysis. Diagnostics 2025, 15, 896. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Pu, H.; Chen, X.; Yuan, Y.; Zhang, F.; Li, H. MRI Radiomics Signature to Predict Lymph Node Metastasis after Neoadjuvant Chemoradiation Therapy in Locally Advanced Rectal Cancer. Abdom. Radiol. 2023, 48, 2270–2283. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Jiang, X.; Zhang, K.; Shang, J.; Zhang, Y.; Fang, X.; Gao, F.; Li, N.; Dong, J. A Nomogram of Combining IVIM-DWI and MRI Radiomics From the Primary Lesion of Rectal Adenocarcinoma to Assess Nonenlarged Lymph Node Metastasis Preoperatively. J. Magn. Reson. Imaging 2022, 56, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, Y.; Wang, X.; Zhou, M.; Chen, X.; Luan, K. An MRI-Based Multi-Objective Radiomics Model Predicts Lymph Node Status in Patients with Rectal Cancer. Abdom. Radiol. 2021, 46, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zeng, C.; Du, Y. Use of a Radiomics-Clinical Model Based on Magnetic Diffusion-Weighted Imaging for Preoperative Prediction of Lymph Node Metastasis in Rectal Cancer Patients. Medicine 2023, 102, e36004. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, X.; Liu, H.; Lu, T.; Li, Z. MRI-Based Multiregional Radiomics for Predicting Lymph Nodes Status and Prognosis in Patients with Resectable Rectal Cancer. Front. Oncol. 2023, 12, 1087882. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, Q.; Zhang, C.; Sun, J.; He, K.; Xie, Y.; Zhang, Y.; Fu, Y.; Zhang, H. Multiregional-Based Magnetic Resonance Imaging Radiomics Combined with Clinical Data Improves Efficacy in Predicting Lymph Node Metastasis of Rectal Cancer. Front. Oncol. 2021, 10, 585767. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Xia, W.; Xie, P.; Zhang, R.; Li, W.; Wang, M.; Xiong, F.; Liu, Y.; Fan, X.; Xie, Y.; et al. Preoperative Radiomic Signature Based on Multiparametric Magnetic Resonance Imaging for Noninvasive Evaluation of Biological Characteristics in Rectal Cancer. Eur. Radiol. 2019, 29, 3200–3209. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Yu, X.; Wen, L.; Bi, F.; Jian, L.; Liu, S.; Yang, Y.; Zhang, Y.; Lu, Q. Comparison of Preoperative CT- and MRI-Based Multiparametric Radiomics in the Prediction of Lymph Node Metastasis in Rectal Cancer. Front. Oncol. 2023, 13, 1230698. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Li, P.; Wu, R.; Jia, Y.; Hong, Y.; He, R.; Li, J.; Zhang, R.; Li, A. Development and Validation of a High-Resolution T2WI-Based Radiomic Signature for the Diagnosis of Lymph Node Status within the Mesorectum in Rectal Cancer. Front. Oncol. 2022, 12, 945559. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Yang, H.; Jiang, P.; Dong, L.; Zhang, Z.; Zhou, Y.; Zeng, Q.; Li, P.; Sun, Y.; Zhu, S. A Radiomics Model Based on T2WI and Clinical Indexes for Prediction of Lateral Lymph Node Metastasis in Rectal Cancer. Asian J. Surg. 2024, 47, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Feng, F.; Qiu, Y.; Zheng, G.; Ge, Y.; Wang, Y. High-Resolution MRI-Based Radiomics Analysis to Predict Lymph Node Metastasis and Tumor Deposits Respectively in Rectal Cancer. Abdom. Radiol. 2021, 46, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, Z.; Cai, Z.; Zhao, H.; Zhu, C.; Hong, J.; Lu, R.; Lai, X.; Guo, L.; Hu, Q.; et al. Novel Deep Learning Radiomics Nomogram-Based Multiparametric MRI for Predicting the Lymph Node Metastasis in Rectal Cancer: A Dual-Center Study. J. Cancer Res. Clin. Oncol. 2024, 150, 450. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.-X.; Yang, L.; Kang, Z.; Wang, M.-Q.; Xie, X.-D.; Lou, K.-X.; Bao, J.; Du, M.; Li, Z.-X. Magnetic Resonance Imaging-Based Lymph Node Radiomics for Predicting the Metastasis of Evaluable Lymph Nodes in Rectal Cancer. World J. Gastrointest. Oncol. 2024, 16, 1849–1860. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yi, Y.; Liu, Z.; Zhou, Z.; Lai, B.; Sun, K.; Li, L.; Huang, L.; Feng, Y.; Cao, W.; et al. Radiomics-Based Preoperative Prediction of Lymph Node Status Following Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Front. Oncol. 2020, 10, 00604. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, X.; Li, X.; Shi, Y.; Zhu, H.; Sun, Y. Prediction of Pathological Nodal Stage of Locally Advanced Rectal Cancer by Collective Features of Multiple Lymph Nodes in Magnetic Resonance Images before and after Neoadjuvant Chemoradiotherapy. Chin. J. Cancer Res. 2019, 31, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Tibermacine, H.; Rouanet, P.; Sbarra, M.; Forghani, R.; Reinhold, C.; Nougaret, S.; Rullier, E.; Lelong, B.; Maingon, P.; Tuech, J.-J.; et al. Radiomics Modelling in Rectal Cancer to Predict Disease-Free Survival: Evaluation of Different Approaches. Br. J. Surg. 2021, 108, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Shahzadi, I.; Zwanenburg, A.; Lattermann, A.; Linge, A.; Baldus, C.; Peeken, J.C.; Combs, S.E.; Diefenhardt, M.; Rödel, C.; Kirste, S.; et al. Analysis of MRI and CT-Based Radiomics Features for Personalized Treatment in Locally Advanced Rectal Cancer and External Validation of Published Radiomics Models. Sci. Rep. 2022, 12, 10192. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Liu, K.; Chen, Y.; Zhou, Y.; Zhao, W.; Yan, R.; Xin, P.; Zhu, Y.; Wang, H.; Lang, N. Prediction of Pathological Response and Lymph Node Metastasis after Neoadjuvant Therapy in Rectal Cancer through Tumor and Mesorectal MRI Radiomic Features. Sci. Rep. 2024, 14, 21927. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, E.; Karimzadhagh, S.; Monsef, A.; Joukar, F.; Mansour-Ghanaei, F.; Hassanipour, S. Application of Radiomics for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer: A Systematic Review and Meta-Analysis. Int. J. Surg. 2024, 110, 3795–3813. [Google Scholar] [CrossRef] [PubMed]
- Bedrikovetski, S.; Dudi-Venkata, N.N.; Kroon, H.M.; Seow, W.; Vather, R.; Carneiro, G.; Moore, J.W.; Sammour, T. Artificial Intelligence for Pre-Operative Lymph Node Staging in Colorectal Cancer: A Systematic Review and Meta-Analysis. BMC Cancer 2021, 21, 1058. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, D.; Fang, X.; Wang, Z.; Xing, Y.; Ma, L.; Wu, B. Rectal Cancer: Can T2WI Histogram of the Primary Tumor Help Predict the Existence of Lymph Node Metastasis? Eur. Radiol. 2019, 29, 6469–6476. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Zhang, Y.; Wei, M.; Yang, X.; Wang, Z. Magnetic Resonance Imaging Evaluation of the Accuracy of Various Lymph Node Staging Criteria in Rectal Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 709070. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Gao, Y.; Li, H.; Wang, J.; Li, Z.; Yuan, Q. Research Progress in Multimodal Radiomics of Rectal Cancer Tumors and Peritumoral Regions in MRI. Abdom. Radiol. 2025. [Google Scholar] [CrossRef] [PubMed]
Study (-Model) | Design | Country | Sample Size † | Age * | Sex (%) | Validation Type | MRI Field | MRI Sequence(s) | N+ (Training) | N+ (Test) |
---|---|---|---|---|---|---|---|---|---|---|
Fang et al. (2023)-PreT2WI [22] | Retrospective | China | 83 | 58.58–58.1 | 29 | External validation cohort | 1.5 T | T2, ADC | 21/57 ** | 10/26 |
Fang et al. (2023)-PostT2WI [22] | Retrospective | China | 83 | 58.58–58.1 | 29 | External validation cohort | 1.5 T | T2, ADC | 21/57 ** | 10/26 |
Fang et al. (2023)-DeltaT2WI [22] | Retrospective | China | 83 | 58.58–58.1 | 29 | External validation cohort | 1.5 T | T2, ADC | 21/57 ** | 10/26 |
Fang et al. (2023)-PreADC [22] | Retrospective | China | 83 | 58.58–58.1 | 29 | External validation cohort | 1.5 T | T2, ADC | 21/57 ** | 10/26 |
Fang et al. (2023)-PostADC [22] | Retrospective | China | 83 | 58.58–58.1 | 29 | External validation cohort | 1.5 T | T2, ADC | 21/57 ** | 10/26 |
Fang et al. (2023)-DeltaADC [22] | Retrospective | China | 83 | 58.58–58.1 | 29 | External validation cohort | 1.5 T | T2, ADC | 21/57 ** | 10/26 |
Jia et al. (2022) [23] | Retrospective | China | 126 | 59.60–65.33 | 51 | External validation cohort | 3.0 T | T2, ADC | 32/87 | 20/39 |
Li et al. (2021) [24] | Prospective | China | 91 | 59.31–61.19 | 40 | 5-fold CV (no test set) | 3.0 T | T2 | 62/91 | 62/91 |
Li et al. (2023) 1 [25] | Retrospective | China | 104 | 67.48 ± 9.96 | 34 | Internal validation cohort (10-fold CV) | 1.5 T | DWI | 36/72 | 13/32 |
Li et al. (2023) 2-Intratumoral [26] | Retrospective | China | 346 | 61.86 (26–88) | 29 | External validation cohort | 1.5 and 3.0 T | T2 | 66/134 | 27/56 |
Li et al. (2023) 2-Peritumoral [26] | Retrospective | China | 346 | 61.86 (26–88) | 29 | External validation cohort | 1.5 and 3.0 T | T2 | 66/134 | 27/56 |
Li et al. (2023) 2-Combined [26] | Retrospective | China | 346 | 61.86 (26–88) | 29 | External validation cohort | 1.5 and 3.0 T | T2 | 66/134 | 27/56 |
Liu et al. (2021)-Tumor [27] | Retrospective | China | 186 | 59.52 ± 11.44 | 32 | Internal validation cohort | 3.0 T | T2, DWI | 54/123 | 27/63 |
Liu et al. (2021)-Mesorectum [27] | Retrospective | China | 186 | 59.52 ± 11.44 | 32 | Internal validation cohort | 3.0 T | T2, DWI | 54/123 | 27/63 |
Meng et al. (2019) [28] | Retrospective | China | 345 | 59.48–61.10 | 39 | Internal validation cohort (10-fold CV) | 1.5 T | T1, T2, DWI, T1-DCE | 62/190 | 63/146 |
Niu et al. (2023)-CET1 [29] | Retrospective | China | 234 | 60.8 ± 9.7 | 40 | Internal validation cohort (5-fold CV) | 3.0 T | CET1 | 69/164 | 29/70 |
Niu et al. (2023)-T2 [29] | Retrospective | China | 234 | 60.8 ± 9.7 | 40 | Internal validation cohort (5-fold CV) | 3.0 T | T2 | 69/164 | 29/70 |
Niu et al. (2023)-Combined [29] | Retrospective | China | 234 | 60.8 ± 9.7 | 40 | Internal validation cohort (5-fold CV) | 3.0 T | CET1, T2 | 69/164 | 29/70 |
Song et al. (2022) 1 [30] | Retrospective | China | 166 | 61.96 ± 11.03 | 63 | Internal validation cohort (5-fold CV) | 3.0 T | T2 | 215/422 | 93/182 |
Song et al. (2022) 2 [30] | Retrospective | China | 166 | 61.96 ± 11.03 | 63 | Internal validation cohort (5-fold CV) | 3.0 T | T2 | 215/422 | 93/182 |
Song et al. (2022) 3 [30] | Retrospective | China | 166 | 61.96 ± 11.03 | 63 | Internal validation cohort (5-fold CV) | 3.0 T | T2 | 215/422 | 93/182 |
Song et al. (2022) 4 [30] | Retrospective | China | 166 | 61.96 ± 11.03 | 63 | Internal validation cohort (5-fold CV) | 3.0 T | T2 | 215/422 | 93/182 |
Wei et al. (2023)-NB [16] | Retrospective | China | 125 | 61.40 ± 11.59 | 28 | Internal validation cohort (5-fold CV) | 3.0 T | T2, APT | 23/56 | 18/45 ^ |
Wei et al. (2023)-KNN [16] | Retrospective | China | 125 | 61.40 ± 11.59 | 28 | Internal validation cohort (5-fold CV) | 3.0 T | T2, APT | 23/56 | 18/45 ^ |
Wei et al. (2023)-SVM [16] | Retrospective | China | 125 | 61.40 ± 11.59 | 28 | Internal validation cohort (5-fold CV) | 3.0 T | T2, APT | 23/56 | 18/45 ^ |
Wei et al. (2023)-RF [16] | Retrospective | China | 125 | 61.40 ± 11.59 | 28 | Internal validation cohort (5-fold CV) | 3.0 T | T2, APT | 23/56 | 18/45 ^ |
Wei et al. (2023)-LR [16] | Retrospective | China | 125 | 61.40 ± 11.59 | 28 | Internal validation cohort (5-fold CV) | 3.0 T | T2, APT | 23/56 | 18/45 ^ |
Yan et al. (2024) [31] | Retrospective | China | 106 | 60.37 ± 12.17 | 34 | Internal validation cohort (5-fold CV) | NS | T2 | 36/74 | 16/32 |
Yang et al. (2021) [32] | Retrospective | China | 139 | 64 (34–86) | 35 | Internal validation cohort (10-fold CV) | 3.0 T | T2 | 40/98 | 15/41 |
Yang et al. (2024)-LR [33] | Retrospective | China | 356 | 61.61 ± 12.76 | 38 | Internal validation cohort (5-fold CV) | 1.5 and 3.0 T | T2, DWI | 98/286 | 23/70 |
Yang et al. (2024)-LGBM [33] | Retrospective | China | 356 | 61.61 ± 12.76 | 38 | Internal validation cohort (5-fold CV) | 1.5 and 3.0 T | T2, DWI | 98/286 | 23/70 |
Yang et al. (2024)-KNN [33] | Retrospective | China | 356 | 61.61 ± 12.76 | 38 | Internal validation cohort (5-fold CV) | 1.5 and 3.0 T | T2, DWI | 98/286 | 23/70 |
Yang et al. (2024)-SVM [33] | Retrospective | China | 356 | 61.61 ± 12.76 | 38 | Internal validation cohort (5-fold CV) | 1.5 and 3.0 T | T2, DWI | 98/286 | 23/70 |
Yang et al. (2024)-RF [33] | Retrospective | China | 356 | 61.61 ± 12.76 | 38 | Internal validation cohort (5-fold CV) | 1.5 and 3.0 T | T2, DWI | 98/286 | 23/70 |
Ye et al. (2024)-T1 [34] | Retrospective | China | 144 | 59 ± 10 | 33 | Internal validation cohort | 3.0 T | CET1 | 78/189 | 34/81 |
Ye et al. (2024)-T2 [34] | Retrospective | China | 144 | 59 ± 10 | 33 | Internal validation cohort | 3.0 T | T2 | 78/189 | 34/81 |
Ye et al. (2024)-Combined [34] | Retrospective | China | 144 | 59 ± 10 | 33 | Internal validation cohort | 3.0 T | CET1, T2 | 78/189 | 34/81 |
Zhou et al. (2020) [35] | Retrospective | China | 391 | 53.67 ± 12.20 | 29 | Internal validation cohort (10-fold CV) | 1.5 T | T1, T2, DWI, CET1 | 58/261 | 29/130 |
Zhu et al. (2019) [36] | Retrospective | China | 215 | 55.59–58.56 | 39 | Internal validation cohort (5-fold CV) | 3.0 T | T2 | 34/143 | 19/72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luengo Gómez, D.; García Cerezo, M.; López Cornejo, D.; Salmerón Ruiz, Á.; González-Flores, E.; Melguizo Alonso, C.; Láinez Ramos-Bossini, A.J.; Prados, J.; Ortega Sánchez, F.G. The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-Analysis. Bioengineering 2025, 12, 786. https://doi.org/10.3390/bioengineering12070786
Luengo Gómez D, García Cerezo M, López Cornejo D, Salmerón Ruiz Á, González-Flores E, Melguizo Alonso C, Láinez Ramos-Bossini AJ, Prados J, Ortega Sánchez FG. The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-Analysis. Bioengineering. 2025; 12(7):786. https://doi.org/10.3390/bioengineering12070786
Chicago/Turabian StyleLuengo Gómez, David, Marta García Cerezo, David López Cornejo, Ángela Salmerón Ruiz, Encarnación González-Flores, Consolación Melguizo Alonso, Antonio Jesús Láinez Ramos-Bossini, José Prados, and Francisco Gabriel Ortega Sánchez. 2025. "The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-Analysis" Bioengineering 12, no. 7: 786. https://doi.org/10.3390/bioengineering12070786
APA StyleLuengo Gómez, D., García Cerezo, M., López Cornejo, D., Salmerón Ruiz, Á., González-Flores, E., Melguizo Alonso, C., Láinez Ramos-Bossini, A. J., Prados, J., & Ortega Sánchez, F. G. (2025). The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-Analysis. Bioengineering, 12(7), 786. https://doi.org/10.3390/bioengineering12070786