Standardized Morphological Modeling and Simulation-Based Validation of a Novel Tibiotalar Fusion Implant
Abstract
1. Introduction
2. Materials and Methods
2.1. Establishment of the Tibiotalar Joint Morphological Parameter Database
2.2. Verification of the Normal Distribution of Morphological Parameters of the Tibiotalar Joint
2.3. A Novel Tibiotalar Joint Fusion Implant Design and Implant/Tibiotalar Joint Surface Morphology Deviation
2.4. Biomechanical Analysis of Three Tibiotalar Joint Fixations
Material Properties | Elastic Modulus, E (MPa) | Poisson’s Ratio, ν | Mass Density (g/cm3) | References |
---|---|---|---|---|
Cortical bone | 7300 | 0.3 | 1.845 | [19] |
Cancellous bone | 1000 | 0.3 | 0.8 | [20] |
Implant | 110,000 | 0.3 | 7.56 | [21,22] |
Plate | ||||
Screw |
3. Results
3.1. Tibiotalar Joint Morphological Parameter Database
3.2. Verification of the Normal Distribution of Morphological Parameters of the Tibiotalar Joint
3.3. Surface Morphology Deviation Between the Novel Tibiotalar Joint and the Implant
3.4. Biomechanical Analysis of Three Tibiotalar Joint Fixations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godoy-Santos, A.L.; Fonseca, L.F.; de Cesar Netto, C.; Giordano, V.; Valderrabano, V.; Rammelt, S. Ankle Osteoarthritis. Rev. Bras. Ortop. 2020, 56, 689–696. [Google Scholar]
- Yasui, Y.; Hannon, C.P.; Seow, D.; Kennedy, J.G. Ankle arthrodesis: A systematic approach and review of the literature. World J. Orthop. 2016, 7, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Leucht, A.K.; Veljkovic, A. Arthroscopic Ankle Arthrodesis. Foot Ankle Clin. 2022, 27, 175–197. [Google Scholar] [CrossRef] [PubMed]
- Kakarala, G.; Rajan, D.T. Comparative study of ankle arthrodesis using cross screw fixation versus anterior contoured plate plus cross screw fixation. Acta Orthop. Belg. 2006, 72, 716–721. [Google Scholar]
- Mueckley, T.M.; Eichorn, S.; von Oldenburg, G.; Speitling, A.; DiCicco, J.D., III; Hofmann, G.O.; Bühren, V. Biomechanical evaluation of primary stiffness of tibiotalar arthrodesis with an intramedullary compression nail and four other fixation devices. Foot Ankle Int. 2006, 27, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Dohm, M.P.; Benjamin, J.B.; Harrison, J.; Szivek, J.A. A biomechanical evaluation of three forms of internal fixation used in ankle arthrodesis. Foot Ankle Int. 1994, 15, 297–300. [Google Scholar] [CrossRef]
- Esparragoza, L.; Vidal, C.; Vaquero, J. Comparative study of the quality of life between arthrodesis and total arthroplasty substitution of the ankle. J. Foot Ankle Surg. 2011, 50, 383–387. [Google Scholar] [CrossRef]
- Krause, F.G.; Windolf, M.; Bora, B.; Penner, M.J.; Wing, K.J.; Younger, A.S. Impact of complications in total ankle replacement and ankle arthrodesis analyzed with a validated outcome measurement. J. Bone Joint Surg. Am. 2011, 93, 830–839. [Google Scholar] [CrossRef]
- Saltzman, C.L.; Kadoko, R.G.; Suh, J.S. Treatment of isolated ankle osteoarthritis with arthrodesis or the total ankle replacement: A comparison of early outcomes. Clin. Orthop. Surg. 2010, 2, 1–7. [Google Scholar] [CrossRef]
- Maffulli, N.; Longo, U.G.; Locher, J.; Romeo, G.; Salvatore, G.; Denaro, V. Outcome of ankle arthrodesis and ankle prosthesis: A review of the current status. Br. Med. Bull. 2017, 124, 91–112. [Google Scholar] [CrossRef]
- Windisch, G.; Odehnal, B.; Reimann, R.; Anderhuber, F.; Stachel, H. Contact areas of the tibiotalar joint. J. Orthop. Res. 2007, 25, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.F.; Chang, C.M.; Liao, C.Y.; Chan, Y.T.; Li, Z.Y.; Lin, C.L. Biomechanical evaluation of an osteoporotic anatomical 3D printed posterior lumbar interbody fusion cage with internal lattice design based on weighted topology optimization. Int. J. Bioprint. 2023, 9, 697. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Tan, M.S.; Yan, Q.H.; Yi, P.; Yang, F.; Tang, X.S.; Hao, Q.Y. Footprint mismatch of cervical disc prostheses with Chinese cervical anatomic dimensions. Chin. Med. J. 2015, 128, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Li, Y.; Wang, B.; Meng, Y.; Gong, Q.; Liu, H. Biomechanical evaluation of cervical disc replacement with a novel prosthesis based on the physiological curvature of endplate. J. Orthop. Surg. Res. 2018, 13, 41. [Google Scholar] [CrossRef]
- Lin, C.L.; Wang, Y.T.; Chang, C.M.; Wu, C.H.; Tsai, W.H. Design criteria for patient-specific mandibular continuity defect reconstructed implant with lightweight structure using weighted topology optimization and validated with biomechanical fatigue testing. Int. J. Bioprint. 2021, 8, 437. [Google Scholar] [CrossRef]
- Drew, J.H.; Glen, A.G.; Leemis, L.M. Computing the cumulative distribution function of the Kolmogorov-Smirnov statistic. Comput. Stat. Data An. 2000, 34, 1–15. [Google Scholar] [CrossRef]
- Melosh, R.J. Finite element analysis convergence curves. Finite Elem. Anal. Des. 1990, 7, 115–121. [Google Scholar] [CrossRef]
- Beisheim, J.R.; Sinclair, G.B.; Roache, P.J. Effective Convergence Checks for Verifying Finite Element Stresses at Three-Dimensional Stress Concentrations. J. Verif. Valid. Uncert. 2018, 3, 034501. [Google Scholar] [CrossRef]
- Taghizadeh, Y.; Chitsazan, A.; Pezeshki, S.; Taghizadeh, H.; Rouhi, G. Total ankle replacement along with subtalar joint arthrodesis: In-vitro and in-silico biomechanical investigations. Int. J. Numer. Method Biomed. Eng. 2021, 37, e3514. [Google Scholar] [CrossRef]
- Bing, F.; Wei, C.; Liu, P.; Li, Z.; Deng, Y.; Zhang, Z.; Zhu, S. Biomechanical finite element analysis of typical tibiotalar arthrodesis. Med. Nov. Technol. Devices. 2021, 11, 100087. [Google Scholar] [CrossRef]
- Wang, S.; Yu, J.; Ma, X.; Zhao, D.; Geng, X.; Huang, J.; Wang, X. Finite element analysis of the initial stability of arthroscopic ankle arthrodesis with three-screw fixation: Posteromedial versus posterolateral home-run screw. J. Orthop. Surg. Res. 2020, 15, 252. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.S.; So, T.Y.; Lee, D.H.; Hin, C.S. Characterization of Mechanical Properties and Grain Size of Stainless Steel 316L via Metal Powder Injection Molding. Materials 2023, 16, 2144. [Google Scholar] [CrossRef] [PubMed]
- Brockett, C.L.; Chapman, G.J. Biomechanics of the ankle. Orthop. Trauma. 2016, 30, 232–238. [Google Scholar] [CrossRef]
- Kwak, S.G.; Kim, J.H. Central limit theorem: The cornerstone of modern statistics. Korean J. Anesthesiol. 2017, 70, 144–156. [Google Scholar] [CrossRef]
- Imai, K.; Ikoma, K.; Kido, M.; Maki, M.; Fujiwara, H.; Arai, Y.; Oda, R.; Tokunaga, D.; Inoue, N.; Kubo, T. Joint space width of the tibiotalar joint in the healthy foot. J. Foot Ankle Res. 2015, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Somberg, A.M.; Whiteside, W.K.; Nilssen, E.; Murawski, D.; Liu, W. Biomechanical evaluation of a second generation headless compression screw for ankle arthrodesis in a cadaver model. Foot Ankle Surg. 2016, 22, 50–54. [Google Scholar] [CrossRef]
- Kılıçaslan, Ö.F.; Levent, A.; Çelik, H.K.; Tokgöz, M.A.; Köse, Ö.; Rennie, A.E.W. Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis. Jt. Dis. Relat. Surg. 2021, 32, 355–362. [Google Scholar] [CrossRef]
- Hassan, C.R.; Qin, Y.X.; Komatsu, D.E.; Uddin, S.M.Z. Utilization of Finite Element Analysis for Articular Cartilage Tissue Engineering. Materials 2019, 12, 3331. [Google Scholar] [CrossRef]
- Kim, J.; Bathe, K. The finite element method enriched by interpolation covers. Comput. Struct. 2013, 116, 35–49. [Google Scholar] [CrossRef]
- Raikin, S.M.; Rampuri, V. An approach to the failed ankle arthrodesis. Foot Ankle Clin. 2008, 13, 401–416. [Google Scholar] [CrossRef]
- Chang, C.M.; Wong, P.C.; Ou, S.L.; Ko, C.E.; Wang, Y.T. Optimizing implant lattice design for large distal femur defects: Stimulating interface bone growth to enhance osseointegration. Int. J. Bioprint. 2024, 10, 2590. [Google Scholar] [CrossRef]
- Wang, Y.T.; Hsu, C.K. Novel parameter optimization lattice design for improving osseointegration in hypo-loading regions—A case study of maxillary tumor reconstruction implant. Mater. Des. 2023, 233, 112274. [Google Scholar] [CrossRef]
- Baikerikar, P.; Turner, C.J. Comparison of FEA Simulations and experimental results for as-built additively manufactured dogbone specimens. Int. J. Adv. Manuf. Tech. 2021, 115, 2839–2851. [Google Scholar] [CrossRef]
Case | Height | Vsum of differences | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | ||
1 | 5.84 | 5.26 | 5.15 | 5.35 | 4.29 | 4.18 | 7.67 | 6.49 | 8.06 | 9.47 |
2 | 6.06 | 9.27 | 8.36 | 2.8 | 3.44 | 3.55 | 4.57 | 2.39 | 5.74 | 13.59 |
3 | 8.35 | 5.44 | 8.63 | 10.55 | 3.51 | 4.26 | 5.42 | 4.09 | 4.83 | 14.48 |
4 | 5.25 | 5.86 | 4.87 | 3.96 | 3.33 | 3.56 | 6.95 | 7.88 | 4.31 | 8.98 |
5 | 8.29 | 8.16 | 7.18 | 5.32 | 7.08 | 3.71 | 8.99 | 7.3 | 5.35 | 13.06 |
6 | 9.68 | 5.95 | 5.80 | 9.44 | 3.98 | 4.03 | 7.94 | 4.19 | 4.22 | 13.12 |
7 | 2.72 | 3.65 | 7.25 | 2.48 | 4.18 | 3.18 | 3.36 | 4.91 | 4.42 | 16.10 |
8 | 4.47 | 3.92 | 3.17 | 4.89 | 4.35 | 8.4 | 7.04 | 6.19 | 6.85 | 15.84 |
9 | 7.31 | 7.69 | 6.85 | 5.29 | 3.49 | 4.35 | 3.09 | 3.39 | 4.67 | 10.01 |
10 | 2.74 | 4.64 | 2.86 | 3.82 | 2.69 | 3.16 | 6.76 | 5.18 | 8.22 | 15.42 |
11 | 7.81 | 6.96 | 6.95 | 2.91 | 2.79 | 4.87 | 3.88 | 6.68 | 6.9 | 11.15 |
12 | 14.52 | 9.96 | 8.4 | 7.68 | 4.76 | 2.74 | 3.65 | 6.01 | 4.54 | 22.41 |
13 | 8.58 | 6.73 | 6.19 | 9.81 | 4.56 | 7.07 | 6.92 | 2.41 | 3.22 | 17.73 |
14 | 8.05 | 8.28 | 8.65 | 6.44 | 3.8 | 4.77 | 9.00 | 8.19 | 8.17 | 16.63 |
15 | 5.96 | 6.32 | 4.01 | 6.45 | 3.66 | 6.74 | 11.78 | 12.14 | 7.91 | 22.20 |
16 | 9.09 | 8.9 | 9.07 | 4.12 | 4.52 | 3.81 | 4.66 | 7.19 | 4.74 | 13.17 |
17 | 5.7 | 8.16 | 7.34 | 2.06 | 2.03 | 2.41 | 6.84 | 7.68 | 10.47 | 17.88 |
18 | 9.38 | 14.92 | 10 | 4.95 | 3.28 | 2.1 | 2.26 | 2.66 | 1.94 | 27.70 |
19 | 12.25 | 10.36 | 9.04 | 4.76 | 4.36 | 6.63 | 1.84 | 3.75 | 2.24 | 25.39 |
20 | 7.31 | 4.76 | 2.11 | 4.81 | 4.62 | 2.65 | 4.65 | 7.69 | 5.18 | 11.81 |
21 | 9.95 | 0 | 3.91 | 3.57 | 4.99 | 4.09 | 5.00 | 4.99 | 6.92 | 17.53 |
22 | 5.46 | 6.74 | 4.39 | 3.04 | 3.58 | 2.36 | 6.48 | 6.41 | 9.55 | 11.82 |
23 | 7.95 | 4.88 | 3.07 | 1.67 | 1.97 | 1.6 | 3.67 | 7.04 | 5.8 | 16.73 |
24 | 2.23 | 1.34 | 5.25 | 3.42 | 2.19 | 2.15 | 5.72 | 4.25 | 4.02 | 18.15 |
25 | 6.55 | 8.5 | 4.99 | 2.29 | 2.6 | 1.99 | 8.42 | 2.07 | 1.88 | 18.25 |
26 | 3.82 | 5.26 | 5.72 | 3.9 | 4.65 | 2.97 | 4.71 | 7.39 | 7.23 | 11.94 |
27 | 3.78 | 4.41 | 3.78 | 2.57 | 2.24 | 1.27 | 5.87 | 2.00 | 1.07 | 21.73 |
28 | 5.1 | 3.94 | 4.68 | 4.43 | 2.43 | 1.96 | 11.81 | 7.56 | 8.8 | 19.92 |
29 | 4.87 | 4.22 | 3.71 | 6.8 | 3.77 | 3.39 | 6.02 | 4.95 | 2.76 | 12.29 |
30 | 6.35 | 7.85 | 6.84 | 4.93 | 4.6 | 5.06 | 8.08 | 5.43 | 4.88 | 7.90 |
avg. | 6.85 | 6.41 | 5.94 | 4.82 | 3.72 | 3.77 | 6.10 | 5.62 | 5.50 | Implants Body Size (average) |
Sd. | 2.78 | 2.88 | 2.16 | 2.27 | 1.10 | 1.71 | 2.47 | 2.29 | 2.39 |
Analytical Model Validation | ||||
---|---|---|---|---|
Micromotion | Finite element analysis (this study) | 0.339 mm (339.3 μm) | ||
Validation value (biomechanical test) | 353.74 μm | [18] | ||
Difference (%) | 4.08% | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-W.; Wang, Y.-T.; Chen, C.-A.; Lin, C.-L. Standardized Morphological Modeling and Simulation-Based Validation of a Novel Tibiotalar Fusion Implant. Bioengineering 2025, 12, 705. https://doi.org/10.3390/bioengineering12070705
Huang C-W, Wang Y-T, Chen C-A, Lin C-L. Standardized Morphological Modeling and Simulation-Based Validation of a Novel Tibiotalar Fusion Implant. Bioengineering. 2025; 12(7):705. https://doi.org/10.3390/bioengineering12070705
Chicago/Turabian StyleHuang, Chao-Wei, Yu-Tzu Wang, Chi-An Chen, and Chun-Li Lin. 2025. "Standardized Morphological Modeling and Simulation-Based Validation of a Novel Tibiotalar Fusion Implant" Bioengineering 12, no. 7: 705. https://doi.org/10.3390/bioengineering12070705
APA StyleHuang, C.-W., Wang, Y.-T., Chen, C.-A., & Lin, C.-L. (2025). Standardized Morphological Modeling and Simulation-Based Validation of a Novel Tibiotalar Fusion Implant. Bioengineering, 12(7), 705. https://doi.org/10.3390/bioengineering12070705