Time-Series Autoregressive Models for Point and Interval Forecasting of Raw and Derived Commercial Near-Infrared Spectroscopy Measures: An Exploratory Cranial Trauma and Healthy Control Analysis †
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Human Populations
2.2. Ethical Considerations
2.3. Data Collection
2.4. Physiologic Data Cleaning and Processing
2.5. Statistical Data Analysis
- Determining the optimal time-series structures of rSO2, COx, and COx-a signals (in 10 s, 1 min, and 5 min temporal resolutions);
- Cataloging the computational duration for each point and interval forecasting method (using both anchored and sliding-window approaches);
- Evaluating the absolute forecast residual and root mean squared error between the forecasted and observed data (in 10 s, 1 min, and 5 min temporal resolutions with varying update intervals);
- Pearson correlation and Bland–Altman agreement analyses between the forecasted and observed data of each point and interval forecasting method
2.5.1. Optimal Time-Series Structures of rSO2, COx, and COx-a Signals—10-s, 1-mim, and 5-min Data
2.5.2. Computational Duration of Point and Interval Forecasting Methods—Anchored and Sliding-Window Approaches
2.5.3. Absolute Forecast Residual—10-s, 1 min, and 5 min Data
2.5.4. Root Mean Squared Error Analysis of Forecasted and Observed Data—10 s, 1 min, 5 min Data
2.5.5. Pearson Correlation Analysis of Forecasted and Observed Data—10 s, 1 min, 5 min Data
2.5.6. Bland-Altman Agreement Analysis of Forecasted and Observed Data—10-s, 1-min, 5-min Data
3. Results
3.1. Population Demographics
3.2. Optimal ARIMA Structure Analysis—10 s, 1 min, 5 min Data
3.3. Computational Duration Analysis for Point and Interval Methods Using Anchored and Sliding-Window Approaches
3.4. Absolute Forecast Residual Analysis—10 s, 1 min, 5 min Data
3.5. Root Mean Squared Error Analysis—10 s, 1 min, 5 min Data
3.6. Pearson Correlation Analysis—10 s, 1 min, 5 min Data
3.7. Bland–Altman Agreement Analysis—10 s, 1 min, 5 min Data
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABP | Arterial blood pressure |
ADF | Augmented Dickey–Fuller |
AFR | Absolute forecast residual |
AIC | Akaike information criterion |
Anchored-Interval | Anchored forecasting using interval approach |
Anchored-Point | Anchored forecasting using point approach |
ARIMA | Autoregressive integrative moving average |
BTF | Brain Trauma Foundation |
CA | Cerebral autoregulation |
CBF | Cerebral blood flow |
CBv | Cerebral blood volume |
COx | Cerebral oximetry index with CPP |
COx_L | Cerebral oximetry index with CPP of left frontal lobe |
COx_R | Cerebral oximetry index with CPP of right frontal lobe |
COx-a | Cerebral oximetry index with ABP |
COx-a_L | Cerebral oximetry index with ABP of left frontal lobe |
COx-a_R | Cerebral oximetry index with ABP of right frontal lobe |
CPP | Cerebral perfusion pressure |
CT | Computed tomography |
CVR | Cerebrovascular reactivity |
d-order | Moving average order |
GCS | Glasgow coma scale |
HC | Healthy volunteers |
ICM+ | Intensive care monitoring “Plus” |
ICP | Intracranial pressure |
ICU | Intensive care unit |
IQR | Interquartile range |
KB | Kilobyte |
KPSS | Kwiatkowski–Phillips–Schmidt–Shin |
LoA | Limit of agreement |
MAIN-HUB | Multi-Omic analytics and integrative neuroinformatics in the human brain |
MAD | Median absolute deviation |
NA | Represents missing value or undetermined value due to inadequate data |
NIRS | Near-infrared spectroscopy |
pCO2 | Partial pressure of carbon dioxide |
pO2 | Partial pressure of oxygen |
p-order | Autoregressive order |
PRx | Pressure reactivity index |
q-order | Moving average order |
R | Pearson correlation coefficient |
relative bias | Bias as proportion of LoA spread |
RMSE | Root mean squared error |
rSO2 | Regional cerebral oxygen saturation |
rSO2_L | Regional cerebral oxygen saturation of left frontal lobe |
rSO2_R | Regional cerebral oxygen saturation of the right frontal lobe |
SP | Elective spinal surgery patients |
TBI | Traumatic brain injury |
Windowed-Interval | Sliding-window forecasting using interval approach |
Windowed-Point | Sliding-window forecasting using point approach |
References
- Fog, M. The Relationship Between the Blood Pressure and the Tonic Regulation of the Pial Arteries. J. Neurol. Psychiatry 1938, 1, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Lassen, N.A. Cerebral Blood Flow and Oxygen Consumption in Man. Physiol. Rev. 1959, 39, 183–238. [Google Scholar] [CrossRef]
- Czosnyka, M.; Smielewski, P.; Kirkpatrick, P.; Laing, R.J.; Menon, D.; Pickard, J.D. Continuous Assessment of the Cerebral Vasomotor Reactivity in Head Injury. Neurosurgery 1997, 41, 11–19. [Google Scholar] [CrossRef]
- Sorrentino, E.; Diedler, J.; Kasprowicz, M.; Budohoski, K.P.; Haubrich, C.; Smielewski, P.; Outtrim, J.G.; Manktelow, A.; Hutchinson, P.J.; Pickard, J.D.; et al. Critical Thresholds for Cerebrovascular Reactivity After Traumatic Brain Injury. Neurocrit Care 2012, 16, 258–266. [Google Scholar] [CrossRef]
- Donnelly, J.; Czosnyka, M.; Adams, H.; Cardim, D.; Kolias, A.G.; Zeiler, F.A.; Lavinio, A.; Aries, M.; Robba, C.; Smielewski, P.; et al. Twenty-Five Years of Intracranial Pressure Monitoring After Severe Traumatic Brain Injury: A Retrospective, Single-Center Analysis. Neurosurgery 2019, 85, E75–E82. [Google Scholar] [CrossRef]
- Bennis, F.C.; Teeuwen, B.; Zeiler, F.A.; Elting, J.W.; van der Naalt, J.; Bonizzi, P.; Delhaas, T.; Aries, M.J. Improving Prediction of Favourable Outcome After 6 Months in Patients with Severe Traumatic Brain Injury Using Physiological Cerebral Parameters in a Multivariable Logistic Regression Model. Neurocrit Care 2020, 33, 542–551. [Google Scholar] [CrossRef]
- Åkerlund, C.A.; Donnelly, J.; Zeiler, F.A.; Helbok, R.; Holst, A.; Cabeleira, M.; Güiza, F.; Meyfroidt, G.; Czosnyka, M.; Smielewski, P.; et al. Impact of Duration and Magnitude of Raised Intracranial Pressure on Outcome after Severe Traumatic Brain Injury: A CENTER-TBI High-Resolution Group Study. PLoS ONE 2020, 15, e0243427. [Google Scholar] [CrossRef] [PubMed]
- Depreitere, B.; Citerio, G.; Smith, M.; Adelson, P.D.; Aries, M.J.; Bleck, T.P.; Bouzat, P.; Chesnut, R.; De Sloovere, V.; Diringer, M.; et al. Cerebrovascular Autoregulation Monitoring in the Management of Adult Severe Traumatic Brain Injury: A Delphi Consensus of Clinicians. Neurocrit Care 2021, 34, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Güiza, F.; Depreitere, B.; Piper, I.; Citerio, G.; Chambers, I.; Jones, P.A.; Lo, T.-Y.M.; Enblad, P.; Nillson, P.; Feyen, B.; et al. Visualizing the Pressure and Time Burden of Intracranial Hypertension in Adult and Paediatric Traumatic Brain Injury. Intensive Care Med. 2015, 41, 1067–1076. [Google Scholar] [CrossRef]
- Güiza, F.; Meyfroidt, G.; Piper, I.; Citerio, G.; Chambers, I.; Enblad, P.; Nillson, P.; Feyen, B.; Jorens, P.; Maas, A.; et al. Cerebral Perfusion Pressure Insults and Associations with Outcome in Adult Traumatic Brain Injury. J. Neurotrauma 2017, 34, 2425–2431. [Google Scholar] [CrossRef]
- Donnelly, J.; Güiza, F.; Depreitere, B.; Meyfroidt, G.; Czosnyka, M.; Smielewski, P. Visualising the Pressure-Time Burden of Elevated Intracranial Pressure after Severe Traumatic Brain Injury: A Retrospective Confirmatory Study. Br. J. Anaesth. 2021, 126, e15–e17. [Google Scholar] [CrossRef] [PubMed]
- Howells, T.; Johnson, U.; McKelvey, T.; Enblad, P. An Optimal Frequency Range for Assessing the Pressure Reactivity Index in Patients with Traumatic Brain Injury. J. Clin. Monit. Comput. 2015, 29, 97–105. [Google Scholar] [CrossRef]
- Fraser, C.D.; Brady, K.M.; Rhee, C.J.; Easley, R.B.; Kibler, K.; Smielewski, P.; Czosnyka, M.; Kaczka, D.W.; Andropoulos, D.B.; Rusin, C. The Frequency Response of Cerebral Autoregulation. J. Appl. Physiol. 2013, 115, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Kibler, K.K.; Benni, P.B.; Easley, R.B.; Czosnyka, M.; Smielewski, P.; Koehler, R.C.; Shaffner, D.H.; Brady, K.M. Cerebrovascular Reactivity Measured by Near-Infrared Spectroscopy. Stroke 2009, 40, 1820–1826. [Google Scholar] [CrossRef] [PubMed]
- Brady, K.M.; Mytar, J.O.; Kibler, K.K.; Hogue, C.W.; Lee, J.K.; Czosnyka, M.; Smielewski, P.; Easley, R.B. Noninvasive Autoregulation Monitoring with and without Intracranial Pressure in the Naïve Piglet Brain. Anesth. Analg. 2010, 111, 191–195. [Google Scholar] [CrossRef]
- Zweifel, C.; Castellani, G.; Czosnyka, M.; Helmy, A.; Manktelow, A.; Carrera, E.; Brady, K.M.; Hutchinson, P.J.A.; Menon, D.K.; Pickard, J.D.; et al. Noninvasive Monitoring of Cerebrovascular Reactivity with Near Infrared Spectroscopy in Head-Injured Patients. J. Neurotrauma 2010, 27, 1951–1958. [Google Scholar] [CrossRef]
- Zeiler, F.A.; Donnelly, J.; Calviello, L.; Smielewski, P.; Menon, D.K.; Czosnyka, M. Pressure Autoregulation Measurement Techniques in Adult Traumatic Brain Injury, Part II: A Scoping Review of Continuous Methods. J. Neurotrauma 2017, 34, 3224–3237. [Google Scholar] [CrossRef]
- Mathieu, F.; Khellaf, A.; Ku, J.C.; Donnelly, J.; Thelin, E.P.; Zeiler, F.A. Continuous Near-Infrared Spectroscopy Monitoring in Adult Traumatic Brain Injury: A Systematic Review. J. Neurosurg. Anesthesiol. 2020, 32, 288–299. [Google Scholar] [CrossRef]
- Bindra, J.; Pham, P.; Aneman, A.; Chuan, A.; Jaeger, M. Non-Invasive Monitoring of Dynamic Cerebrovascular Autoregulation Using Near Infrared Spectroscopy and the Finometer Photoplethysmograph. Neurocrit. Care 2016, 24, 442–447. [Google Scholar] [CrossRef]
- Adatia, K.; Geocadin, R.G.; Healy, R.; Ziai, W.; Ponce-Mejia, L.; Anderson-White, M.; Shah, D.; Radzik, B.R.; Palmisano, C.; Hogue, C.W.; et al. Lateral Brain Displacement and Cerebral Autoregulation in Acutely Comatose Patients. Crit. Care Med. 2020, 48, 1018. [Google Scholar] [CrossRef]
- Zipfel, J.; Bantle, S.J.; Magunia, H.; Schlensak, C.; Neunhoeffer, F.; Schuhmann, M.U.; Lescan, M. Non-Invasive Cerebral Autoregulation Monitoring During Awake Carotid Endarterectomy Identifies Clinically Significant Brain Ischaemia. Eur. J. Vasc. Endovasc. Surg. 2020, 60, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Zweifel, C.; Lavinio, A.; Steiner, L.A.; Radolovich, D.; Smielewski, P.; Timofeev, I.; Hiler, M.; Balestreri, M.; Kirkpatrick, P.J.; Pickard, J.D.; et al. Continuous Monitoring of Cerebrovascular Pressure Reactivity in Patients with Head Injury. Neurosurg. Focus. 2008, 25, E2. [Google Scholar] [CrossRef] [PubMed]
- Czosnyka, M.; Brady, K.; Reinhard, M.; Smielewski, P.; Steiner, L.A. Monitoring of Cerebrovascular Autoregulation: Facts, Myths, and Missing Links. Neurocrit Care 2009, 10, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Copplestone, S.; Welbourne, J. A Narrative Review of the Clinical Application of Pressure Reactiviy Indices in the Neurocritical Care Unit. Br. J. Neurosurg. 2018, 32, 4–12. [Google Scholar] [CrossRef]
- Brady, K.M.; Lee, J.K.; Kibler, K.K.; Smielewski, P.; Czosnyka, M.; Easley, R.B.; Koehler, R.C.; Shaffner, D.H. Continuous Time-Domain Analysis of Cerebrovascular Autoregulation Using Near-Infrared Spectroscopy. Stroke 2007, 38, 2818–2825. [Google Scholar] [CrossRef]
- Chang, F.; Li, H.; Li, N.; Zhang, S.; Liu, C.; Zhang, Q.; Cai, W. Functional Near-Infrared Spectroscopy as a Potential Objective Evaluation Technique in Neurocognitive Disorders after Traumatic Brain Injury. Front. Psychiatry 2022, 13, 903756. [Google Scholar] [CrossRef]
- Sainbhi, A.S.; Vakitbilir, N.; Gomez, A.; Stein, K.Y.; Froese, L.; Zeiler, F.A. Time-Series Autocorrelative Structure of Cerebrovascular Reactivity Metrics in Severe Neural Injury: An Evaluation of the Impact of Data Resolution. Biomed. Signal Process. Control 2024, 95, 106403. [Google Scholar] [CrossRef]
- Sainbhi, A.S.; Vakitbilir, N.; Gomez, A.; Stein, K.Y.; Islam, A.; Froese, L.; Zeiler, F.A. P166 Point and Interval Forecasting of Regional Cerebral Oxygen Saturation (rSO2) and Cerebral Oximetry Index (COx) in Humans: An Exploratory Analysis. In Proceedings of the 16th Symposium of the International Neurotrauma Society (INTS), Cambridge, UK, 2–5 September 2024; Volume 42, p. e615. [Google Scholar]
- Froese, L.; Gomez, A.; Sainbhi, A.S.; Vakitbilir, N.; Marquez, I.; Amenta, F.; Park, K.; Stein, K.Y.; Berrington, N.; Dhaliwal, P.; et al. Optimal Bispectral Index Exists in Healthy Patients Undergoing General Anesthesia: A Validation Study. J. Clin. Monit. Comput. 2024, 38, 791–802. [Google Scholar] [CrossRef]
- Sainbhi, A.S.; Froese, L.; Stein, K.Y.; Vakitbilir, N.; Gomez, A.; Islam, A.; Bergmann, T.; Silvaggio, N.; Hayat, M.; Zeiler, F.A. Commercial NIRS May Not Detect Hemispheric Regional Disparity in Continuously Measured COx/COx-a: An Exploratory Healthy and Cranial Trauma Time-Series Analysis. Bioengineering 2025, 12, 247. [Google Scholar] [CrossRef]
- Carney, N.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Hawryluk, G.W.J.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017, 80, 6–15. [Google Scholar] [CrossRef]
- Bergmann, T.; Froese, L.; Gomez, A.; Sainbhi, A.S.; Vakitbilir, N.; Islam, A.; Stein, K.; Marquez, I.; Amenta, F.; Park, K.; et al. Evaluation of Morlet Wavelet Analysis for Artifact Detection in Low-Frequency Commercial Near-Infrared Spectroscopy Systems. Bioengineering 2024, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Brady, K.; Joshi, B.; Zweifel, C.; Smielewski, P.; Czosnyka, M.; Easley, R.B.; Hogue, C.W. Real Time Continuous Monitoring of Cerebral Blood Flow Autoregulation Using Near-Infrared Spectroscopy in Patients Undergoing Cardiopulmonary Bypass. Stroke 2010, 41, 1951–1956. [Google Scholar] [CrossRef] [PubMed]
- Laurikkala, J.; Aneman, A.; Peng, A.; Reinikainen, M.; Pham, P.; Jakkula, P.; Hästbacka, J.; Wilkman, E.; Loisa, P.; Toppila, J.; et al. Association of Deranged Cerebrovascular Reactivity with Brain Injury Following Cardiac Arrest: A Post-Hoc Analysis of the COMACARE Trial. Crit. Care 2021, 25, 350. [Google Scholar] [CrossRef] [PubMed]
- Chatfield, C. The Analysis of Time Series: An Introduction, 6th ed.; Chapman and Hall/CRC: New York, NY, USA, 2003; ISBN 978-0-429-20870-6. [Google Scholar]
- Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer: New York, NY, USA; Berlin, Germany, 2005; ISBN 978-3-540-40172-8. [Google Scholar]
- Chatfield, C.; Xing, H. The Analysis of Time Series: An Introduction with R, 7th ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019; ISBN 978-1-138-06613-7. [Google Scholar]
- Ogawa, Y.; Iwasaki, K.; Aoki, K.; Gokan, D.; Hirose, N.; Kato, J.; Ogawa, S. The Different Effects of Midazolam and Propofol Sedation on Dynamic Cerebral Autoregulation. Anesth. Analg. 2010, 111, 1279. [Google Scholar] [CrossRef]
- Klein, S.P.; Fieuws, S.; Meyfroidt, G.; Depreitere, B. Effects of Norepinephrine, Propofol, and Hemoglobin Concentration on Dynamic Measurements of Cerebrovascular Reactivity in Acute Brain Injury. J. Neurotrauma 2021, 38, 506–512. [Google Scholar] [CrossRef]
Variable | Median [IQR] or Count (%) |
---|---|
Healthy control (HC) Volunteers | |
Duration of Recording (min) | 31.1 (28.7–34.8) |
Number of Patients | 102.0 |
Age (years) | 26.0 (22.2–31.0) |
Biological Sex (Male) | 42.0 (41.2%) |
Hand Dominance (Right) | 93.0 (91.2%) |
Elective Spinal Surgery (SP) Patients | |
Duration of Recording (min) | 185.0 (165.8–206.8) |
Number of Patients | 27.0 |
Age (years) | 57.0 (52.0–65.5) |
Biological Sex (Male) | 22.0 (81.5%) |
Arterial pCO2 (mmHg) | 42.0 (40.0–44.5) |
Arterial pO2 (mmHg) | 231.0 (211.5–295.0) |
Traumatic Brain Injury (TBI) Patients | |
Duration of Recordings (min) | 4644.0 (2369.3–7942.3) |
Number of Patients | 101.0 |
Age (years) | 42.0 (28.0–57.0) |
Biological Sex (Male) | 81.0 (80.2%) |
GCS | 6.0 (4.0–8.0) |
GCS Motor | 4.0 (2.0–5.0) |
Hypoxia (Yes) | 29.0 (28.7%) |
Hypotension (Yes) | 10.0 (9.9%) |
Arterial pCO2 (mmHg) | 37.0 (35.1–39.0) |
Arterial pO2 (mmHg) | 108.0 (95.5–127.5) |
Focal Injury (Contusion, EDH, SDH, or aSDH) | 75.0 (74.3%) |
Diffuse Injury (DAI or tSAH) | 26.0 (25.7%) |
ADF Results for Non-Differenced Data | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dataset | Time Resolution | COx_L | COx R | COx-a_L | COx-a_R | ||||||||
S | NS | NA | S | NS | NA | S | NS | NA | S | NS | NA | ||
HC | 10 s | – | – | – | – | – | – | 9 | 93 | 0 | 5 | 97 | 0 |
1 min | – | – | – | – | – | – | 27 | 75 | 0 | 28 | 74 | 0 | |
5 min | – | – | – | – | – | – | 5 | 17 | 80 | 4 | 18 | 80 | |
SP | 10 s | – | – | – | – | – | – | 25 | 2 | 0 | 22 | 5 | 0 |
1 min | – | – | – | – | – | – | 27 | 0 | 0 | 27 | 0 | 0 | |
5 min | – | – | – | – | – | – | 16 | 11 | 0 | 14 | 13 | 0 | |
TBI | 10 s | 96 | 2 | 3 | 93 | 1 | 7 | 97 | 1 | 3 | 94 | 0 | 7 |
1 min | 97 | 1 | 3 | 93 | 1 | 7 | 98 | 0 | 3 | 94 | 0 | 7 | |
5 min | 94 | 2 | 5 | 91 | 2 | 8 | 97 | 0 | 4 | 94 | 0 | 7 | |
ADF results for 1st-order differenced data | |||||||||||||
Dataset | Time Resolution | COx_L | COx_R | COx-a_L | COx-a_R | ||||||||
S | NS | NA | S | NS | NA | S | NS | NA | S | NS | NA | ||
HC | 10 s | – | – | – | – | – | – | 102 | 0 | 0 | 102 | 0 | 0 |
1 min | – | – | – | – | – | – | 65 | 37 | 0 | 66 | 36 | 0 | |
5 min | – | – | – | – | – | – | 1 | 6 | 95 | 1 | 6 | 95 | |
SP | 10 s | – | – | – | – | – | – | 27 | 0 | 0 | 27 | 0 | 0 |
1 min | – | – | – | – | – | – | 27 | 0 | 0 | 27 | 0 | 0 | |
5 min | – | – | – | – | – | – | 25 | 1 | 1 | 27 | 0 | 0 | |
TBI | 10 s | 98 | 0 | 3 | 94 | 0 | 7 | 98 | 0 | 3 | 94 | 0 | 7 |
1 min | 96 | 2 | 3 | 93 | 1 | 7 | 98 | 0 | 3 | 94 | 0 | 7 | |
5 min | 96 | 0 | 5 | 93 | 0 | 8 | 97 | 0 | 4 | 94 | 0 | 7 | |
KPSS results for non-differenced data | |||||||||||||
Dataset | Time Resolution | COx_L | COx_R | COx-a_L | COx-a_R | ||||||||
S | NS | NA | S | NS | NA | S | NS | NA | S | NS | NA | ||
HC | 10 s | – | – | – | – | – | – | 39 | 63 | 0 | 47 | 55 | 0 |
1 min | – | – | – | – | – | – | 81 | 21 | 0 | 87 | 15 | 0 | |
5 min | – | – | – | – | – | – | 102 | 0 | 0 | 102 | 0 | 0 | |
SP | 10 s | – | – | – | – | – | – | 12 | 15 | 0 | 9 | 18 | 0 |
1 min | – | – | – | – | – | – | 25 | 2 | 0 | 23 | 4 | 0 | |
5 min | – | – | – | – | – | – | 26 | 1 | 0 | 25 | 2 | 0 | |
TBI | 10 s | 16 | 82 | 3 | 6 | 88 | 7 | 15 | 83 | 3 | 11 | 83 | 7 |
1 min | 33 | 65 | 3 | 22 | 72 | 7 | 35 | 63 | 3 | 29 | 65 | 7 | |
5 min | 43 | 55 | 3 | 35 | 59 | 7 | 48 | 50 | 3 | 42 | 52 | 7 | |
KPSS results for 1st-order differenced data | |||||||||||||
Dataset | Time Resolution | COx_L | COx_R | COx-a_L | COx-a_R | ||||||||
S | NS | NA | S | NS | NA | S | NS | NA | S | NS | NA | ||
HC | 10 s | – | – | – | – | – | – | 101 | 1 | 0 | 102 | 0 | 0 |
1 min | – | – | – | – | – | – | 102 | 0 | 0 | 101 | 1 | 0 | |
5 min | – | – | – | – | – | – | 98 | 4 | 0 | 99 | 3 | 0 | |
SP | 10 s | – | – | – | – | – | – | 27 | 0 | 0 | 27 | 0 | 0 |
1 min | – | – | – | – | – | – | 27 | 0 | 0 | 27 | 0 | 0 | |
5 min | – | – | – | – | – | – | 27 | 0 | 0 | 27 | 0 | 0 | |
TBI | 10 s | 98 | 0 | 3 | 94 | 0 | 7 | 98 | 0 | 3 | 94 | 0 | 7 |
1 min | 98 | 0 | 3 | 94 | 0 | 7 | 98 | 0 | 3 | 94 | 0 | 7 | |
5 min | 98 | 0 | 3 | 94 | 0 | 7 | 98 | 0 | 3 | 94 | 0 | 7 |
Population | Optimal ARIMA Models (Median [IQR]) | |||||||
---|---|---|---|---|---|---|---|---|
ABP | CPP | rSO2_L | rSO2_R | COx_L | COx_R | COx-a_L | COx-a_R | |
10 s Temporal Resolution | ||||||||
HC | (2,1,3) [(1,1,2)–(4,1,3)] | – | (2,1,4) [(1,1,3)–(5,1,4)] | (2,1,7) [(1,1,3)–(5,1,5)] | – | – | (3,1,5) [(2,1,0)–(5,1,6)] | (3,1,10) [(1,1,1)–(5,1,4)] |
SP | (8,1,5) [(3,1,8)–(9,1,10)] | – | (6,1,2) [(3,1,7)–(8,1,10)] | (7,1,9) [(4,1,9)–(9,1,10)] | – | – | (7,1,2) [(4,1,10)–(8,1,10)] | (7,1,4) [(5,1,3)–(9,1,6)] |
TBI | (9,1,9) [(7,1,9)–(10,1,7)] | (9,1,7) [(6,1,8)–(10,1,8)] | (8,1,10) [(6,1,4)–(10,1,9)] | (8,1,10) [(6,1,5)–(10,1,8)] | (9,1,6) [(7,1,8)–(10,1,5)] | (8,1,10) [(7,1,7)–(10,1,8)] | (8,1,10) [(7,1,10)–(9,1,10)] | (9,1,5) [(7,1,7)–(10,1,5)] |
1 min Temporal Resolution | ||||||||
HC | (1,1,2) [(1,1,1)–(3,1,0)] | – | (1,1,3) [(1,1,1)–(2,1,6)] | (1,1,4) [(1,1,1)–(3,1,2)] | – | – | (2,1,1) [(1,1,3)–(4,1,1)] | (2,1,1) [(1,1,2)–(4,1,1)] |
SP | (4,1,2) [(2,1,3)–(6,1,10)] | – | (3,1,2) [(1,1,9)–(5,1,3)] | (3,1,4) [(2,1,2)–(6,1,10)] | – | – | (3,1,5) [(2,1,6)–(5,1,5)] | (2,1,10) [(1,1,8)–(4,1,5)] |
TBI | (6,1,1) [(3,1,1)–(8,1,8)] | (6,1,5) [(2,1,2)–(9,1,4)] | (6,1,10) [(4,1,1)–(9,1,10)] | (6,1,7) [(3,1,10)–(9,1,10)] | (4,1,9) [(2,1,10)–(7,1,1)] | (4,1,9) [(2,1,2)–(8,1,4)] | (4,1,3) [(2,1,8)–(7,1,4)] | (5,1,4) [(3,1,1)–(7,1,10)] |
5 min Temporal Resolution | ||||||||
HC | (4,1,0) [(3,1,1)–(4,1,9)] | – | (4,1,1) [(3,1,2)–(4,1,9)] | (4,1,1) [(3,1,2)–(4,1,7)] | – | – | (4,1,0) [(3,1,0)–(4,1,8)] | (4,1,1) [(3,1,1)–(4,1,9)] |
SP | (1,1,5) [(1,1,1)–(3,1,1)] | – | (1,1,5) [(1,1,1)–(5,1,0)] | (2,1,0) [(1,1,0)–(5,1,0)] | – | – | (1,1,1) [(1,1,1)–(2,1,2)] | (2,1,4) [(1,1,1)–(4,1,3)] |
TBI | (4,1,5) [(2,1,5)–(7,1,6)] | (4,1,7) [(3,1,1)–(7,1,4)] | (5,1,7) [(2,1,9)–(8,1,9)] | (4,1,5) [(2,1,1)–(7,1,10)] | (3,1,3) [(1,1,3)–(5,1,2)] | (3,1,1) [(1,1,2)–(6,1,5)] | (3,1,3) [(1,1,3)–(6,1,6)] | (3,1,5) [(2,1,4)–(7,1,1)] |
Forecast Method | Window/Interval | Computational Duration in Minutes (Median [IQR]) | ||
---|---|---|---|---|
HC | SP | TBI | ||
Anchored Point | – | 0 [0–0] | 0 [0–0] | 2 [1–5] |
Anchored Interval | 5 min | 0 [0–0] | 1 [0.5–2] | 535 [87–3101] |
10 min | 0 [0–0] | 0 [0–1] | 386 [66–1860] | |
15 min | – | 1 [0–1] | 218 [45–1171] | |
30 min | – | 0 [0–1] | 108 [18–495] | |
1 h | – | 1 [1–1] | 69 [12–317] | |
2 h | – | – | 34 [7–169] | |
6 h | – | – | 27 [7–66] | |
12 h | – | – | 26.5 [10.25–45.75] | |
1 day | – | – | 31.5 [19.5–53.5] | |
Windowed Point | 5 min | 1 [0–1] | 12 [7–17.5] | 453 [165–992] |
10 min | 0 [0–1] | 15 [7.5–21] | 596 [211–1313] | |
15 min | 0 [0–1] | 18 [9.5–24] | 748 [258–1649] | |
30 min | 0 [0–0] | 27 [12.5–33] | 1161 [372–2538] | |
1 h | – | 33 [19.5–46] | 1973 [652–4307] | |
2 h | – | 25 [10–54] | 3291 [1100–7580] | |
6 h | – | 67 [56.5–77.5] | 2004 [1177–5817] | |
12 h | – | – | 1771 [1172–7788] | |
1 day | – | 10,357 [5870–16,993] | ||
Windowed Interval | 5 min | 0 [0–0] | 1 [0–1] | 33 [13–77] |
10 min | 0 [0–0] | 0 [0–1] | 21 [8–49] | |
15 min | 0 [0–0] | 0 [0–0.5] | 17 [7–40] | |
30 min | – | 0 [0–0] | 13 [5–30] | |
1 h | – | 0 [0–0] | 11 [4–25] | |
2 h | – | 0 [0–0] | 10 [4–22] | |
6 h | – | 0 [0–0] | 8 [3–19.5] | |
12 h | – | – | 7 [3–17] | |
1 day | – | – | 9 [3.5–21] |
Population | Median [IQR] | |||||
---|---|---|---|---|---|---|
AFR of rSO2_L | AFR of rSO2_R | AFR of COx_L | AFR of COx_R | AFR of COx-a_L | AFR of COx-a_R | |
HC | 0.88 [0.46–1.52] | 0.91 [0.46–1.54] | – | – | 0.19 [0.09–0.31] | 0.17 [0.08–0.31] |
SP | 2.36 [0.94–4.26] | 1.8 [0.94–3.64] | – | – | 0.34 [0.15–0.54] | 0.37 [0.17–0.61] |
TBI | 2.99 [1.37–4.73] | 3.18 [1.64–5.25] | 0.24 [0.11–0.41] | 0.22 [0.11–0.4] | 0.22 [0.1–0.39] | 0.22 [0.1–0.38] |
Interval | Median [IQR] | |||||
---|---|---|---|---|---|---|
AFR of rSO2_L | AFR of rSO2_R | AFR of COx_L | AFR of COx_R | AFR of COx-a_L | AFR of COx-a_R | |
HC Population | ||||||
5 min | 0.82 [0.44–1.35] | 0.88 [0.44–1.48] | – | – | 0.17 [0.07–0.28] | 0.14 [0.07–0.28] |
10 min | 1.41 [0.95–1.94] | 1.55 [0.71–2.49] | – | – | 0.08 [0.04–0.26] | 0.13 [0.07–0.22] |
SP Population | ||||||
5 min | 0.8 [0.23–1.44] | 0.83 [0.27–1.62] | – | – | 0.2 [0.09–0.39] | 0.25 [0.1–0.47] |
10 min | 1.03 [0.39–2.09] | 1.02 [0.37–2.28] | – | – | 0.26 [0.11–0.47] | 0.29 [0.13–0.55] |
15 min | 1.31 [0.56–2.57] | 1.24 [0.49–3.06] | – | – | 0.25 [0.11–0.49] | 0.31 [0.15–0.56] |
30 min | 1.41 [0.83–4.27] | 1.44 [0.65–3.38] | – | – | 0.28 [0.14–0.51] | 0.32 [0.16–0.53] |
1 h | 1.8 [0.85–3.01] | 1.35 [0.64–2.25] | – | – | 0.23 [0.09–0.43] | 0.28 [0.12–0.48] |
TBI Population | ||||||
5 min | 0.57 [0.23–1.06] | 0.51 [0.19–1.05] | 0.16 [0.07–0.3] | 0.16 [0.07–0.3] | 0.15 [0.06–0.3] | 0.15 [0.06–0.29] |
10 min | 0.73 [0.29–1.43] | 0.68 [0.26–1.31] | 0.19 [0.08–0.35] | 0.19 [0.08–0.34] | 0.18 [0.08–0.33] | 0.18 [0.08–0.33] |
15 min | 0.81 [0.35–1.63] | 0.77 [0.33–1.6] | 0.2 [0.09–0.36] | 0.2 [0.09–0.36] | 0.2 [0.09–0.35] | 0.19 [0.08–0.35] |
30 min | 1.03 [0.45–2.14] | 1.02 [0.42–2.15] | 0.21 [0.1–0.38] | 0.21 [0.1–0.37] | 0.21 [0.09–0.37] | 0.2 [0.09–0.36] |
1 h | 1.33 [0.57–2.66] | 1.2 [0.51–2.82] | 0.22 [0.1–0.38] | 0.22 [0.1–0.38] | 0.21 [0.1–0.36] | 0.21 [0.1–0.37] |
2 h | 1.64 [0.72–3.29] | 1.84 [0.78–3.71] | 0.23 [0.1–0.39] | 0.22 [0.1–0.39] | 0.21 [0.1–0.37] | 0.21 [0.1–0.37] |
6 h | 2.13 [1–4.19] | 2.53 [1.09–4.65] | 0.23 [0.11–0.4] | 0.23 [0.11–0.4] | 0.22 [0.1–0.38] | 0.22 [0.1–0.38] |
12 h | 2.76 [1.36–4.77] | 3.05 [1.33–5.24] | 0.24 [0.12–0.4] | 0.23 [0.11–0.4] | 0.23 [0.11–0.39] | 0.22 [0.1–0.37] |
1 Day | 3.23 [1.52–6.09] | 3.76 [1.68–5.83] | 0.23 [0.11–0.41] | 0.25 [0.12–0.44] | 0.2 [0.09–0.37] | 0.22 [0.1–0.37] |
Window | Median [IQR] | |||||
---|---|---|---|---|---|---|
AFR of rSO2_L | AFR of rSO2_R | AFR of COx_L | AFR of COx_R | AFR of COx-a_L | AFR of COx-a_R | |
HC Population | ||||||
5 min | 0.52 [0.24–0.93] | 0.55 [0.27–0.97] | – | – | 0.04 [0.02–0.06] | 0.04 [0.02–0.07] |
10 min | 0.48 [0.23–0.82] | 0.53 [0.25–0.92] | – | – | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] |
15 min | 0.46 [0.22–0.8] | 0.51 [0.24–0.88] | – | – | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] |
30 min | 0.51 [0.29–0.79] | 0.5 [0.26–0.79] | – | – | 0.03 [0.01–0.05] | 0.03 [0.01–0.05] |
SP Population | ||||||
5 min | 0.27 [0.11–0.54] | 0.29 [0.13–0.56] | – | – | 0.04 [0.02–0.08] | 0.04 [0.02–0.08] |
10 min | 0.24 [0.1–0.5] | 0.26 [0.11–0.51] | – | – | 0.04 [0.02–0.07] | 0.04 [0.02–0.07] |
15 min | 0.23 [0.09–0.49] | 0.23 [0.11–0.51] | – | – | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] |
30 min | 0.22 [0.09–0.49] | 0.23 [0.1–0.47] | – | – | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] |
1 h | 0.21 [0.06–0.45] | 0.23 [0.09–0.47] | – | – | 0.03 [0.01–0.05] | 0.03 [0.01–0.05] |
2 h | 0.19 [0.06–0.51] | 0.21 [0.08–0.48] | – | – | 0.03 [0.01–0.05] | 0.03 [0.01–0.05] |
6 h | 0.22 [0.04–0.57] | 0.13 [0.03–0.35] | – | – | 0.03 [0.01–0.05] | 0.03 [0.01–0.05] |
TBI Population | ||||||
5 min | 0.31 [0.13–0.61] | 0.3 [0.12–0.58] | 0.05 [0.02–0.09] | 0.05 [0.02–0.09] | 0.05 [0.02–0.09] | 0.05 [0.02–0.09] |
10 min | 0.27 [0.1–0.54] | 0.26 [0.1–0.53] | 0.04 [0.02–0.07] | 0.04 [0.02–0.07] | 0.04 [0.02–0.07] | 0.04 [0.02–0.07] |
15 min | 0.25 [0.1–0.52] | 0.24 [0.09–0.5] | 0.04 [0.02–0.07] | 0.04 [0.02–0.07] | 0.04 [0.02–0.07] | 0.04 [0.02–0.07] |
30 min | 0.23 [0.08–0.5] | 0.22 [0.08–0.48] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] |
1 h | 0.23 [0.07–0.5] | 0.21 [0.07–0.48] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] |
2 h | 0.22 [0.06–0.5] | 0.2 [0.06–0.48] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] |
6 h | 0.3 [0.1–0.6] | 0.27 [0.11–0.51] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] |
12 h | 0.32 [0.1–0.6] | 0.26 [0.09–0.52] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] | 0.03 [0.01–0.06] |
1 Day | 0.36 [0.13–0.68] | 0.22 [0.06–0.51] | 0.03 [0.01–0.05] | 0.03 [0.01–0.06] | 0.04 [0.02–0.07] | 0.04 [0.02–0.07] |
Window and Interval | Median [IQR] | |||||
---|---|---|---|---|---|---|
AFR of rSO2_L | AFR of rSO2_R | AFR of COx_L | AFR of COx_R | AFR of COx-a_L | AFR of COx-a_R | |
HC Population | ||||||
5 min | 0.99 [0.47–1.69] | 1.09 [0.51–1.87] | – | – | 0.18 [0.07–0.35] | 0.2 [0.08–0.37] |
10 min | 1.07 [0.5–1.81] | 1.12 [0.52–1.97] | – | – | 0.21 [0.09–0.38] | 0.2 [0.09–0.39] |
15 min | 1.17 [0.59–1.97] | 1.21 [0.58–2] | – | – | 0.23 [0.11–0.41] | 0.26 [0.12–0.4] |
SP Population | ||||||
5 min | 0.75 [0.27–1.47] | 0.7 [0.27–1.39] | – | – | 0.27 [0.11–0.51] | 0.28 [0.11–0.58] |
10 min | 0.99 [0.39–2.18] | 0.85 [0.34–1.87] | – | – | 0.31 [0.12–0.6] | 0.3 [0.12–0.56] |
15 min | 1.02 [0.46–2.43] | 1.02 [0.48–2.52] | – | – | 0.33 [0.14–0.6] | 0.34 [0.14–0.62] |
30 min | 1.82 [0.71–3.69] | 1.4 [0.74–4] | – | – | 0.33 [0.14–0.59] | 0.33 [0.15–0.57] |
1 h | 1.96 [0.93–4.12] | 1.72 [0.92–3.08] | – | – | 0.31 [0.16–0.54] | 0.31 [0.15–0.53] |
2 h | 1.77 [0.92–2.94] | 1.58 [0.78–2.72] | – | – | 0.28 [0.12–0.42] | 0.28 [0.14–0.52] |
TBI Population | ||||||
5 min | 0.54 [0.21–1.09] | 0.48 [0.17–1] | 0.21 [0.09–0.42] | 0.2 [0.09–0.41] | 0.2 [0.09–0.4] | 0.2 [0.09–0.4] |
10 min | 0.63 [0.26–1.29] | 0.55 [0.2–1.18] | 0.24 [0.1–0.45] | 0.23 [0.1–0.44] | 0.23 [0.1–0.43] | 0.23 [0.1–0.44] |
15 min | 0.71 [0.27–1.44] | 0.68 [0.23–1.37] | 0.24 [0.11–0.46] | 0.24 [0.11–0.46] | 0.24 [0.1–0.44] | 0.24 [0.1–0.46] |
30 min | 0.93 [0.36–1.93] | 0.91 [0.31–1.9] | 0.26 [0.12–0.47] | 0.25 [0.11–0.46] | 0.24 [0.11–0.45] | 0.25 [0.11–0.45] |
1 h | 1.18 [0.51–2.61] | 1.11 [0.46–2.42] | 0.26 [0.12–0.46] | 0.25 [0.12–0.46] | 0.25 [0.11–0.44] | 0.25 [0.11–0.44] |
2 h | 1.7 [0.71–3.27] | 1.61 [0.67–3.14] | 0.25 [0.12–0.44] | 0.25 [0.11–0.44] | 0.25 [0.11–0.44] | 0.24 [0.11–0.43] |
6 h | 2.36 [1.04–4.09] | 2.27 [1–4.61] | 0.24 [0.11–0.43] | 0.24 [0.11–0.42] | 0.23 [0.11–0.41] | 0.23 [0.11–0.4] |
12 h | 2.92 [1.23–5.2] | 3.12 [1.31–5.93] | 0.24 [0.11–0.42] | 0.24 [0.11–0.42] | 0.23 [0.1–0.39] | 0.22 [0.1–0.39] |
1 Day | 3.49 [1.5–6.18] | 4.08 [1.72–7.08] | 0.24 [0.11–0.42] | 0.24 [0.11–0.42] | 0.24 [0.1–0.44] | 0.24 [0.1–0.46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sainbhi, A.S.; Froese, L.; Stein, K.Y.; Vakitbilir, N.; Hasan, R.; Gomez, A.; Bergmann, T.; Silvaggio, N.; Hayat, M.; Moon, J.; et al. Time-Series Autoregressive Models for Point and Interval Forecasting of Raw and Derived Commercial Near-Infrared Spectroscopy Measures: An Exploratory Cranial Trauma and Healthy Control Analysis. Bioengineering 2025, 12, 682. https://doi.org/10.3390/bioengineering12070682
Sainbhi AS, Froese L, Stein KY, Vakitbilir N, Hasan R, Gomez A, Bergmann T, Silvaggio N, Hayat M, Moon J, et al. Time-Series Autoregressive Models for Point and Interval Forecasting of Raw and Derived Commercial Near-Infrared Spectroscopy Measures: An Exploratory Cranial Trauma and Healthy Control Analysis. Bioengineering. 2025; 12(7):682. https://doi.org/10.3390/bioengineering12070682
Chicago/Turabian StyleSainbhi, Amanjyot Singh, Logan Froese, Kevin Y. Stein, Nuray Vakitbilir, Rakibul Hasan, Alwyn Gomez, Tobias Bergmann, Noah Silvaggio, Mansoor Hayat, Jaewoong Moon, and et al. 2025. "Time-Series Autoregressive Models for Point and Interval Forecasting of Raw and Derived Commercial Near-Infrared Spectroscopy Measures: An Exploratory Cranial Trauma and Healthy Control Analysis" Bioengineering 12, no. 7: 682. https://doi.org/10.3390/bioengineering12070682
APA StyleSainbhi, A. S., Froese, L., Stein, K. Y., Vakitbilir, N., Hasan, R., Gomez, A., Bergmann, T., Silvaggio, N., Hayat, M., Moon, J., & Zeiler, F. A. (2025). Time-Series Autoregressive Models for Point and Interval Forecasting of Raw and Derived Commercial Near-Infrared Spectroscopy Measures: An Exploratory Cranial Trauma and Healthy Control Analysis. Bioengineering, 12(7), 682. https://doi.org/10.3390/bioengineering12070682