Toward Integrative Biomechanical Models of Osteochondral Tissues: A Multilayered Perspective
Abstract
1. Introduction
2. Structural and Functional Organization of the Osteochondral Unit
2.1. Articular Cartilage
2.2. Tidemark
2.3. Calcified Cartilage Layer
2.4. Subchondral Bone
2.4.1. Subchondral Bone Plate
2.4.2. Subchondral Trabecular Bone
3. Development Approaches of Constitutive Models
3.1. Constitutive Models
3.1.1. Strength Models
3.1.2. Equations of State (EOS)
3.1.3. Failure Models
Layer | Condition | Elastic or Young’s Modulus (MPa for AC//GPa for SB) | Shear Modulus (MPa) | Poisson’s Ratio | Strain | Equilibrium or Aggregate Modulus (MPa) | Instantaneous Elastic Modulus (MPa) | Initial Fibril Network Modulus (MPa) | Nonfibrillar Matrix Modulus (MPa) | Equilibrium or Aggregate Modulus (MPa) | Initial Permeability (m4/N s) | Viscosity Coefficient (MPas) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AC | Healthy | 0.1–0.9 (shear test, compression, linear elastic model, knee) [37] 1.1–3.3 (quasistatic); 0.5–4.98 (0.1 MPa); 40–120 (impact) (compression, linear elastic model, hip) [38] 0.419 ± 0.143 (compression, linear elastic model, knee) [39] | 0.01–5.00 (shear test, compression, linear elastic model, knee) [37] | 0.00–0.05 (indentation, biphasic, knee) [40] | 0.01–0.40 (compressive test); 0.010.50 (shear test) (linear elastic model, knee) [37] | 0.48–1.58 (indentation, biphasic model, knee) [40] | 0.1–0.4 (indentation, linear elastic isotropic model, knee) [41] | 0.90 ± 0.43 (compression, linear elastic model, knee) [42] 0.1–30.0 (tensile, low strain rate); 0.1–70 (tensile, high strain rate)—tensile test, linear elastic, knee, aging [43] 0.9 ± 0.4 (indentation, linear elastic model, knee) [44] 0.48–1.58 (indentation, biphasic, knee) [40] | (1.7–5.4) × 10–15 (indentation, biphasic model, knee) [40] | 218.7 ± 150.6 (indentation, viscoelastic model, hip) [45] | ||
OA | 1.0–17.0 (indentation, biphasic model, knee, OARSI grade 0) [46] 1.5–8.0 (indentation, biphasic model, knee, OARSI grade 1) [46] 0.5–9.5 (indentation, biphasic model, knee, OARSI grade 2) [46] 1.0–7.5 (indentation, biphasic model, knee, OARSI grade 3) [46] 1.0–4.5 (indentation, biphasic model, knee, OARSI grade 4) [46] 1.0–2.0 (indentation, biphasic model, knee, OARSI grade 5) [46] 0.69 ± 0.40 (compression, linear elastic model, knee) [47] | 0.90 ± 0.10 (indentation, viscoelastic model, knee, ICRS grade 0) [48] 0.57 ± 0.07 (indentation, viscoelastic model, knee, ICRS grade 1) [48] 0.27 ± 0.07 (indentation, viscoelastic model, knee, ICRS grade 2) [48] 0.11 ± 0.05 (indentation, viscoelastic model, knee, ICRS grade 3) [48] 0.16 ± 0.06 (indentation, viscoelastic model, knee, ICRS grade 4) [48] | 0.0–0.12 (compression, anisotropic elastic model, knee) [49] | 1.2 ± 0.3 (indentation, linear elastic model, knee, early OA) [50] 0.2 ± 0.3 (indentation, linear elastic model, knee, advanced OA) [50] | 2.0 ± 1.0 (indentation; compression, linear elastic isotropic; fibril-reinforced poro-viscoelastic, knee, ICRS grade > 0) [51] 4.5 ± 1.0 (indentation; compression, linear elastic isotropic; fibril-reinforced poro-viscoelastic, knee, area surrounding abnormal cartilage) [51] 7.0 ± 1.0 (indentation; compression, linear elastic isotropic; fibril-reinforced poro-viscoelastic, knee, ICRS grade 0) [51] 6.44 ± 4.85 (indentation, linear elastic isotropic; fibril-reinforced poro-viscoelastic model, knee, OARS 0–1) [52] 0.42 ± 1.34 (indentation, linear elastic isotropic; fibril-reinforced poro-viscoelastic model, knee, OARS 2–3) [52] 0.00 ± 0.76 (indentation, linear elastic isotropic; fibril-reinforced poro-viscoelastic model, knee, OARS 4) [52] | 0.59 ± 0.48 (indentation, fibril-reinforced poro-viscoelastic model, hip) [53] 0.1–38 (indentation; compression, fibril-reinforced poro-viscoelastic model, knee) [54] 8.5 ± 3.0 (indentation; compression, LEI; FRPVE, knee, ICRS grade > 0) [51] 13.0 ± 2.0 (indentation; compression, linear elastic isotropic; fibril-reinforced poro-viscoelastic, knee, area surrounding abnormal cartilage) [51] 18.5 ± 2.0 (indentation; compression, linear elastic isotropic; fibril-reinforced poro-viscoelastic, knee, ICRS grade 0) [51] 0.41 ± 0.37 (indentation, linear elastic isotropic; fibril-reinforced poro-viscoelastic model, knee, OARS 0–1) [52] 0.07 ± 0.17 (indentation, linear elastic isotropic; fibril-reinforced poro-viscoelastic model, knee, OARS 2–3) [52] 0.002 ± 0.07 (indentation, linear elastic isotropic; fibril-reinforced poro-viscoelastic model, knee, OARS 4) [52] | 0.23 ± 0.22 (indentation, fibril-reinforced poro-viscoelastic, hip) [53] 0.1–2.2 (indentation; compression, fibril-reinforced poro-viscoelastic model, knee) [54] 1.2 ± 0.1 (indentation; compression, linear elastic isotropic; fibril-reinforced poro-viscoelastic, knee, ICRS grade > 0) [51] 1.3 ± 0.2 (indentation; compression, linear elastic isotropic; fibril-reinforced poro-viscoelastic, knee, area surrounding abnormal cartilage) [51] 1.1 ± 0.2 (indentation; compression, linear elastic isotropic; fibril-reinforced poro-viscoelastic, knee, ICRS grade 0) [51] 0.35 ± 0.28 (indentation, linear elastic isotropic; fibril-reinforced poro-viscoelastic model, knee, OARS 0–1) [52] 0.10 ± 0.05 (indentation, linear elastic isotropic; fibril-reinforced poro-viscoelastic model, knee, OARS 2–3) [52] 0.05 ± 0.04 (indentation, linear elastic isotropic; fibril-reinforced poro-viscoelastic model, knee, OARS 4) [52] | 1.2 ± 0.3 (indentation, linear elastic model, knee, early OA) [50] 0.2 ± 0.3 (indentation, linear elastic model, knee, advanced OA) [50] 0.1–2.2 (indentation; compression, fibril-reinforced poro-viscoelastic model, knee) [54] 0.4–2.4 (indentation, biphasic model, knee, OARSI grade 0) [46] 0.3–1.5 (indentation, biphasic model, knee, OARSI grade 1) [46] 0.2–1.3 (indentation, biphasic model, knee, OARSI grade 2) [46] 0.3–1.4 (indentation, biphasic model, knee, OARSI grade 3) [46] 0.3–1.2 (indentation, biphasic model, knee, OARSI grade 4) [46] 0.2–1.0 (indentation=, biphasic model, knee, OARSI grade 5) [46] 1.19 ± 0.56 (indentation, linear elastic isotropic; fibril-reinforced poro-viscoelastic model, knee, OARS 0–1) [52] 0.42 ± 0.25 (indentation, linear elastic isotropic; fibril-reinforced poro-viscoelastic model, knee, OARS 2–3) [52] 0.21 ± 0.15 (indentation, linear elastic isotropic; fibril-reinforced poro-viscoelastic model, knee, OARS 4) [52] | (3.66 ± 2.86) × 10–15 (indentation, fibril-reinforced poro-viscoelastic model, hip) [45] | 36.0 ± 41.4 (indentation, viscoelastic model, hip) [45] | ||
SB | Healthy | |||||||||||
OA | 16.2–24.0 (indentation, elastoplastic model, hip) [55] 15.7–21.1 (indentation, elastoplastic model, hip, severe reported damage) [55] 12.56 ± 0.50 (indentation, linear elastic model, knee, ICRS grade 0) [48] 13.68 ± 0.60 (indentation, linear elastic model, knee, ICRS grade 1) [48] 14.05 ± 0.70 (indentation, linear elastic model, knee, ICRS grade 2) [48] 13.60 ± 1.00 (indentation, linear elastic model, knee, ICRS grade 3) [48] 17.20 ± 2.00 (indentation, linear elastic model, knee, ICRS grade 14) [48] |
4. Constitutive Models for Cartilage and Bone
4.1. Evolution of Cartilage Models
4.2. Evolution of Bone Models
5. Integrative Modeling Approaches for Osteochondral Tissues
5.1. Tidemark Modeling Approaches
5.2. Calcified Cartilage Layer Modeling Approaches
5.3. Subchondral Bone Modeling Approaches
5.4. Constitutive Model Convergence Across Osteochondral Layers
6. Future Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Articular Cartilage |
BV/TV | Bone-Volume-to-Total-Volume Ratio |
CCL | Calcified Cartilage Layer |
EOS | Equations of State |
OA | Osteoarthritis |
OC | Osteochondral |
SB | Subchondral Bone |
SBP | Subchondral Bone Plate |
References
- Steinmetz, J.D.; Culbreth, G.T.; Haile, L.M.; Rafferty, Q.; Lo, J.; Fukutaki, K.G.; Cruz, J.A.; Smith, A.E.; Vollset, S.E.; Brooks, P.M.; et al. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e508–e522. [Google Scholar] [CrossRef]
- Jacob, G.; Shimomura, K.; Nakamura, N. Osteochondral Injury, Management and Tissue Engineering Approaches. Front. Cell Dev. Biol. 2020, 8, 580868. [Google Scholar] [CrossRef] [PubMed]
- Suri, S.; Walsh, D.A. Osteochondral alterations in osteoarthritis. Bone 2012, 51, 204–211. [Google Scholar] [CrossRef]
- Gorbachova, T.; Melenevsky, Y.; Cohen, M.; Cerniglia, B.W. Osteochondral Lesions of the Knee: Differentiating the Most Common Entities at MRI. RadioGraphics 2018, 38, 1478–1495. [Google Scholar] [CrossRef]
- McMahon, L.A.; O’Brien, F.J.; Prendergast, P.J. Biomechanics and mechanobiology in osteochondral tissues. Regen. Med. 2008, 3, 743–759. [Google Scholar] [CrossRef]
- Berni, M.; Marchiori, G.; Baleani, M.; Giavaresi, G.; Lopomo, N.F. Biomechanics of the Human Osteochondral Unit: A Systematic Review. Materials 2024, 17, 1698. [Google Scholar] [CrossRef]
- Gomoll, A.H.; Madry, H.; Knutsen, G.; van Dijk, N.; Seil, R.; Brittberg, M.; Kon, E. The subchondral bone in articular cartilage repair: Current problems in the surgical management. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 434–447. [Google Scholar] [CrossRef]
- Lai, W.M.; Hou, J.S.; Mow, V.C. A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage. J. Biomech. Eng. 1991, 113, 245–258. [Google Scholar] [CrossRef]
- Mow, V.C.; Kuei, S.C.; Lai, W.M.; Armstrong, C.G. Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments. J. Biomech. Eng. 1980, 102, 73–84. [Google Scholar] [CrossRef]
- Kafka, V.; Jírová, J. A structural mathematical model for the viscoelastic anisotropic behaviour of trabecular bone. Biorheology 1983, 20, 795–805. [Google Scholar] [CrossRef]
- Turner, C.H. Yield Behavior of Bovine Cancellous Bone. J. Biomech. Eng. 1989, 111, 256–260. [Google Scholar] [CrossRef]
- Wang, W.; Ye, R.; Xie, W.; Zhang, Y.; An, S.; Li, Y.; Zhou, Y. Roles of the calcified cartilage layer and its tissue engineering reconstruction in osteoarthritis treatment. Front. Bioeng. Biotechnol. 2022, 10, 911281. [Google Scholar] [CrossRef]
- Madry, H.; Luyten, F.P.; Facchini, A. Biological aspects of early osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Camarero-Espinosa, S.; Rothen-Rutishauser, B.; Foster, E.J.; Weder, C. Articular cartilage: From formation to tissue engineering. Biomater. Sci. 2016, 4, 734–767. [Google Scholar] [CrossRef] [PubMed]
- Eschweiler, J.; Horn, N.; Rath, B.; Betsch, M.; Baroncini, A.; Tingart, M.; Migliorini, F. The Biomechanics of Cartilage—An Overview. Life 2021, 11, 302. [Google Scholar] [CrossRef]
- Petitjean, N.; Canadas, P.; Royer, P.; Noël, D.; Le Floc’h, S. Cartilage biomechanics: From the basic facts to the challenges of tissue engineering. J. Biomed. Mater. Res. 2023, 111, 1067–1089. [Google Scholar] [CrossRef]
- Fawns, H.T.; Landells, J.W. Histochemical Studies of Rheumatic Conditions. Ann. Rheum. Dis. 1953, 12, 105–113. [Google Scholar] [CrossRef]
- Gannon, F.H.; Sokoloff, L. Histomorphometry of the aging human patella: Histologic criteria and controls. Osteoarthr. Cartil. 1999, 7, 173–181. [Google Scholar] [CrossRef]
- Lyons, T.J.; McClure, S.F.; Stoddart, R.W.; McClure, J. The normal human chondro-osseous junctional region: Evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet. Disord. 2006, 7, 52. [Google Scholar] [CrossRef]
- Redler, I.; Mow, V.C.; Zimny, M.L.; Mansell, J. The Ultrastructure and Biomechanical Significance of the Tidemark of Articular Cartilage. Clin. Orthop. Relat. Res. 1975, 112, 357. [Google Scholar] [CrossRef]
- Huber, M.; Trattnig, S.; Lintner, F. Anatomy, biochemistry, and physiology of articular cartilage. Invest. Radiol. 2000, 35, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Broom, N.D.; Poole, C.A. A functional-morphological study of the tidemark region of articular cartilage maintained in a non-viable physiological condition. J. Anat. 1982, 135, 65–82. [Google Scholar] [PubMed]
- Zhou, H.; Yuan, L.; Xu, Z.; Yi, X.; Wu, X.; Mu, C.; Ge, L.; Li, D. Mimicking the Composition and Structure of the Osteochondral Tissue to Fabricate a Heterogeneous Three-Layer Scaffold for the Repair of Osteochondral Defects. ACS Appl. Bio Mater. 2022, 5, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Hoemann, C.D.; Lafantaisie-Favreau, C.-H.; Lascau-Coman, V.; Chen, G.; Guzmán-Morales, J. The cartilage-bone interface. J. Knee Surg. 2012, 25, 85–97. [Google Scholar] [CrossRef]
- Mente, P.L.; Lewis, J.L. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J. Orthop. Res. 1994, 12, 637–647. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Tan, H.; Chen, G.; Guo, L.; Yang, L. Analysis of the Mineral Composition of the Human Calcified Cartilage Zone. Int. J. Med. Sci. 2012, 9, 353–360. [Google Scholar] [CrossRef]
- Guermazi, A.; Roemer, F.W.; Alizai, H.; Winalski, C.S.; Welsch, G.; Brittberg, M.; Trattnig, S. State of the Art: MR Imaging after Knee Cartilage Repair Surgery. Radiology 2015, 277, 23–43. [Google Scholar] [CrossRef]
- Pouran, B.; Raoof, A.; de Winter, D.A.M.; Arbabi, V.; Bleys, R.L.A.W.; Beekman, F.J.; Zadpoor, A.A.; Malda, J.; Weinans, H. Topographic features of nano-pores within the osteochondral interface and their effects on transport properties—A 3D imaging and modeling study. J. Biomech. 2021, 123, 110504. [Google Scholar] [CrossRef]
- Tang, T.; Landis, W.; Raguin, E.; Werner, P.; Bertinetti, L.; Dean, M.; Wagermaier, W.; Fratzl, P. A 3D Network of Nanochannels for Possible Ion and Molecule Transit in Mineralizing Bone and Cartilage. Adv. NanoBiomed Res. 2022, 2, 2100162. [Google Scholar] [CrossRef]
- Wilson, W.; Van Donkelaar, C.C.; Van Rietbergen, B.; Huiskes, R. A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J. Biomech. 2005, 38, 1195–1204. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Y.; Yu, Y.E.; Zhang, X.; Watts, T.; Zhou, B.; Wang, J.; Wang, T.; Zhao, W.; Chiu, K.Y.; et al. Subchondral Trabecular Rod Loss and Plate Thickening in the Development of Osteoarthritis. J. Bone Min. Res. 2018, 33, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, X.; Wang, S.; Jing, Y.; Su, J. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 2021, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, J. A Course on Damage Mechanics; Springer: Berlin/Heidelberg, Germany, 1992; ISBN 978-3-662-02763-9. [Google Scholar]
- Huyghe, J.M.; Janssen, J.D. Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 1997, 35, 793–802. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.; Liu, Y. Constitutive Models. In The Material Point Method; Elsevier: Amsterdam, The Netherlands, 2017; pp. 175–219. ISBN 978-0-12-407716-4. [Google Scholar]
- Hayes, W.C.; Keer, L.M.; Herrmann, G.; Mockros, L.F. A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 1972, 5, 541–551. [Google Scholar] [CrossRef]
- Wong, B.L.; Sah, R.L. Mechanical asymmetry during articulation of tibial and femoral cartilages: Local and overall compressive and shear deformation and properties. J. Biomech. 2010, 43, 1689–1695. [Google Scholar] [CrossRef]
- Burgin, L.V.; Edelsten, L.; Aspden, R.M. The mechanical and material properties of elderly human articular cartilage subject to impact and slow loading. Med. Eng. Phys. 2014, 36, 226–232. [Google Scholar] [CrossRef]
- Nebelung, S.; Post, M.; Raith, S.; Fischer, H.; Knobe, M.; Braun, B.; Prescher, A.; Tingart, M.; Thüring, J.; Bruners, P.; et al. Functional in situ assessment of human articular cartilage using MRI: A whole-knee joint loading device. Biomech. Model. Mechanobiol. 2017, 16, 1971–1986. [Google Scholar] [CrossRef]
- Keenan, K.E.; Kourtis, L.C.; Besier, T.F.; Lindsey, D.P.; Gold, G.E.; Delp, S.L.; Beaupre, G.S. New resource for the computation of cartilage biphasic material properties with the interpolant response surface method. Comput. Methods Biomech. Biomed. Eng. 2009, 12, 415–422. [Google Scholar] [CrossRef]
- Liukkonen, J.; Hirvasniemi, J.; Joukainen, A.; Penttilä, P.; Virén, T.; Saarakkala, S.; Kröger, H.; Jurvelin, J.S.; Töyräs, J. Arthroscopic ultrasound technique for simultaneous quantitative assessment of articular cartilage and subchondral bone: An in vitro and in vivo feasibility study. Ultrasound Med. Biol. 2013, 39, 1460–1468. [Google Scholar] [CrossRef]
- Kurkijärvi, J.E.; Nissi, M.J.; Kiviranta, I.; Jurvelin, J.S.; Nieminen, M.T. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: Topographical variation and relationships to mechanical properties. Magn. Reson. Med. 2004, 52, 41–46. [Google Scholar] [CrossRef]
- Temple, M.M.; Bae, W.C.; Chen, M.Q.; Lotz, M.; Amiel, D.; Coutts, R.D.; Sah, R.L. Age- and site-associated biomechanical weakening of human articular cartilage of the femoral condyle. Osteoarthr. Cartil. 2007, 15, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Afara, I.O.; Hauta-Kasari, M.; Jurvelin, J.S.; Oloyede, A.; Töyräs, J. Optical absorption spectra of human articular cartilage correlate with biomechanical properties, histological score and biochemical composition. Physiol. Meas. 2015, 36, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Richard, F.; Villars, M.; Thibaud, S. Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation. J. Mech. Behav. Biomed. Mater. 2013, 24, 41–52. [Google Scholar] [CrossRef]
- Waldstein, W.; Perino, G.; Gilbert, S.L.; Maher, S.A.; Windhager, R.; Boettner, F. OARSI osteoarthritis cartilage histopathology assessment system: A biomechanical evaluation in the human knee. J. Orthop. Res. 2016, 34, 135–140. [Google Scholar] [CrossRef]
- Nebelung, S.; Sondern, B.; Jahr, H.; Tingart, M.; Knobe, M.; Thüring, J.; Kuhl, C.; Truhn, D. Non-invasive T1ρ mapping of the human cartilage response to loading and unloading. Osteoarthr. Cartil. 2018, 26, 236–244. [Google Scholar] [CrossRef]
- Peters, A.E.; Akhtar, R.; Comerford, E.J.; Bates, K.T. The effect of ageing and osteoarthritis on the mechanical properties of cartilage and bone in the human knee joint. Sci. Rep. 2018, 8, 5931. [Google Scholar] [CrossRef]
- Griebel, A.J.; Trippel, S.B.; Neu, C.P. Noninvasive dualMRI-based strains vary by depth and region in human osteoarthritic articular cartilage. Osteoarthr. Cartil. 2013, 21, 394–400. [Google Scholar] [CrossRef]
- Rautiainen, J.; Nissi, M.J.; Salo, E.-N.; Tiitu, V.; Finnilä, M.A.J.; Aho, O.-M.; Saarakkala, S.; Lehenkari, P.; Ellermann, J.; Nieminen, M.T. Multiparametric MRI assessment of human articular cartilage degeneration: Correlation with quantitative histology and mechanical properties. Magn. Reson. Med. 2015, 74, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.; Chevrier, A.; Garon, M.; Quenneville, E.; Lavigne, P.; Yaroshinsky, A.; Hoemann, C.D.; Buschmann, M.D. Electromechanical probe and automated indentation maps are sensitive techniques in assessing early degenerated human articular cartilage. J. Orthop. Res. 2017, 35, 858–867. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Ojanen, S.; Mohammadi, A.; Finnilä, M.A.; Joukainen, A.; Kröger, H.; Saarakkala, S.; Korhonen, R.K.; Tanska, P. Elastic, Viscoelastic and Fibril-Reinforced Poroelastic Material Properties of Healthy and Osteoarthritic Human Tibial Cartilage. Ann. Biomed. Eng. 2019, 47, 953–966. [Google Scholar] [CrossRef]
- Mäkelä, J.T.A.; Huttu, M.R.J.; Korhonen, R.K. Structure–function relationships in osteoarthritic human hip joint articular cartilage. Osteoarthr. Cartil. 2012, 20, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.; Chevrier, A.; Garon, M.; Quenneville, E.; Yaroshinsky, A.; Hoemann, C.D.; Buschmann, M.D. Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties. Osteoarthr. Cartil. 2014, 22, 1926–1935. [Google Scholar] [CrossRef] [PubMed]
- Bone Mechanics Handbook, 2nd ed.; Cowin, S.C., Ed.; CRC Press: Boca Raton, FL, USA, 2001; ISBN 978-0-8493-9117-0. [Google Scholar]
- Reisinger, A.G.; Frank, M.; Thurner, P.J.; Pahr, D.H. A two-layer elasto-visco-plastic rheological model for the material parameter identification of bone tissue. Biomech. Model. Mechanobiol. 2020, 19, 2149–2162. [Google Scholar] [CrossRef]
- Hayes, W.C.; Mockros, L.F. Viscoelastic properties of human articular cartilage. J. Appl. Physiol. 1971, 31, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.; Lai, W.M.; Mow, V.C. A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis. J. Biomech. Eng. 1998, 120, 491–496. [Google Scholar] [CrossRef]
- Lim, T.-H.; Hong, J.H. Poroelastic Model of Trabecular Bone in Uniaxial Strain Conditions. J. Musculoskelet. Res. 1998, 02, 167–180. [Google Scholar] [CrossRef]
- Brown, T.D.; Ferguson, A.B. Mechanical Property Distributions in the Cancellous Bone of the Human Proximal Femur. Acta Orthop. Scand. 1980, 51, 429–437. [Google Scholar] [CrossRef]
- Chen, R.; Chen, S.; Chen, X.M.; Long, X. Study of the tidemark in human mandibular condylar cartilage. Arch. Oral. Biol. 2011, 56, 1390–1397. [Google Scholar] [CrossRef]
- Clark, J.M. The structure of vascular channels in the subchondral plate. J. Anat. 1990, 171, 105–115. [Google Scholar]
- Lyons, T.J.; Stoddart, R.W.; McClure, S.F.; McClure, J. The tidemark of the chondro-osseous junction of the normal human knee joint. J. Mol. Histol. 2005, 36, 207–215. [Google Scholar] [CrossRef]
- Burr, D.B.; Gallant, M.A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 2012, 8, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, A.; Li, J.; Li, X.; Sun, W.; Liu, Q. COL2A1 Mutation (c.611G > C) Leads to Early-Onset Osteoarthritis in a Chinese Family. Int. J. Gen. Med. 2021, 14, 2569–2574. [Google Scholar] [CrossRef] [PubMed]
Model | Key Principle | Advantages | Disadvantages | Parameters | Author(s) |
---|---|---|---|---|---|
Isotropic Linear Elastic Model | Linear elastic response to loading | Simple mathematical formulation and easy to implement; Requires minimal experimental input for parameter estimation; Suitable for analyzing indentation tests with different probe geometries; Provides a first approximation of cartilage mechanical properties. | Assumes isotropic and purely elastic behavior, ignoring viscoelasticity; Does not account for fluid flow or swelling effects; Limited accuracy for complex loading conditions; Less representative of actual cartilage microstructure. | Young’s modulus Poisson’s ratio Stress and deformation in cartilage | Hayes et al. [36] |
Viscoelastic (Generalized Kelvin–Voigt Model) | Time-dependent deformation (viscoelastic solid behavior) | Captures time-dependent behavior (creep and stress relaxation); Simple formulation with experimentally validated parameters; Applicable to physiological load ranges. | Does not explicitly include fluid flow or poroelastic effects; Limited accuracy for high-frequency loading; Assumes homogeneity and isotropy. | Young’s modulus Poisson’s ratio Shear modulus | Hayes et al. [58] |
Biphasic Model | Solid–fluid interaction (poroelastic behavior with fluid flow through porous solid) | Simple and widely used in biomechanical studies; Effectively captures creep and stress relaxation behavior; Experimentally validated. | Does not account for ionic effects or swelling behavior; Assumes constant permeability, which may not be accurate in all cases; Does not explicitly include the role of collagen fibers | Permeability Aggregate modulus Frictional drag coefficient Relaxation time Solid matrix stiffness | Mow et al. [9] |
Biphasic Transversely Isotropic Model | Anisotropic poroelastic behavior (fiber-reinforced solid–fluid interaction) | Provides a more accurate representation of the mechanical behavior of cartilage by incorporating transverse isotropy, which is essential for understanding the anisotropic nature of the tissue; Improves the correlation between theoretical predictions and experimental results in unconfined compression tests. | Increases computational complexity due to the additional parameters required to characterize anisotropy; Demands detailed experimental data to accurately determine the anisotropic material properties. | Young’s modulus Poisson’s ratio Permeability Shear modulus | Cohen et al. [59] |
Triphasic Model | Solid–fluid–ionic coupling (electrochemical and poroelastic effects) | Includes electrochemical effects such as fixed charge density and osmotic pressure; Describes interactions between solid matrix, interstitial fluid, and ionic phase; Accounts for swelling and ion transport effects. | More complex and computationally demanding; Requires additional experimental parameters for validation; Assumes a single salt solution for ion exchange, which may oversimplify real conditions. | Osmotic pressure Fixed charge density Ion concentration gradients Permeability Solid matrix stress–strain properties | Lai et al. [8] |
Quadriphasic Model | Multiphase coupling (electro-chemical–mechanical interaction) | Incorporates fluid flow, ion transport, and electrical effects for a more realistic tissue response; Captures swelling behavior and incompressibility of biological tissues; Suitable for modeling cartilage and soft tissues under physiological conditions; Provides insights into electrochemical interactions affecting tissue mechanics. | Highly complex and computationally demanding; Requires extensive experimental data for parameter calibration; Difficult to validate experimentally due to multiple interacting phases; Less intuitive and harder to implement than simpler elastic or biphasic models. | Solid matrix stress and deformation Fluid pressure and flow Ion concentration distribution Electrical potential gradients | Huyghe et al. [34] |
Fibril-Reinforced Poro-viscoelastic Swelling Model | Fiber-reinforced, poro-viscoelastic behavior with osmotic swelling | Includes collagen fiber reinforcement and viscoelastic behavior; Captures swelling effects and fibril anisotropy; Can describe multiple experimental tests (confined/unconfined compression, indentation, and swelling). | Highly complex and computationally intensive; Requires detailed structural information about collagen fiber orientation; More difficult to parameterize experimentally. | Collagen network stiffness Viscoelastic properties of fibrils Poroelasticity and swelling parameters Hydraulic permeability Chemical expansion stress | Wilson et al. [28] |
Model | Key Principle | Advantages | Disadvantages | Parameters | Author(s) |
---|---|---|---|---|---|
Linear Elastic Model | Linear elastic response to loading | Simple formulation based on Hooke’s law, easy to implement in numerical simulations; Suitable for small strain conditions typically observed in physiological loading; Requires only a few mechanical parameters; Allows straightforward comparison across experimental and computational studies; Efficient for simulating early-stage mechanical responses of trabecular bone. | Does not capture post-yield behavior or progressive damage of bone tissue; Assumes homogeneity and isotropy, which may not reflect real trabecular structure; Inaccurate under large deformations or in cases of bone failure; Ignores time-dependent effects such as creep or stress relaxation; May oversimplify complex biomechanical conditions. | Young’s modulus Poisson’s ratio Stress Strain | Cowin et al. [56] |
Transversely Isotropic Model | Directional elasticity (anisotropic response based on trabecular orientation) | Captures the anisotropic mechanical behavior of trabecular bone more accurately than isotropic models; Provides a better representation of trabecular bone under physiological loading conditions; Enhances the precision of finite element models in biomechanics applications. | Requires detailed experimental data to define material properties along different axes; Increased computational complexity compared to isotropic models; Variability in trabecular microstructure can lead to challenges in generalizing model parameters. | Young’s modulus (longitudinal and transverse) Shear modulus Poisson’s ratio Elastic coefficients | Brown et al. [61] |
Elastoplastic Model | Elastic–plastic transition (includes yield behavior under load) | Captures both elastic behavior and the onset of permanent deformation; Reflects the yield behavior of trabecular bone under uniaxial loading; Allows estimation of yield strain independently of trabecular orientation; Supports simplified modeling using an isotropic yield criterion; Facilitates correlation between yield properties and bone density measures. | Depends on a defined offset criterion, which may vary across studies; Focuses on compression only, limiting broader biomechanical application; Does not model post-yield behavior such as plastic flow or damage accumulation; May not represent accurately the behavior of human or pathological bone; Assumes isotropy, which may not hold true for all trabecular structures. | Young’s modulus Yield stress Yield strain Bone tissue density Solid volume fraction Degree of trabecular orientation | Turner et al. [11] |
Viscoelastic Model | Time-dependent deformation (viscoelastic response with internal stress relaxation) | Captures both elastic and time-dependent (viscous) behavior of trabecular bone; Models the composite nature of trabecular bone, accounting for internal architecture; Reflects anisotropic mechanical response under different loading directions; Differentiates between dynamic and static behavior; Provides a solid theoretical foundation for analyzing creep and stress relaxation. | Involves complex equations and numerous parameters, increasing model complexity; Assumes simplified conditions in practical applications; Limited by the availability of experimental data to calibrate all variables accurately; May be less suitable for real-time simulations or clinical applications due to computational intensity. | Young’s modulus Viscosity coefficient Structural volume fractions Structural anisotropy parameters Dynamic and static moduli Internal stress and strain tensors Relaxation behavior under step-loading | Kafka et al. [10] |
Poroelastic Model | Poroelasticity (coupled solid deformation and fluid flow through porous structure) | Accounts for the interaction between the bone matrix and internal fluids; Can be applied to simulate realistic physiological conditions of trabecular bone; Provides greater accuracy in predicting the mechanical behavior of bone under uniaxial loading. | Requires parameters that are difficult to measure experimentally; Complex modeling that is computationally intensive; May need adjustments for different bone types and specific biomechanical conditions. | Young’s modulus Shear modulus Poisson’s ratio Skempton’s coefficient Permeability coefficient Pore pressure | Lim et al. [60] |
Two-Layer Elasto-Visco-Plastic Model | Multimechanism coupling (elasticity, viscosity, and plastic deformation) | Accounts for both viscoelastic and plastic behavior of bone tissue, providing a more realistic model; Allows for the accurate identification of the rheological parameters of bone; Applicable for modeling bone deformations under various loading conditions. | Requires complex mechanical testing for parameter calibration; More sophisticated mathematical modeling, making it computationally demanding; May need adjustments for different bone tissue types and specific biomechanical conditions. | Young’s modulus Viscosity coefficient Poisson’s ratio Plasticity parameters | Reisinger et al. [57] |
Feature | Viscoelastic Model | Biphasic Transversely Isotropic Model | Fibril-Reinforced Poro-Viscoelastic Swelling Model |
---|---|---|---|
Anisotropy (fiber orientation) | ✔ | ✔ | |
Fluid–solid interactions (poroelasticity) | ✔ | ✔ | |
Viscoelasticity | ✔ | ✔ | |
Fibril reinforcement | Implicit | Explicit | |
Osmotic swelling | ✔ | ||
Computational complexity | Low | Moderate | High |
Ease of integration | High | High | Lower |
Feature | Viscoelastic Model | Biphasic Transversely Isotropic Model | Fibril-Reinforced Poro-Viscoelastic Swelling Model |
---|---|---|---|
Anisotropy (fiber orientation) | ✔ | ✔ | |
Fluid–solid interactions (poroelasticity) | ✔ | ✔ | |
Viscoelasticity | ✔ | ✔ | |
Fibril reinforcement | Implicit | Explicit | |
Osmotic swelling | ✔ | ||
Computational complexity | Low | Moderate | High |
Ease of integration | High | High | Lower |
Feature | Linear Elastic Model (SBP and STB) | Viscoelastic Model (STB) | Poroelastic Model (STB) |
---|---|---|---|
Anisotropy (fiber orientation) | Implicit | ✔ | |
Fluid–solid interactions (poroelasticity) | ✔ | ||
Viscoelasticity | ✔ | ||
Microstructural representation | Implicit | ✔ | |
Time-dependent behavior | ✔ | ✔ | |
Computational complexity | Low | Moderate | High |
Ease of integration | High | High | Lower |
Layer | Description | Material Type | Suggested Model |
---|---|---|---|
AC (Superficial Zone) | Contains type II collagen fibers aligned parallel to the joint surface; provides resistance to shear stress [14,15,16]. | Porous, viscoelastic soft tissue | Viscoelastic model [58] |
AC (Middle Zone) | Disorganized collagen fibers; high proteoglycan content; dissipates and distributes initial compressive loads [14,15,16]. | Porous, viscoelastic soft tissue | Viscoelastic model [58] |
AC (Deep Zone) | Contains type II collagen fibers oriented perpendicular to the articular surface; provides strong anchorage to the calcified cartilage and resists high compressive loads during weight-bearing activities [14,15,16]. | Porous, viscoelastic soft tissue | Viscoelastic model [58] |
Tidemark | Fibrillar band separating unmineralized from CCL; regulates force transmission; structurally adapted to loading [15,19,20,23,26,61,62,63]. | Graded viscoelastic interface | Viscoelastic model [58] |
CCL | Mineralized zone between the tidemark and cement line; transitional mechanical layer; contains type I and II collagen and hypertrophic chondrocytes [12,15,24,25,26,27,64]. | Stiff, mineralized fibrocartilage | Viscoelastic model [58] |
Cement Line | Defines the lower boundary of CCL; acts as a structural anchor without metabolic activity [12]. | Structural boundary (passive anatomical feature) | Not applicable (passive structure) [12] |
SBP | Dense cortical bone layer beneath CCL; distributes load to underlying trabecular bone [3]. | Dense cortical bone | Linear elastic model [56] |
STB | Porous trabecular bone network responsive to mechanical stimuli; supports load, vascularization, and marrow communication [3,30,32]. | Porous trabecular bone | Linear elastic model [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, B.; Domingos, M.; Amado, S.; R. Dias, J.; Pascoal-Faria, P.; Maurício, A.C.; Alves, N. Toward Integrative Biomechanical Models of Osteochondral Tissues: A Multilayered Perspective. Bioengineering 2025, 12, 649. https://doi.org/10.3390/bioengineering12060649
Silva B, Domingos M, Amado S, R. Dias J, Pascoal-Faria P, Maurício AC, Alves N. Toward Integrative Biomechanical Models of Osteochondral Tissues: A Multilayered Perspective. Bioengineering. 2025; 12(6):649. https://doi.org/10.3390/bioengineering12060649
Chicago/Turabian StyleSilva, Bruna, Marco Domingos, Sandra Amado, Juliana R. Dias, Paula Pascoal-Faria, Ana C. Maurício, and Nuno Alves. 2025. "Toward Integrative Biomechanical Models of Osteochondral Tissues: A Multilayered Perspective" Bioengineering 12, no. 6: 649. https://doi.org/10.3390/bioengineering12060649
APA StyleSilva, B., Domingos, M., Amado, S., R. Dias, J., Pascoal-Faria, P., Maurício, A. C., & Alves, N. (2025). Toward Integrative Biomechanical Models of Osteochondral Tissues: A Multilayered Perspective. Bioengineering, 12(6), 649. https://doi.org/10.3390/bioengineering12060649