Application of the Brillouin Optical Scanning System in the Regional Corneal Biomechanical Evaluation of Keratoconus and Its Correlation with Corvis ST Parameters
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Corneal Biomechanical Measurement
2.2.1. BOSS
2.2.2. Corvis ST
2.2.3. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Analysis of BOSS Results
3.3. Analysis of Corvis ST Results
3.4. Correlation Analysis Between BOSS and Corvis ST
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krachmer, J.H. Keratoconus and Related Noninflammatory Cornea1 Thinning Disorders. Surv. Ophthalmol. 1984, 28, 293–322. [Google Scholar] [CrossRef]
- Esporcatte, L.P.G.; Salomão, M.Q.; Lopes, B.T.; Sena, N.; Ferreira, É.; Filho, J.B.R.F.; Machado, A.P.; Ambrósio, R. Biomechanics in Keratoconus Diagnosis. Curr. Eye Res. 2023, 48, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.Q.; Patel, D.V.; McGhee, C.N.J. Biomechanical Responses of Healthy and Keratoconic Corneas Measured Using a Noncontact Scheimpflug-Based Tonometer. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3651–3659. [Google Scholar] [CrossRef] [PubMed]
- Shetty, R.; D’Souza, S.; Khamar, P.; Ghosh, A.; Nuijts, R.M.M.A.; Sethu, S. Biochemical Markers and Alterations in Keratoconus. Asia-Pac. J. Ophthalmol. 2020, 9, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Masiwa, L.E.; Moodley, V. A Review of Corneal Imaging Methods for the Early Diagnosis of Pre-Clinical Keratoconus. J. Optom. 2020, 13, 269–275. [Google Scholar] [CrossRef]
- Deshmukh, R.; Ong, Z.Z.; Rampat, R.; Alió Del Barrio, J.L.; Barua, A.; Ang, M.; Mehta, J.S.; Said, D.G.; Dua, H.S.; Ambrósio, R.; et al. Management of Keratoconus: An Updated Review. Front. Med. 2023, 10, 1212314. [Google Scholar] [CrossRef]
- Lopes, B.T.; Padmanabhan, P.; Eliasy, A.; Zhang, H.; Abass, A.; Elsheikh, A. In Vivo Assessment of Localised Corneal Biomechanical Deterioration With Keratoconus Progression. Front. Bioeng. Biotechnol. 2022, 10, 812507. [Google Scholar] [CrossRef]
- Scarcelli, G.; Besner, S.; Pineda, R.; Yun, S.H. Biomechanical Characterization of Keratoconus Corneas Ex Vivo With Brillouin Microscopy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4490. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, L.; Guo, L.; Qin, X.; Zhang, D.; Li, L.; Jie, Y.; Zhang, H. Comprehensive Evaluation of Corneas from Normal, Forme Fruste Keratoconus and Clinical Keratoconus Patients Using Morphological and Biomechanical Properties. Int. Ophthalmol. 2021, 41, 1247–1259. [Google Scholar] [CrossRef]
- Diagnosis and Management of Keratoconus. Available online: https://www.aao.org/eyenet/article/diagnosis-and-management-of-keratoconus (accessed on 20 May 2025).
- Esporcatte, L.P.G.; Salomão, M.Q.; Lopes, B.T.; Vinciguerra, P.; Vinciguerra, R.; Roberts, C.; Elsheikh, A.; Dawson, D.G.; Ambrósio, R. Biomechanical Diagnostics of the Cornea. Eye Vis. 2020, 7, 9. [Google Scholar] [CrossRef]
- Vellara, H.R.; Patel, D.V. Biomechanical Properties of the Keratoconic Cornea: A Review. Clin. Exp. Optom. 2015, 98, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Terai, N.; Raiskup, F.; Haustein, M.; Pillunat, L.E.; Spoerl, E. Identification of Biomechanical Properties of the Cornea: The Ocular Response Analyzer. Curr. Eye Res. 2012, 37, 553–562. [Google Scholar] [CrossRef]
- Herber, R.; Terai, N.; Pillunat, K.R.; Raiskup, F.; Pillunat, L.E.; Spörl, E. Dynamic Scheimpflug Analyzer (Corvis ST) for measurement of corneal biomechanical parameters: A praxis-related overview. Ophthalmologe 2018, 115, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Abass, A.; Roberts, C.J.; Lopes, B.; Eliasy, A.; Vinciguerra, R.; Ambrósio, R.; Vinciguerra, P.; Elsheikh, A. Can the Corvis ST Estimate Corneal Viscoelasticity? J. Refract. Surg. 2020, 36, 346–347. [Google Scholar] [CrossRef]
- Kelly, D.J.; Farrell, S.M. Physiology and Role of Intraocular Pressure in Contemporary Anesthesia. Anesth. Analg. 2018, 126, 1551–1562. [Google Scholar] [CrossRef] [PubMed]
- Prevedel, R.; Diz-Muñoz, A.; Ruocco, G.; Antonacci, G. Brillouin Microscopy: An Emerging Tool for Mechanobiology. Nat. Methods 2019, 16, 969–977. [Google Scholar] [CrossRef]
- Yun, S.H.; Chernyak, D. Brillouin Microscopy: Assessing Ocular Tissue Biomechanics. Curr. Opin. Ophthalmol. 2018, 29, 299–305. [Google Scholar] [CrossRef]
- Seiler, T.G.; Geerling, G. Brillouin Spectroscopy in Ophthalmology. Klin. Monbl Augenheilkd. 2023, 240, 779–782. [Google Scholar] [CrossRef]
- Shao, P.; Eltony, A.M.; Seiler, T.G.; Tavakol, B.; Pineda, R.; Koller, T.; Seiler, T.; Yun, S.-H. Spatially-Resolved Brillouin Spectroscopy Reveals Biomechanical Abnormalities in Mild to Advanced Keratoconus in Vivo. Sci. Rep. 2019, 9, 7467. [Google Scholar] [CrossRef]
- Randleman, J.B.; Zhang, H.; Asroui, L.; Tarib, I.; Dupps, W.J.; Scarcelli, G. Subclinical Keratoconus Detection and Characterization Using Motion-Tracking Brillouin Microscopy. Ophthalmology 2024, 131, 310–321. [Google Scholar] [CrossRef]
- IEC 60825-1; Safety of Laser Products—Part 1: Equipment Classification and Requirements. IEC (International Electrotechnical Commission): Geneva, Switzerland, 2014.
- Kwok, S.; Hazen, N.; Clayson, K.; Pan, X.; Liu, J. Regional Variation of Corneal Stromal Deformation Measured by High-Frequency Ultrasound Elastography. Exp. Biol. Med. 2021, 246, 2184–2191. [Google Scholar] [CrossRef]
- Roberts, C.J.; Dupps, W.J. Biomechanics of Corneal Ectasia and Biomechanical Treatments. J. Cataract. Refract. Surg. 2014, 40, 991–998. [Google Scholar] [CrossRef]
- Seiler, T.G.; Shao, P.; Eltony, A.; Seiler, T.; Yun, S.-H. Brillouin Spectroscopy of Normal and Keratoconus Corneas. Am. J. Ophthalmol. 2019, 202, 118–125. [Google Scholar] [CrossRef]
- Zhang, H.; Asroui, L.; Tarib, I.; Dupps, W.J.; Scarcelli, G.; Randleman, J.B. Motion-Tracking Brillouin Microscopy Evaluation of Normal, Keratoconic, and Post-Laser Vision Correction Corneas. Am. J. Ophthalmol. 2023, 254, 128–140. [Google Scholar] [CrossRef]
- Belin, M.; Ambrósio, R. Scheimpflug Imaging for Keratoconus and Ectatic Disease. Indian. J. Ophthalmol. 2013, 61, 401. [Google Scholar] [CrossRef]
- Gomes, J.A.P.; Tan, D.; Rapuano, C.J.; Belin, M.W.; Ambrósio, R.; Guell, J.L.; Malecaze, F.; Nishida, K.; Sangwan, V.S. Global Consensus on Keratoconus and Ectatic Diseases. Cornea 2015, 34, 359–369. [Google Scholar] [CrossRef]
- Morishige, N.; Wahlert, A.J.; Kenney, M.C.; Brown, D.J.; Kawamoto, K.; Chikama, T.-I.; Nishida, T.; Jester, J.V. Second-Harmonic Imaging Microscopy of Normal Human and Keratoconus Cornea. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1087–1094. [Google Scholar] [CrossRef]
- Meek, K.M.; Tuft, S.J.; Huang, Y.; Gill, P.S.; Hayes, S.; Newton, R.H.; Bron, A.J. Changes in Collagen Orientation and Distribution in Keratoconus Corneas. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1948–1956. [Google Scholar] [CrossRef]
- Zhou, D.; Abass, A.; Lopes, B.; Eliasy, A.; Hayes, S.; Boote, C.; Meek, K.M.; Movchan, A.; Movchan, N.; Elsheikh, A. Fibril Density Reduction in Keratoconic Corneas. J. R. Soc. Interface 2021, 18, 20200900. [Google Scholar] [CrossRef] [PubMed]
- Vinciguerra, R.; Palladino, S.; Herber, R.; Romano, M.R.; Vinciguerra, P. The KERATO Biomechanics Study 1: A Comparative Evaluation Using Brillouin Microscopy and Dynamic Scheimpflug Imaging. J. Refract. Surg. 2024, 40, e569–e578. [Google Scholar] [CrossRef] [PubMed]
- Al Bdour, M.; Sabbagh, H.M.; Jammal, H.M. Multi-Modal Imaging for the Detection of Early Keratoconus: A Narrative Review. Eye Vis. 2024, 11, 18. [Google Scholar] [CrossRef]
- Vinciguerra, R.; Ambrósio, R.; Roberts, C.J.; Azzolini, C.; Vinciguerra, P. Biomechanical Characterization of Subclinical Keratoconus Without Topographic or Tomographic Abnormalities. J. Refract. Surg. 2017, 33, 399–407. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Chen, Y. Application of a Scheimpflug-Based Biomechanical Analyser and Tomography in the Early Detection of Subclinical Keratoconus in Chinese Patients. BMC Ophthalmol. 2021, 21, 339. [Google Scholar] [CrossRef]
- Salouti, R.; Bagheri, M.; Shamsi, A.; Zamani, M. Corneal Parameters in Healthy Subjects Assessed by Corvis ST. J. Ophthalmic Vis. Res. 2020, 15, 24–31. [Google Scholar] [CrossRef]
- Yu, A.-Y.; Shao, H.; Pan, A.; Wang, Q.; Huang, Z.; Song, B.; McAlinden, C.; Huang, J.; Chen, S. Corneal Biomechanical Properties in Myopic Eyes Evaluated via Scheimpflug Imaging. BMC Ophthalmol. 2020, 20, 279. [Google Scholar] [CrossRef]
- Whitford, C.; Joda, A.; Jones, S.; Bao, F.; Rama, P.; Elsheikh, A. Ex Vivo Testing of Intact Eye Globes under Inflation Conditions to Determine Regional Variation of Mechanical Stiffness. Eye Vision. 2016, 3, 21. [Google Scholar] [CrossRef]
- Zheng, X.; Xin, Y.; Wang, C.; Fan, Y.; Yang, P.; Li, L.; Yin, D.; Zhang, E.; Hong, Y.; Bao, H.; et al. Use of Nanoindentation in Determination of Regional Biomechanical Properties of Rabbit Cornea After UVA Cross-Linking. Investig. Ophthalmol. Vis. Sci. 2023, 64, 26. [Google Scholar] [CrossRef]
- Boyce, B.L.; Grazier, J.M.; Jones, R.E.; Nguyen, T.D. Full-Field Deformation of Bovine Cornea under Constrained Inflation Conditions. Biomaterials 2008, 29, 3896–3904. [Google Scholar] [CrossRef]
- Wilson, A.; Jones, J.; Tyrer, J.R.; Marshall, J. An Interferometric Ex Vivo Study of Corneal Biomechanics under Physiologically Representative Loading, Highlighting the Role of the Limbus in Pressure Compensation. Eye Vis. 2020, 7, 43. [Google Scholar] [CrossRef]
- Hjortdal, J.O. Regional Elastic Performance of the Human Cornea. J. Biomech. 1996, 29, 931–942. [Google Scholar] [CrossRef]
- Wilson, A.; Jones, J.; Marshall, J. Interferometric Ex Vivo Evaluation of the Spatial Changes to Corneal Biomechanics Introduced by Topographic CXL: A Pilot Study. J. Refract. Surg. 2021, 37, 263–273. [Google Scholar] [CrossRef]
- Scarcelli, G.; Pineda, R.; Yun, S.H. Brillouin Optical Microscopy for Corneal Biomechanics. Investig. Ophthalmol. Vis. Sci. 2012, 53, 185–190. [Google Scholar] [CrossRef]
- Lopes, B.T.; Elsheikh, A. In Vivo Corneal Stiffness Mapping by the Stress-Strain Index Maps and Brillouin Microscopy. Curr. Eye Res. 2023, 48, 114–120. [Google Scholar] [CrossRef]
- Loveless, B.A.; Moin, K.A.; Hoopes, P.C.; Moshirfar, M. The Utilization of Brillouin Microscopy in Corneal Diagnostics: A Systematic Review. Cureus 2024, 16, e65769. [Google Scholar] [CrossRef]
- De Stefano, V.S.; Dupps, W.J. Biomechanical Diagnostics of the Cornea. Int. Ophthalmol. Clin. 2017, 57, 75–86. [Google Scholar] [CrossRef]
- Lan, G.; Twa, M.D.; Song, C.; Feng, J.; Huang, Y.; Xu, J.; Qin, J.; An, L.; Wei, X. In Vivo Corneal Elastography: A Topical Review of Challenges and Opportunities. Comput. Struct. Biotechnol. J. 2023, 21, 2664–2687. [Google Scholar] [CrossRef]
- Scarcelli, G.; Kling, S.; Quijano, E.; Pineda, R.; Marcos, S.; Yun, S.H. Brillouin Microscopy of Collagen Crosslinking: Noncontact Depth-Dependent Analysis of Corneal Elastic Modulus. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1418. [Google Scholar] [CrossRef]
- Webb, J.N.; Su, J.P.; Scarcelli, G. Mechanical Outcome of Accelerated Corneal Crosslinking Evaluated by Brillouin Microscopy. J. Cataract. Refract. Surg. 2017, 43, 1458–1463. [Google Scholar] [CrossRef]
- Iriarte-Valdez, C.A.; Wenzel, J.; Baron, E.; Claus, A.Y.; Kalies, S.; Sperlich, K.; Stachs, O.; Torres-Mapa, M.L.; Heisterkamp, A. Assessing UVA and Laser-Induced Crosslinking via Brillouin Microscopy. J. Biophotonics 2025, 18, e202400401. [Google Scholar] [CrossRef]
- Kazaili, A.; Geraghty, B.; Akhtar, R. Microscale Assessment of Corneal Viscoelastic Properties under Physiological Pressures. J. Mech. Behav. Biomed. Mater. 2019, 100, 103375. [Google Scholar] [CrossRef]
- Shao, P.; Seiler, T.G.; Eltony, A.M.; Ramier, A.; Kwok, S.J.J.; Scarcelli, G.; Ii, R.P.; Yun, S.-H. Effects of Corneal Hydration on Brillouin Microscopy In Vivo. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3020. [Google Scholar] [CrossRef]
- Vaughan, J.M.; Randall, J.T. Brillouin Scattering, Density and Elastic Properties of the Lens and Cornea of the Eye. Nature 1980, 284, 489–491. [Google Scholar] [CrossRef]
- Seiler, T.G.; Shao, P.; Frueh, B.E.; Yun, S.-H.; Seiler, T. The Influence of Hydration on Different Mechanical Moduli of the Cornea. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 1653–1660. [Google Scholar] [CrossRef]
- Kabakova, I.; Zhang, J.; Xiang, Y.; Caponi, S.; Bilenca, A.; Guck, J.; Scarcelli, G. Brillouin Microscopy. Nat. Rev. Methods Primers 2024, 4, 8. [Google Scholar] [CrossRef]
Regions | Calculation | Brillouin Frequency (GHz) | ||
---|---|---|---|---|
Normal Eyes | Keratoconus Eyes | p | ||
Nasal up | (w1 + w2 + w3)/3 | 5.81 ± 0.03 | 5.80 ± 0.03 | 0.118 |
Superior | w1 | 5.78 ± 0.04 | 5.77 ± 0.05 | 0.266 |
Temporal up | (w1 + w7 + w8)/3 | 5.78 ± 0.02 | 5.77 ± 0.04 | 0.618 |
Temporary | w7 | 5.78 ± 0.04 | 5.78 ± 0.05 | 0.701 |
Temporal down | (w5 + w6 + w7)/3 | 5.78 ± 0.03 | 5.80 ± 0.03 | 0.084 |
Inferior | w5 | 5.77 ± 0.02 | 5.78 ± 0.04 | 0.184 |
Nasal down | (w3 + w4 + w5)/3 | 5.77 ± 0.03 | 5.80 ± 0.04 | 0.004 |
Nasal side | w3 | 5.78 ± 0.04 | 5.78 ± 0.03 | 0.632 |
Peripheral | (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8)/8 | 5.78 ± 0.02 | 5.78 ± 0.02 | 0.781 |
Central | System value | 5.78 ± 0.04 | 5.75 ± 0.06 | 0.029 |
Mean | System value | 5.78 ± 0.02 | 5.78 ± 0.02 | 0.452 |
Min | System value | 5.74 ± 0.03 | 5.71 ± 0.05 | 0.003 |
Max | System value | 5.82 ± 0.04 | 5.83 ± 0.03 | 0.487 |
Standard | System value | 1.30 ± 0.14 | 1.51 ± 0.20 | 0.000 |
Max-Min | System value | 0.08 ± 0.04 | 0.12 ± 0.06 | 0.006 |
Parameter | Normal Eyes | Keratoconus Eyes | p |
---|---|---|---|
CBI | 0.31 ± 0.22 | 0.90 ± 0.22 | <0.001 |
CCBI | 0.17 ± 0.23 | 0.89 ± 0.25 | <0.001 |
SSI | 0.90 ± 0.11 | 0.78 ± 0.11 | <0.001 |
DA (mm) | 4.33 ± 0.35 | 5.61 ± 0.90 | <0.001 |
IIR (mm−1) | 8.82 ± 0.75 | 11.64 ± 2.09 | <0.001 |
SP-A1 (mmHg/mm) | 108.74 ± 16.23 | 66.34 ± 16.69 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; Sun, Y.; Gu, Z.; Wang, L.; Wu, Y.; Chen, J.; Chen, Z.; Zheng, X.; Chen, S. Application of the Brillouin Optical Scanning System in the Regional Corneal Biomechanical Evaluation of Keratoconus and Its Correlation with Corvis ST Parameters. Bioengineering 2025, 12, 634. https://doi.org/10.3390/bioengineering12060634
Jiang Q, Sun Y, Gu Z, Wang L, Wu Y, Chen J, Chen Z, Zheng X, Chen S. Application of the Brillouin Optical Scanning System in the Regional Corneal Biomechanical Evaluation of Keratoconus and Its Correlation with Corvis ST Parameters. Bioengineering. 2025; 12(6):634. https://doi.org/10.3390/bioengineering12060634
Chicago/Turabian StyleJiang, Qiuruo, Yichen Sun, Zhanhao Gu, Lumeng Wang, Yiqiang Wu, Jialu Chen, Zhiyi Chen, Xiaobo Zheng, and Shihao Chen. 2025. "Application of the Brillouin Optical Scanning System in the Regional Corneal Biomechanical Evaluation of Keratoconus and Its Correlation with Corvis ST Parameters" Bioengineering 12, no. 6: 634. https://doi.org/10.3390/bioengineering12060634
APA StyleJiang, Q., Sun, Y., Gu, Z., Wang, L., Wu, Y., Chen, J., Chen, Z., Zheng, X., & Chen, S. (2025). Application of the Brillouin Optical Scanning System in the Regional Corneal Biomechanical Evaluation of Keratoconus and Its Correlation with Corvis ST Parameters. Bioengineering, 12(6), 634. https://doi.org/10.3390/bioengineering12060634