Auto-Segmentation and Auto-Planning in Automated Radiotherapy for Prostate Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Imaging Data and Manual Delineation
2.2. Model Development
2.2.1. Auto-Segmentation Model
2.2.2. Auto-Planning Model
2.3. Geometric Evaluation
2.4. Dosimetric Evaluation of Automated Prostate Treatment Planning
- Reject/Unacceptable, unusable: Plans of poor quality that cannot be used.
- Unacceptable with major changes required: Edits are required to ensure appropriate treatment and are significant enough that the user would prefer to start from scratch.
- Unacceptable with minor changes required: Clinically important edits for which it is more efficient to edit the plans than to start from scratch.
- Acceptable: Stylistic differences, but not clinically important.
- Perfect: Clinically acceptable, could be used for treatment without any changes.
2.5. Statistical Analysis
3. Results
3.1. Geometrical Analysis of Target and OARs
3.2. Analysis of Auto-Plans and Manual Plans
3.2.1. Dosimetric Analysis of Auto-Plans and Manual Plans with Manual Contours
3.2.2. Physician Evaluation of Auto-Plans and Manual Plans with Manual Contours
3.3. Planning Comparison of Auto-Plans on Edited/Manual OARs and Unedited/Auto-Segmented OARs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OAR | Organ at risk |
DSC | Dice similarity coefficient |
VR | Volume ratio |
HD95% | Hausdorff distance at 95% |
VRD | Volume ratio degree |
GTV | Gross tumor volume |
CTV | Clinical tumor volume |
CTVnd | Nodal clinical target volume |
PTV | Planning target volume |
CI | Conformity index |
HI | Homogeneity index |
ART | Adaptive radiotherapy |
DVH | Dose volume histogram |
FBCT | Fan beam CT |
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.M.; Neylon, J.; Casado, M.; Sharma, S.; Sheng, K.; Low, D.; Yang, Y.; Steinberg, M.L.; Lamb, J.; Cao, M.; et al. Dosimetric impact of interfraction prostate and seminal vesicle volume changes and rotation: A post-hoc analysis of a phase III randomized trial of MRI-guided versus CT-guided stereotactic body radiotherapy. Radiother. Oncol. 2022, 167, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Alexander, S.E.; McNair, H.A.; Oelfke, U.; Huddart, R.; Murray, J.; Pathmanathan, A.; Patel, P.; Sritharan, K.; van As, N.; Tree, A.C. Prostate Volume Changes during Extreme and Moderately Hypofractionated Magnetic Resonance Image-guided Radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 2022, 34, e383–e391. [Google Scholar] [CrossRef]
- Zhou, S.; Luo, L.; Li, J.; Lin, M.; Chen, L.; Shao, J.; Lu, S.; Ma, Y.; Zhang, Y.; Chen, W.; et al. Analyses of the factors influencing the accuracy of three-dimensional ultrasound in comparison with cone-beam CT in image-guided radiotherapy for prostate cancer with or without pelvic lymph node irradiation. Radiat. Oncol. 2019, 14, 22. [Google Scholar] [CrossRef]
- Kupelian, P.A.; Lee, C.; Langen, K.M.; Zeidan, O.A.; Mañon, R.R.; Willoughby, T.R.; Meeks, S.L. Evaluation of image-guidance strategies in the treatment of localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1151–1157. [Google Scholar] [CrossRef]
- Yan, D.; Georg, D. Adaptive radiation therapy. Z. Med. Phys. 2018, 28, 173–174. [Google Scholar] [CrossRef]
- Yang, Y.X.; Yang, X.; Jiang, X.B.; Lin, L.; Wang, G.-Y.; Sun, W.-Z.; Zhang, K.; Li, H.; Jia, L.-C.; Wei, Z.-Q.; et al. Artificial Intelligence-Empowered Multistep Integrated Radiation Therapy Workflow for Nasopharyngeal Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2024; ahead of print. [Google Scholar]
- Christiansen, R.L.; Dysager, L.; Hansen, C.R.; Jensen, H.R.; Schytte, T.; Nyborg, C.J.; Bertelsen, A.S.; Agergaard, S.N.; Mahmood, F.; Hansen, S.; et al. Online adaptive radiotherapy potentially reduces toxicity for high-risk prostate cancer treatment. Radiother. Oncol. 2022, 167, 165–171. [Google Scholar] [CrossRef]
- Alongi, F.; Rigo, M.; Figlia, V.; Cuccia, F.; Giaj-Levra, N.; Nicosia, L.; Ricchetti, F.; Sicignano, G.; De Simone, A.; Naccarato, S.; et al. 1.5 T MR-guided and daily adapted SBRT for prostate cancer: Feasibility, preliminary clinical tolerability, quality of life and patient-reported outcomes during treatment. Radiat. Oncol. 2020, 15, 69. [Google Scholar] [CrossRef]
- Leeman, J.E.; Cagney, D.N.; Mak, R.H.; Huynh, M.A.; Tanguturi, S.K.; Singer, L.; Catalano, P.; Martin, N.E.; D’Amico, A.V.; Mouw, K.W.; et al. Magnetic Resonance-Guided Prostate Stereotactic Body Radiation Therapy With Daily Online Plan Adaptation: Results of a Prospective Phase 1 Trial and Supplemental Cohort. Adv. Radiat. Oncol. 2022, 7, 100934. [Google Scholar] [CrossRef]
- Qiu, Z.; Olberg, S.; den Hertog, D.; Ajdari, A.; Bortfeld, T.; Pursley, J. Online adaptive planning methods for intensity-modulated radiotherapy. Phys. Med. Biol. 2023, 68, 10TR01. [Google Scholar] [CrossRef] [PubMed]
- Rigaud, B.; Anderson, B.M.; Yu, Z.H.; Gobeli, M.; Cazoulat, G.; Söderberg, J.; Samuelsson, E.; Lidberg, D.; Ward, C.; Taku, N.; et al. Automatic Segmentation Using Deep Learning to Enable Online Dose Optimization During Adaptive Radiation Therapy of Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 1096–1110. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Cheng, Z.; Lai, L.; Zheng, W.; He, M.; Li, J.; Zeng, T.; Huang, X.; Yang, X. Integrating multiple MRI sequences for pelvic organs segmentation via the attention mechanism. Med. Phys. 2021, 48, 7930–7945. [Google Scholar] [CrossRef]
- Duan, J.; Bernard, M.; Downes, L.; Willows, B.; Feng, X.; Mourad, W.F.; St Clair, W.; Chen, Q. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process. Med. Phys. 2022, 49, 2570–2581. [Google Scholar] [CrossRef]
- Hardcastle, N.; Cook, O.; Ray, X.; Moore, A.; Moore, K.L.; Pryor, D.; Rossi, A.; Foroudi, F.; Kron, T.; Siva, S. Personalising treatment plan quality review with knowledge-based planning in the TROG 15.03 trial for stereotactic ablative body radiotherapy in primary kidney cancer. Radiat. Oncol. 2021, 16, 142. [Google Scholar] [CrossRef]
- Liu, C.; Gardner, S.J.; Wen, N.; Elshaikh, M.A.; Siddiqui, F.; Movsas, B.; Chetty, I.J. Automatic Segmentation of the Prostate on CT Images Using Deep Neural Networks (DNN). Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.L.; Tan, L.T.; Jensen, N.B.K.; Rumpold, T.; De Leeuw, A.A.C.; Kirisits, C.; Lindegaard, J.C.; Tanderup, K.; Pötter, R.C.; Nout, R.A.; et al. Implementing an online radiotherapy quality assurance programme with supporting continuous medical education-report from the EMBRACE-II evaluation of cervix cancer IMRT contouring. Radiother. Oncol. 2020, 147, 22–29. [Google Scholar] [CrossRef]
- Sun, W.; Shi, Z.; Yang, X.; Huang, S.; Liao, C.; Zhang, W.; Li, Y.; Huang, X. The performance of a new type accelerator uRT-linac 506c evaluated by a quality assurance automation system. J. Appl. Clin. Med. Phys. 2024, 25, e14226. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, J.; Xia, F.; Zhang, Z.; Liu, Y.; Zhang, W.; Zhou, J.; Wang, J.; Hu, W.; Zhang, Z. Technical note: First implementation of a one-stop solution of radiotherapy with full-workflow automation based on CT-linac combination. Med. Phys. 2023, 50, 3117–3126. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Zhang, J.; Xu, N.; Zhou, Y.; Tan, H.; Ren, T. Fan beam CT-guided online adaptive external radiotherapy of uterine cervical cancer: A dosimetric evaluation. BMC Cancer 2023, 23, 588. [Google Scholar] [CrossRef]
- Huang, S.; Zhong, Z.; Pang, Y.; Zheng, W.; Liu, Y.; He, M.; He, L.; Yang, X. Validation of bowel and bladder preparation by rectum and bladder variation in prostate radiotherapy based on cone beam CTs. J. Radiat. Res. Appl. Sci. 2023, 16, 100513. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. MICCAI 2015; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9351. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv 2019, arXiv:1912.01703. [Google Scholar]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef]
- Peng, J.; Yu, L.; Xia, F.; Zhang, K.; Zhang, Z.; Wang, J.; Hu, W. Evaluation of a hybrid automatic planning solution for rectal cancer. Radiat. Oncol. 2022, 17, 166. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Liang, S.; Tang, F.; Huang, X.; Yang, K.; Zhong, T.; Hu, R.; Liu, S.; Yuan, X.; Zhang, Y. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Eur. Radiol. 2019, 29, 1961–1967. [Google Scholar] [CrossRef]
- Hodapp, N. Der ICRU-Report 83: Verordnung, Dokumentation und Kommunikation der fluenzmodulierten Photonenstrahlentherapie (IMRT) [The ICRU Report 83: Prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT)]. Strahlenther. Onkol. 2012, 188, 97–99. (In German) [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Fong, A.; McVicar, N.; Smith, S.; Giambattista, J.; Wells, D.; Kolbeck, C.; Giambattista, J.; Gondara, L.; Alexander, A. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning. Radiother. Oncol. 2020, 144, 152–158. [Google Scholar] [CrossRef]
- Shao, Y.; Gao, Y.; Wang, Q.; Yang, X.; Shen, D. Locally-constrained boundary regression for segmentation of prostate and rectum in the planning CT images. Med. Image Anal. 2015, 26, 345–356. [Google Scholar] [CrossRef]
- Macomber, M.W.; Phillips, M.; Tarapov, I.; Jena, R.; Nori, A.; Carter, D.; Folgoc, L.L.; Criminisi, A.; Nyflot, M.J. Autosegmentation of prostate anatomy for radiation treatment planning using deep decision forests of radiomic features. Phys. Med. Biol. 2018, 63, 235002. [Google Scholar] [CrossRef]
- Ghavami, N.; Hu, Y.; Gibson, E.; Bonmati, E.; Emberton, M.; Moore, C.M.; Barratt, D.C. Automatic segmentation of prostate MRI using convolutional neural networks: Investigating the impact of network architecture on the accuracy of volume measurement and MRI-ultrasound registration. Med. Image Anal. 2019, 58, 101558. [Google Scholar] [CrossRef] [PubMed]
- Nourzadeh, H.; Watkins, W.T.; Ahmed, M.; Hui, C.; Schlesinger, D.; Siebers, J.V. Clinical adequacy assessment of autocontours for prostate IMRT with meaningful endpoints. Med. Phys. 2017, 44, 1525–1537. [Google Scholar] [CrossRef]
- Cha, E.; Elguindi, S.; Onochie, I.; Gorovets, D.; Deasy, J.O.; Zelefsky, M.; Gillespie, E.F. Clinical implementation of deep learning contour autosegmentation for prostate radiotherapy. Radiother. Oncol. 2021, 159, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, Y.; Dyer, B.A.; Feng, X.; Rao, S.; Benedict, S.H.; Chen, Q.; Rong, Y. Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images. Radiat. Oncol. 2020, 15, 176. [Google Scholar] [CrossRef]
- De Kerf, G.; Claessens, M.; Raouassi, F.; Mercier, C.; Stas, D.; Ost, P.; Dirix, P.; Verellen, D. A geometry and dose-volume based performance monitoring of artificial intelligence models in radiotherapy treatment planning for prostate cancer. Phys. Imaging Radiat. Oncol. 2023, 28, 100494. [Google Scholar] [CrossRef]
- Sibolt, P.; Andersson, L.M.; Calmels, L.; Sjöström, D.; Bjelkengren, U.; Geertsen, P.; Behrens, C.F. Clinical implementation of artificial intelligence-driven cone-beam computed tomography-guided online adaptive radiotherapy in the pelvic region. Phys. Imaging Radiat. Oncol. 2020, 17, 1–7. [Google Scholar] [CrossRef]
- Yoon, S.W.; Lin, H.; Alonso-Basanta, M.; Anderson, N.; Apinorasethkul, O.; Cooper, K.; Dong, L.; Kempsey, B.; Marcel, J.; Metz, J.; et al. Initial Evaluation of a Novel Cone-Beam CT-Based Semi-Automated Online Adaptive Radiotherapy System for Head and Neck Cancer Treatment-A Timing and Automation Quality Study. Cureus 2020, 12, e9660. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.; Archibald-Heeren, B.; Hu, Y.; Teh, A.; Beserminji, R.; Cai, E.; Liu, G.; Yates, A.; Rijken, J.; Collett, N.; et al. Varian ethos online adaptive radiotherapy for prostate cancer: Early results of contouring accuracy, treatment plan quality, and treatment time. J. Appl. Clin. Med. Phys. 2022, 23, e13479. [Google Scholar] [CrossRef]
- Bijman, R.; Sharfo, A.W.; Rossi, L.; Breedveld, S.; Heijmen, B. Pre-clinical validation of a novel system for fully-automated treatment planning. Radiother. Oncol. 2021, 158, 253–261. [Google Scholar] [CrossRef]
- Jiang, C.; Ji, T.; Qiao, Q. Application and progress of artificial intelligence in radiation therapy dose prediction. Clin. Transl. Radiat. Oncol. 2024, 47, 100792. [Google Scholar] [CrossRef]
- Buschmann, M.; Sharfo, A.W.M.; Penninkhof, J.; Seppenwoolde, Y.; Goldner, G.; Georg, D.; Breedveld, S.; Heijmen, B.J.M. Automated volumetric modulated arc therapy planning for whole pelvic prostate radiotherapy. Strahlenther. Onkol. 2018, 194, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Vaniqui, A.; Canters, R.; Vaassen, F.; Hazelaar, C.; Lubken, I.; Kremer, K.; Wolfs, C.; van Elmpt, W. Treatment plan quality assessment for radiotherapy of rectal cancer patients using prediction of organ-at-risk dose metrics. Phys. Imaging Radiat. Oncol. 2020, 16, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Kalet, A.M.; Luk, S.M.H.; Phillips, M.H. Radiation Therapy Quality Assurance Tasks and Tools: The Many Roles of Machine Learning. Med. Phys. 2020, 47, e168–e177. [Google Scholar] [CrossRef] [PubMed]
- Moazzezi, M.; Rose, B.; Kisling, K.; Moore, K.L.; Ray, X. Prospects for daily online adaptive radiotherapy via ethos for prostate cancer patients without nodal involvement using unedited CBCT auto-segmentation. J. Appl. Clin. Med. Phys. 2021, 22, 82–93. [Google Scholar] [CrossRef]
OARs | Parameter | Objective | OARs | Parameter | Objective |
---|---|---|---|---|---|
Bladder | V70 Gy | <5% | Rectum | V70 Gy | <10% |
V60 Gy | <20% | V60 Gy | <20% | ||
V50 Gy | <40% | V50 Gy | <40% | ||
V40 Gy | <50% | V40 Gy | <50% | ||
Small intestine | Dmax | <54 Gy | Colon | Dmax | <60 Gy |
V40 Gy | <100 cc | V40 Gy | <100 cc | ||
V30 Gy | <250 cc | V30 Gy | <250 cc | ||
Anal canal | Dmax | <70 Gy | Femoral heads | V50 Gy | <5% |
V60 Gy | <10% | Penile bulb | V65 Gy | <30% | |
V50 Gy | <20% | V50 Gy | <70% | ||
V20 Gy | <70% | Pelvic bone | D mean | <32 Gy |
Structure | DSC | HD95%/mm | Recall | Precision | Time/s |
---|---|---|---|---|---|
GTV | 0.87 ± 0.06 | 4.70 ± 2.56 | 0.94 ± 0.05 | 0.82 ± 0.10 | 7.12 ± 0.51 |
CTV | 0.88 ± 0.12 | 5.26 ± 4.53 | 0.92 ± 0.13 | 0.86 ± 0.08 | 7.34 ± 0.52 |
CTVnd | 0.82 ± 0.06 | 16.50 ± 9.75 | 0.89 ± 0.08 | 0.77 ± 0.09 | 7.29 ± 0.56 |
Rectum | 0.89 ± 0.05 | 6.35 ± 4.18 | 0.92 ± 0.06 | 0.86 ± 0.07 | 6.12 ± 0.56 |
Small bowel | 0.84 ± 0.06 | 9.52 ± 5.38 | 0.86 ± 0.10 | 0.84 ± 0.05 | 6.23 ± 0.48 |
Colon | 0.83 ± 0.10 | 15.65 ± 14.96 | 0.86 ± 0.14 | 0.80 ± 0.13 | 6.37 ± 0.49 |
Bladder | 0.96 ± 0.01 | 3.35 ± 1.56 | 0.98 ± 0.02 | 0.94 ± 0.03 | 6.55 ± 0.56 |
Anal canal | 0.83 ± 0.08 | 3.69 ± 1.47 | 0.86 ± 0.08 | 0.82 ± 0.14 | 6.11 ± 0.51 |
Penile bulb | 0.65 ± 0.16 | 3.73 ± 1.74 | 0.71 ± 0.20 | 0.66 ± 0.23 | 6.21 ± 0.51 |
Pelvic bone | 0.91 ± 0.01 | 5.97 ± 1.81 | 0.88 ± 0.03 | 0.94 ± 0.04 | 6.12 ± 0.46 |
Femoral Head L | 0.89 ± 0.12 | 7.32 ± 3.61 | 0.88 ± 0.05 | 0.93 ± 0.15 | 6.65 ± 0.52 |
Femoral Head R | 0.91 ± 0.02 | 7.36 ± 3.28 | 0.86 ± 0.05 | 0.96 ± 0.04 | 6.67 ± 0.53 |
Mean | 0.86 | 7.45 | 0.88 | 0.85 | 6.61 |
Structure | Metric | Auto-Plans (Manual Contours) | Manual Plans (Manual Contours) | Auto-Plans (Unedited OARs) | P1 | P2 |
---|---|---|---|---|---|---|
PCTVnd | HI | 0.39 ± 0.07 | 0.40 ± 0.06 | 0.37 ± 0.08 | 0.09 | 0.59 |
CI | 0.64 ± 0.03 | 0.55 ± 0.05 | 0.66 ± 0.05 | 0.00 | 0.83 | |
coverage | 0.99 ± 0.01 | 0.98 ± 0.01 | 0.99 ± 0.01 | 0.05 | 0.69 | |
PCTV | HI | 0.10 ± 0.02 | 0.09 ± 0.03 | 0.10 ± 0.01 | 0.00 | 0.99 |
CI | 0.85 ± 0.15 | 0.81 ± 0.15 | 0.87 ± 0.06 | 0.01 | 0.94 | |
coverage | 0.99 ± 0.01 | 0.99 ± 0.01 | 0.99 ± 0.01 | 0.52 | 0.76 | |
PGTV | HI | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.02 | 0.358 |
CI | 0.72 ± 0.10 | 0.65 ± 0.12 | 0.71 ± 0.05 | 0.00 | 0.27 | |
coverage | 0.99 ± 0.00 | 0.99 ± 0.01 | 0.99 ± 0.00 | 0.91 | 0.74 | |
Bladder | V30 Gy (%) | 60.73 ± 11.05 | 74.85 ± 13.66 | 62.80 ± 12.70 | 0.00 | 0.69 |
V40 Gy (%) | 40.61 ± 8.40 | 42.70 ± 7.71 | 41.57 ± 8.87 | 0.02 | 0.88 | |
V50 Gy (%) | 19.87 ± 6.16 | 20.60 ± 6.42 | 20.36 ± 6.12 | 0.04 | 0.81 | |
V55 Gy (%) | 14.21 ± 5.37 | 15.23 ± 5.91 | 14.01 ± 5.46 | 0.00 | 0.81 | |
V60 Gy (%) | 10.32 ± 4.20 | 10.94 ± 4.61 | 10.22 ± 4.06 | 0.00 | 0.93 | |
V65 Gy (%) | 6.83 ± 3.00 | 6.94 ± 3.12 | 6.85 ± 2.61 | 0.30 | 0.86 | |
Dmax(Gy) | 71.45 ± 3.02 | 70.50 ± 2.96 | 71.65 ± 3.93 | 0.00 | 0.50 | |
Dmean(Gy) | 36.46 ± 3.43 | 39.55 ± 3.05 | 39.70 ± 13.19 | 0.00 | 0.96 | |
Rectum | V30 Gy (%) | 60.92 ± 10.54 | 77.73 ± 11.95 | 62.40 ± 10.24 | 0.00 | 0.71 |
V40 Gy (%) | 36.55 ± 7.70 | 44.25 ± 8.50 | 38.34 ± 5.63 | 0.00 | 0.97 | |
V50 Gy (%) | 17.98 ± 4.34 | 22.59 ± 5.20 | 18.53 ± 4.53 | 0.00 | 0.59 | |
V55 Gy (%) | 13.28 ± 4.57 | 16.32 ± 5.30 | 13.39 ± 4.94 | 0.00 | 0.65 | |
V60 Gy (%) | 9.03 ± 3.59 | 10.91 ± 4.21 | 9.30 ± 3.74 | 0.01 | 1.00 | |
V65 Gy (%) | 4.92 ± 2.33 | 5.09 ± 2.40 | 5.30 ± 2.46 | 0.73 | 0.82 | |
Dmean (Gy) | 36.85 ± 2.54 | 40.40 ± 2.53 | 37.28 ± 2.30 | 0.00 | 0.79 | |
Dmax (Gy) | 70.04 ± 3.45 | 68.14 ± 3.25 | 70.26 ± 3.74 | 0.00 | 0.83 | |
Small Bowel | V30 Gy (cc) | 68.38 ± 58.95 | 116.52 ± 82.71 | 70.72 ± 63.51 | 0.00 | 0.94 |
V40 Gy (cc) | 38.85 ± 38.26 | 47.74 ± 39.81 | 39.71 ± 38.79 | 0.22 | 0.94 | |
V50 Gy (cc) | 0.45 ± 0.89 | 0.45 ± 0.90 | 0.65 ± 1.29 | 0.87 | 0.74 | |
Dmax (Gy) | 48.10 ± 10.65 | 47.67 ± 9.82 | 46.27 ± 14.48 | 0.37 | 0.83 | |
Colons | V30 Gy (cc) | 56.51 ± 33.89 | 79.8 ± 42.6 | 58.87 ± 32.14 | 0.00 | 0.85 |
V40 Gy (cc) | 37.53 ± 27.47 | 43.6 ± 27.93 | 37.99 ± 25.22 | 0.08 | 0.96 | |
Dmax (Gy) | 52.69 ± 8.72 | 53.14 ± 3.72 | 53.58 ± 3.94 | 0.89 | 0.32 | |
Anal Canal | V20 Gy (%) | 49.43 ± 20.36 | 57.86 ± 19.25 | 48.42 ± 22.12 | 0.03 | 0.45 |
V50 Gy (%) | 3.70 ± 4.64 | 4.66 ± 4.82 | 3.51 ± 2.74 | 0.41 | 0.70 | |
V60 Gy (%) | 0.76 ± 1.64 | 0.84 ± 1.63 | 0.63 ± 1.13 | 0.92 | 0.78 | |
Penile Bulb | V50 Gy (%) | 46.38 ± 26.09 | 48.28 ± 28.06 | 55.66 ± 31.74 | 0.72 | 0.72 |
V65 Gy (%) | 15.67 ± 21.81 | 16.05 ± 18.05 | 20.94 ± 24.22 | 0.65 | 0.66 | |
Pelvic Bone | V20 Gy (%) | 76.04 ± 6.20 | 84.49 ± 4.61 | 76.38 ± 4.84 | 0.00 | 0.89 |
V30 Gy (%) | 46.19 ± 8.11 | 65.77 ± 6.52 | 47.18 ± 7.90 | 0.00 | 0.50 | |
Dmean (Gy) | 30.20 ± 2.69 | 35.13 ± 2.60 | 30.69 ± 2.69 | 0.00 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Wu, J.; Lin, X.; Wang, G.; Song, T.; Chen, L.; Jia, L.; Cao, Q.; Liu, R.; Liu, Y.; et al. Auto-Segmentation and Auto-Planning in Automated Radiotherapy for Prostate Cancer. Bioengineering 2025, 12, 620. https://doi.org/10.3390/bioengineering12060620
Huang S, Wu J, Lin X, Wang G, Song T, Chen L, Jia L, Cao Q, Liu R, Liu Y, et al. Auto-Segmentation and Auto-Planning in Automated Radiotherapy for Prostate Cancer. Bioengineering. 2025; 12(6):620. https://doi.org/10.3390/bioengineering12060620
Chicago/Turabian StyleHuang, Sijuan, Jingheng Wu, Xi Lin, Guangyu Wang, Ting Song, Li Chen, Lecheng Jia, Qian Cao, Ruiqi Liu, Yang Liu, and et al. 2025. "Auto-Segmentation and Auto-Planning in Automated Radiotherapy for Prostate Cancer" Bioengineering 12, no. 6: 620. https://doi.org/10.3390/bioengineering12060620
APA StyleHuang, S., Wu, J., Lin, X., Wang, G., Song, T., Chen, L., Jia, L., Cao, Q., Liu, R., Liu, Y., Yang, X., Huang, X., & He, L. (2025). Auto-Segmentation and Auto-Planning in Automated Radiotherapy for Prostate Cancer. Bioengineering, 12(6), 620. https://doi.org/10.3390/bioengineering12060620