ASFmeter: A Portable A-Mode Ultrasound Device for Abdominal Subcutaneous Fat Thickness Measurement
Abstract
:1. Introduction
2. Research and Development of the ASFmeter
2.1. Hardware and Framework
2.2. ASF Thickness Calculation
2.3. Technical Specifications of the ASFmeter
3. Measurement with the ASFmeter
3.1. Participants
- Normal weight (n = 28): BMI 18.5–23.9 kg/m2;
- Overweight (n = 6): BMI 24.0–27.9 kg/m2;
- Obese (n = 6): BMI ≥ 28.0 kg/m2.
3.2. Measurement Protocol
3.3. Data Analysis
4. Results
4.1. Error Analysis
4.2. Correlation Analysis Between the ASFmeter and B-Mode Ultrasound Device
4.3. Bland–Altman Analysis
4.4. Analysis of ASF Thickness with Anthropometric Parameters
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body mass index |
AC | Abdominal circumference |
ASF | Abdominal subcutaneous fat |
References
- Dhawan, D.; Sharma, S. Abdominal obesity, adipokines and non-communicable diseases. J. Steroid Biochem. Mol. Biol. 2020, 203, 105737. [Google Scholar] [CrossRef] [PubMed]
- Yarizadeh, H.; Eftekhar, R.; Anjom-Shoae, J.; Speakman, J.R.; Djafarian, K. The effect of aerobic and resistance training and combined exercise modalities on subcutaneous abdominal fat: A systematic review and meta-analysis of randomized clinical trials. Adv. Nutr. 2021, 12, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes. Rev. 2010, 11, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Molnár, V.; Lakner, Z.; Molnár, A.; Tárnoki, D.L.; Tárnoki, Á.D.; Kunos, L.; Tamás, L. The predictive role of subcutaneous adipose tissue in the pathogenesis of obstructive sleep apnoea. Life 2022, 12, 1504. [Google Scholar] [CrossRef]
- Jurczewska, J.; Ostrowska, J.; Chełchowska, M.; Panczyk, M.; Rudnicka, E.; Kucharski, M.; Smolarczyk, R.; Szostak-Węgierek, D. Abdominal obesity in women with polycystic ovary syndrome and its relationship with diet, physical activity and insulin resistance: A pilot study. Nutrients 2023, 15, 3652. [Google Scholar] [CrossRef]
- Huber, F.A.; Del Grande, F.; Rizzo, S.; Guglielmi, G.; Guggenberger, R. MRI in the assessment of adipose tissues and muscle composition: How to use it. Quant. Imaging Med. Surg. 2020, 10, 1636. [Google Scholar] [CrossRef]
- Paris, M.T.; Tandon, P.; Heyland, D.K.; Furberg, H.; Premji, T.; Low, G.; Mourtzakis, M. Automated body composition analysis of clinically acquired computed tomography scans using neural networks. Clin. Nutr. 2020, 39, 3049–3055. [Google Scholar] [CrossRef]
- Messina, C.; Albano, D.; Gitto, S.; Tofanelli, L.; Bazzocchi, A.; Ulivieri, F.M.; Guglielmi, G.; Sconfienza, L.M. Body composition with dual energy X-ray absorptiometry: From basics to new tools. Quant. Imaging Med. Surg. 2020, 10, 1687. [Google Scholar] [CrossRef]
- Wang, B.; He, P.; Zhao, R. B-ultrasound-assisted gluteal fat grafting in Asians: A prospective study of quantitative results from three-dimensional imaging and B-ultrasound analysis. J. Plast. Reconstr. Aesthet. Surg. 2024, 94, 12–19. [Google Scholar] [CrossRef]
- Nickerson, B.S.; Esco, M.R.; Kliszczewicz, B.M.; Freeborn, T.J. Comparison of bioimpedance and underwater weighing body fat percentage before and acutely after exercise at varying intensities. J. Strength Cond. Res. 2017, 31, 1395–1402. [Google Scholar] [CrossRef]
- Aguas-Ayesa, M.; Yárnoz-Esquiroz, P.; Perdomo, C.M.; Olazarán, L.; Vegas-Aguilar, I.M.; García-Almeida, J.M.; Gómez-Ambrosi, J.; Frühbeck, G. Revisiting the beyond BMI paradigm in excess weight diagnosis and management: A call to action. Eur. J. Clin. Investig. 2024, 54, e14218. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, B.S.; Narvaez, S.V.; Juarez, M.I.; Czerwinski, S.A. Effect of total body water estimates via bioimpedance on bod pod-based three-compartment body fat models. Eur. J. Clin. Nutr. 2022, 76, 581–587. [Google Scholar] [CrossRef]
- Campa, F.; Matias, C.N.; Moro, T.; Cerullo, G.; Casolo, A.; Teixeira, F.J.; Paoli, A. Methods over materials: The need for sport-specific equations to accurately predict fat mass using bioimpedance analysis or anthropometry. Nutrients 2023, 15, 278. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, D.; Shi, J.; Yang, Z.; Jin, L.; Zhang, S.; Yang, Y.; Bin, G.; Zeng, Y.; Zheng, D. Regression models for near-infrared measurement of subcutaneous adipose tissue thickness. Physiol. Meas. 2016, 37, 1024. [Google Scholar] [CrossRef] [PubMed]
- Goh, Y.; Balasundaram, G.; Tan, H.M.; Putti, T.C.; Tang, S.W.; Ng, C.W.Q.; Buhari, S.A.; Fang, E.; Moothanchery, M.; Bi, R.; et al. Biochemical “decoding” of breast ultrasound images with optoacoustic tomography fusion: First-in-human display of lipid and collagen signals on breast ultrasound. Photoacoustics 2022, 27, 100377. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.R.; Thompson, B.J.; Anderson, D.A.; Schwartz, S. A-mode and B-mode ultrasound measurement of fat thickness: A cadaver validation study. Eur. J. Clin. Nutr. 2019, 73, 518–523. [Google Scholar] [CrossRef]
- Ribeiro, G.; de Aguiar, R.A.; Penteado, R.; Lisbôa, F.D.; Raimundo, J.A.; Loch, T.; Meira, Â.; Turnes, T.; Caputo, F. A-mode ultrasound reliability in fat and muscle thickness measurement. J. Strength Cond. Res. 2022, 36, 1610–1617. [Google Scholar] [CrossRef]
- Störchle, P.; Müller, W.; Sengeis, M.; Ahammer, H.; Fürhapter-Rieger, A.; Bachl, N.; Lackner, S.; Mörkl, S.; Holasek, S. Standardized ultrasound measurement of subcutaneous fat patterning: High reliability and accuracy in groups ranging from lean to obese. Ultrasound Med. Biol. 2017, 43, 427–438. [Google Scholar] [CrossRef]
- Thiebaud, R.S.; Abe, T.; Loenneke, J.P.; Fujita, E.; Akamine, T. Body fat percentage assessment by ultrasound subcutaneous fat thickness measurements in middle-aged and older adults. Clin. Nutr. 2019, 38, 2659–2667. [Google Scholar] [CrossRef]
- Müller, W.; Horn, M.; Fürhapter-Rieger, A.; Kainz, P.; Kröpfl, J.M.; Ackland, T.R.; Lohman, T.G.; Maughan, R.J.; Meyer, N.L.; Sundgot-Borgen, J.; et al. Body composition in sport: Interobserver reliability of a novel ultrasound measure of subcutaneous fat tissue. Br. J. Sports Med. 2013, 47, 1036–1043. [Google Scholar] [CrossRef]
- Starekova, J.; Hernando, D.; Pickhardt, P.J.; Reeder, S.B. Quantification of liver fat content with CT and MRI: State of the art. Radiology 2021, 301, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Frank, A.P.; de Souza Santos, R.; Palmer, B.F.; Clegg, D.J. Determinants of body fat distribution in humans may provide insight about obesity-related health risks. J. Lipid Res. 2019, 60, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- Anvery, N.; Wan, H.T.; Dirr, M.A.; Christensen, R.E.; Weil, A.; Raja, S.; Reynolds, K.A.; Kyllo, R.L.; Makin, I.R.S.; Poon, E.; et al. Utility of high-resolution ultrasound in measuring subcutaneous fat thickness. Lasers Surg. Med. 2022, 54, 1189–1197. [Google Scholar] [CrossRef]
- Gao, W.; Liu, W.; Hu, Y.; Wang, J. Study of ultrasonic near-field region in ultrasonic liquid-level monitoring system. Micromachines 2020, 11, 763. [Google Scholar] [CrossRef] [PubMed]
Item | Technical Specifications |
---|---|
Measurement Range (mm) | 5~50 mm |
Probe Frequency | 2.5 MHz |
Resolution (mm) | 0.6 mm |
Input Voltage | 6–9 V DC |
Power | <5 W |
Continuous working hours | 6 h |
Weight | <1 kg |
Dimensions | 173 mm × 170 mm × 65 mm |
Title 1 | Male (n = 21) | Female (n = 19) | Male and Female (n = 40) |
---|---|---|---|
Height (cm) | 178.4 ± 6.5 | 166.6 ± 7.1 | 172.8 ± 9.0 |
Weight (kg) | 80.7 ± 10.2 | 58.0 ± 9.4 | 70.1 ± 15.0 |
AC (cm) | 88.2 ± 7.8 | 70.7 ± 7.1 | 79.9 ± 11.5 |
BMI (kg/m2) | 25.4 ± 2.9 | 20.8 ± 2.3 | 23.2 ± 3.5 |
A | B | C | D | E | F | G | |
---|---|---|---|---|---|---|---|
Male (n = 21) | 4.9 ± 2.3 | 4.9 ± 2.3 | 4.2 ± 2.6 | 6.4 ± 2.4 | 12.1 ± 4.1 | 7.5 ± 2.2 | 8.9 ± 3.7 |
Female (n = 19) | 9.7 ± 3.1 | 11.4 ± 2.8 | 8.1 ± 2.7 | 7.9 ± 3.7 | 13.4 ± 4.5 | 8.2 ± 3.3 | 16.2 ± 5.7 |
Male (n = 21) | Female (n = 19) | Male and Female (n = 40) | |
---|---|---|---|
Height (cm) | 0.035 | 0.219 * | 0.217 * |
Weight (kg) | 0.511 ** | 0.495 ** | 0.468 ** |
AC (cm) | 0.664 ** | 0.497 ** | 0.528 ** |
BMI (kg/m2) | 0.545 ** | 0.537 ** | 0.524 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Liu, R.; Li, G.; Zhang, Z.; Wang, Y.; Ji, M.; Yang, L.; Hao, D. ASFmeter: A Portable A-Mode Ultrasound Device for Abdominal Subcutaneous Fat Thickness Measurement. Bioengineering 2025, 12, 567. https://doi.org/10.3390/bioengineering12060567
Zhao H, Liu R, Li G, Zhang Z, Wang Y, Ji M, Yang L, Hao D. ASFmeter: A Portable A-Mode Ultrasound Device for Abdominal Subcutaneous Fat Thickness Measurement. Bioengineering. 2025; 12(6):567. https://doi.org/10.3390/bioengineering12060567
Chicago/Turabian StyleZhao, Hongyang, Ran Liu, Guangfei Li, Zhou Zhang, Yanxin Wang, Man Ji, Lin Yang, and Dongmei Hao. 2025. "ASFmeter: A Portable A-Mode Ultrasound Device for Abdominal Subcutaneous Fat Thickness Measurement" Bioengineering 12, no. 6: 567. https://doi.org/10.3390/bioengineering12060567
APA StyleZhao, H., Liu, R., Li, G., Zhang, Z., Wang, Y., Ji, M., Yang, L., & Hao, D. (2025). ASFmeter: A Portable A-Mode Ultrasound Device for Abdominal Subcutaneous Fat Thickness Measurement. Bioengineering, 12(6), 567. https://doi.org/10.3390/bioengineering12060567