Assessing Implantation Sites for Pancreatic Islet Cell Transplantation: Implications for Type 1 Diabetes Mellitus Treatment
Abstract
:1. Introduction
2. Literature Search Methodology and Report
2.1. Materials and Methods
2.2. Search Report Following PRISMA Guidelines
3. Challenges in Finding the Ideal Site for Bioartificial Pancreas Implantation
4. Bioartificial Pancreas Transplantation into the Liver
5. Bioartificial Pancreas Transplantation into the Omentum
6. Bioartificial Pancreas Transplantation into the Renal Subcapsular Space
7. Bioartificial Pancreas Transplantation into the Subcutaneous Space
8. Bioartificial Pancreas Transplantation into Muscle
9. Bioartificial Pancreas Transplantation into the Gastrointestinal Submucosa Space
10. Bioartificial Pancreas Transplantation into the Intrapleural Space
11. Assessing Biocompatible Scaffolds for Pancreatic Islet Cell Transplantation
12. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Flor, L.S.; Campos, M.R. Prevalência de diabetes mellitus e fatores associados na população adulta brasileira: Evidências de um inquérito de base populacional. Rev. Bras. Epidemiol. 2017, 20, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Sha, H.; Zhu, W. Unveiling causal pathways in autoimmune diseases: A multi-omics approach. Autoimmunity 2025, 58, 2480594. [Google Scholar] [CrossRef] [PubMed]
- Syed Khaja, A.S.; Binsaleh, N.K.; Qanash, H.; Alshetaiwi, H.; Ginawi, I.A.M.; Saleem, M. Dysregulation and therapeutic prospects of regulatory T cells in type 1 diabetes. Acta Diabetol. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Sasaki, A.; Wakabayashi, G.; Yonei, Y. Current status of bariatric surgery in Japan and effectiveness in obesity and diabetes. J. Gastroenterol. 2014, 49, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Mavridou, M.; Pearce, S.H. Exploring antigenic variation in autoimmune endocrinopathy. Front. Immunol. 2025, 16, 1561455. [Google Scholar] [CrossRef]
- Onengut-Gumuscu, S.; Concannon, P.; Akolkar, B.; Erlich, H.A.; Julier, C.; Morahan, G.; Nierras, C.R.; Pociot, F.; Todd, J.A.; Rich, S.S. The Type 1 Diabetes Genetics Consortium (T1DGC). J. Clin. Endocrinol. Metab. 2025, 1079, 1–8. [Google Scholar] [CrossRef]
- Klonoff, D.C. Technological advances in the treatment of diabetes mellitus: Better bioengineering begets benefits in glucose measurement, the artificial pancreas, and insulin delivery. Pediatr. Endocrinol. Rev. 2003, 1, 94–100. [Google Scholar]
- Hassanein, A.; Akhtar, S. Recent advances in stem cell-based therapies for type 1 diabetes: A glimpse into the future. Biomol. Biomed. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Mou, L.; Wang, T.B.; Chen, Y.; Luo, Z.; Wang, X.; Pu, Z. Single-cell genomics and spatial transcriptomics in islet transplantation for diabetes treatment: Advancing towards personalized therapies. Front. Immunol. 2025, 16, 1554876. [Google Scholar] [CrossRef]
- Nassar, M.; Gill, A.S.; Marte, E. Investigating the impact of intestinal glucagon-like peptide-1 on hypoglycemia in type 1 diabetes. World J. Diabetes 2025, 16, 99142. [Google Scholar] [CrossRef]
- Roma-Wilson, M.A.; Buzzetti, R.; Zampetti, S. Bridging Pubertal Changes and Endotype Based Therapy in Type 1 Diabetes. Diabetes Metab. Res. Rev. 2025, 41, e70038. [Google Scholar] [CrossRef]
- Shalev, A. Target Discovery to Diabetes Therapy—TXNIP From Bench to Bedside with NIDDK. Endocrinology 2025, 166, bqaf055. [Google Scholar] [CrossRef]
- Latres, E.; Finan, D.A.; Greenstein, J.L.; Kowalski, A.; Kieffer, T.J. Navigating Two Roads to Glucose Normalization in Diabetes: Automated Insulin Delivery Devices and Cell Therapy. Cell Metab. 2019, 29, 545–563. [Google Scholar] [CrossRef] [PubMed]
- de Jongh, D.; Lapré, S.; Özcan, B.; Zietse, R.; Bunnik, E.M.; Massey, E.K. Clinical Translation and Implementation of a Bioartificial Pancreas Therapy: A Qualitative Study Exploring the Perspectives of People With Type 1 Diabetes. Transplant. Direct 2024, 10, e1711. [Google Scholar] [CrossRef] [PubMed]
- de Jongh, D.; Thom, R.L.; Cronin, A.J.; Bunnik, E.M.; Massey, E.K. Clinical Translation of Bio-Artificial Pancreas Therapies: Ethical, Legal and Psychosocial Interdisciplinary Considerations and Key Recommendations. Transpl. Int. 2023, 36, 11705. [Google Scholar] [CrossRef] [PubMed]
- Futatsubashi, R.; Kaneko, M.; Ito, A. Fabrication of phospholipid polymer-modified alginate hydrogels for bioartificial pancreas. J. Biosci. Bioeng. 2025, 139, 242–248. [Google Scholar] [CrossRef]
- Tomei, A.A.; Manzoli, V.; Fraker, C.A.; Giraldo, J.; Velluto, D.; Najjar, M.; Pileggi, A.; Molano, R.D.; Ricordi, C.; Stabler, C.L.; et al. Device design and materials optimization of conformal coating for islets of Langerhans. Proc. Natl. Acad. Sci. USA 2014, 111, 10514–10519. [Google Scholar] [CrossRef]
- Gross, B.; Lobry, E.; Sigrist, S.; Maillard, E.; Magisson, J.; Burcez, C.T.; Pires, M.; Hébraud, A.; Schlatter, G. Mesoporous Semi-Permeable Flexible Polyurethane Membranes: Advancing Bioartificial Pancreas Design for Type 1 Diabetes Treatment. Macromol. Rapid Commun. 2025, e2500049. [Google Scholar] [CrossRef]
- Mantovani, M.C.; Damaceno-Rodrigues, N.R.; Ronatty, G.T.S.; Segovia, R.S.; Pantanali, C.A.; Rocha-Santos, V.; Caldini, E.G.; Sogayar, M.C. Which detergent is most suitable for the generation of an acellular pancreas bioscaffold? Braz. J. Med. Biol. Res. 2024, 57, e13107. [Google Scholar] [CrossRef]
- Moeun, B.N.; Lemaire, F.; Smink, A.M.; Ebrahimi Orimi, H.; Leask, R.L.; de Vos, P.; Hoesli, C.A. Oxygenation and function of endocrine bioartificial pancreatic tissue constructs under flow for preclinical optimization. J. Tissue Eng. 2025, 16, 20417314241284826. [Google Scholar] [CrossRef]
- Ludwig, B.; Ludwig, S. Transplantable bioartificial pancreas devices: Current status and future prospects. Langenbecks Arch. Surg. 2015, 400, 531–540. [Google Scholar] [CrossRef]
- Moyer, J.C.; Chivukula, V.K.; Taheri-Tehrani, P.; Sandhu, S.; Blaha, C.; Fissell, W.H.; Roy, S. An arteriovenous mock circulatory loop and accompanying bond graph model for in vitro study of peripheral intravascular bioartificial organs. Artif. Organs 2024, 48, 336–346. [Google Scholar] [CrossRef]
- Thom, R.L.; Cronin, A.J. Legal and Regulatory Challenges for Emerging Regenerative Medicine Solutions for Diabetes. Transplantation 2024, 108, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Photiadis, S.J.; Gologorsky, R.C.; Sarode, D. The Current Status of Bioartificial Pancreas Devices. Asaio J. 2021, 67, 370–381. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, P.O.; Palm, F.; Andersson, A.; Liss, P. Chronically decreased oxygen tension in rat pancreatic islets transplanted under the kidney capsule. Transplantation 2000, 69, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Kakabadze, Z.; Shanava, K.; Ricordi, C.; Shapiro, A.M.; Gupta, S.; Berishvili, E. An isolated venous sac as a novel site for cell therapy in diabetes mellitus. Transplantation 2012, 94, 319–324. [Google Scholar] [CrossRef]
- Berney, T.; Wassmer, C.H.; Lebreton, F.; Bellofatto, K.; Fonseca, L.M.; Bignard, J.; Hanna, R.; Peloso, A.; Berishvili, E. From islet of Langerhans transplantation to the bioartificial pancreas. Presse Méd. 2022, 51, 104139. [Google Scholar] [CrossRef]
- Zhu, H.; Li, W.; Liu, Z.; Li, W.; Chen, N.; Lu, L.; Zhang, W.; Wang, Z.; Wang, B.; Pan, K.; et al. Selection of Implantation Sites for Transplantation of Encapsulated Pancreatic Islets. Tissue Eng. Part B Rev. 2018, 24, 191–214. [Google Scholar] [CrossRef]
- Hwang, P.T.J.; Shah, D.K.; Garcia, J.A.; Bae, C.Y.; Lim, D.-J.; Huiszoon, R.C.; Alexander, G.C.; Jun, H.-W. Progress and challenges of the bioartificial pancreas. Nano Converg. 2016, 3, 28. [Google Scholar] [CrossRef]
- Frier, B.M. Hypoglycaemia in diabetes mellitus: Epidemiology and clinical implications. Nat. Rev. Endocrinol. 2014, 10, 711–722. [Google Scholar] [CrossRef]
- Carlsson, P.O.; Palm, F.; Mattsson, G. Low revascularization of experimentally transplanted human pancreatic islets. J. Clin. Endocrinol. Metab. 2002, 87, 5418–5423. [Google Scholar] [CrossRef]
- Menger, M.D.; Jaeger, S.; Walter, P.; Feifel, G.; Hammersen, F.; Messmer, K. Angiogenesis and hemodynamics of microvasculature of transplanted islets of Langerhans. Diabetes 1989, 38 (Suppl. S1), 199–201. [Google Scholar] [CrossRef]
- Ozmen, L.; Ekdahl, K.N.; Elgue, G.; Larsson, R.; Korsgren, O.; Nilsson, B. Inhibition of thrombin abrogates the instant blood-mediated inflammatory reaction triggered by isolated human islets: Possible application of the thrombin inhibitor melagatran in clinical islet transplantation. Diabetes 2002, 51, 1779–1784. [Google Scholar] [CrossRef] [PubMed]
- Kemp, C.B.; Knight, M.J.; Scharp, D.W.; Lacy, P.E.; Ballinger, W.F. Transplantation of isolated pancreatic islets into the portal vein of diabetic rats. Nature 1973, 244, 447. [Google Scholar] [CrossRef] [PubMed]
- Naziruddin, B.; Iwahashi, S.; Kanak, M.A.; Takita, M.; Itoh, T.; Levy, M.F. Evidence for instant blood-mediated inflammatory reaction in clinical autologous islet transplantation. Am. J. Transplant. 2014, 14, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.M.; Lakey, J.R.; Ryan, E.A.; Korbutt, G.S.; Toth, E.; Warnock, G.L.; Kneteman, N.M.; Rajotte, R.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 2000, 343, 230–238. [Google Scholar] [CrossRef]
- Koh, A.; Senior, P.; Salam, A.; Kin, T.; Imes, S.; Dinyari, P.; Malcolm, A.; Toso, C.; Nilsson, B.; Korsgren, O.; et al. Insulin-heparin infusions peritransplant substantially improve single-donor clinical islet transplant success. Transplantation 2010, 89, 465–471. [Google Scholar] [CrossRef]
- Yasunami, Y.; Nakafusa, Y.; Nitta, N.; Nakamura, M.; Goto, M.; Ono, J.; Taniguchi, M. A Novel Subcutaneous Site of Islet Transplantation Superior to the Liver. Transplantation 2018, 102, 945–952. [Google Scholar] [CrossRef]
- Johansson, H.; Lukinius, A.; Moberg, L.; Lundgren, T.; Berne, C.; Foss, A.; Felldin, M.; Källen, R.; Salmela, K.; Tibell, A.; et al. Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes 2005, 54, 1755–1762. [Google Scholar] [CrossRef]
- Olsson, R.; Olerud, J.; Pettersson, U.; Carlsson, P.O. Increased numbers of low-oxygenated pancreatic islets after intraportal islet transplantation. Diabetes 2011, 60, 2350–2353. [Google Scholar] [CrossRef]
- Cayabyab, F.; Nih, L.R.; Yoshihara, E. Advances in Pancreatic Islet Transplantation Sites for the Treatment of Diabetes. Front. Endocrinol. 2021, 12, 732431. [Google Scholar] [CrossRef]
- Harlan, D.M.; Kenyon, N.S.; Korsgren, O.; Roep, B.O. Current advances and travails in islet transplantation. Diabetes 2009, 58, 2175–2184. [Google Scholar] [CrossRef]
- Dombrowski, F.; Mathieu, C.; Evert, M. Hepatocellular neoplasms induced by low-number pancreatic islet transplants in autoimmune diabetic BB/Pfd rats. Cancer Res. 2006, 66, 1833–1843. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.F.; San Martin, V.T.; Walsh, R.M.; Bottino, R.; Stevens, T.; Trucco, M.; Hatipoglu, B. Change in Functional Beta Cell Capacity With Time Following Autologous Islet Transplantation. Pancreas 2019, 48, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Rotariu, D.; Babes, E.E.; Tit, D.M.; Moisi, M.; Bustea, C.; Stoicescu, M.; Radu, A.-F.; Vesa, C.M.; Behl, T.; Bungau, A.F.; et al. Oxidative stress—Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed. Pharmacother. 2022, 152, 113238. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Wang, L.; van der Laan, L.J.W.; Pan, Q.; Verstegen, M.M.A. Mitochondrial Dysfunction and Oxidative Stress in Liver Transplantation and Underlying Diseases: New Insights and Therapeutics. Transplantation 2021, 105, 2362–2373. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Y.; Yang, L.; Wang, R. Insights into the Role of Oxidative Stress in Hepatocellular Carcinoma Development. Front. Biosci. 2023, 28, 286. [Google Scholar] [CrossRef]
- Doherty, D.T.; Khambalia, H.A.; van Dellen, D.; Jennings, R.E.; Piper Hanley, K. Unlocking the post-transplant microenvironment for successful islet function and survival. Front. Endocrinol. 2023, 14, 1250126. [Google Scholar] [CrossRef]
- Carlsson, P.O. Influence of microenvironment on engraftment of transplanted β-cells. Ups. J. Med. Sci. 2011, 116, 1–7. [Google Scholar] [CrossRef]
- Fotino, N.; Fotino, C.; Pileggi, A. Re-engineering islet cell transplantation. Pharmacol. Res. 2015, 98, 76–85. [Google Scholar] [CrossRef]
- Santos da Silva, T.; Silva-Júnior, L.N.d.; Horvath-Pereira, B.d.O.; Valbão, M.C.M.; Garcia, M.H.H.; Lopes, J.B.; Reis, C.H.B.; Barreto, R.d.S.N.; Buchaim, D.V.; Buchaim, R.L.; et al. The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas. Biomimetics 2024, 9, 598. [Google Scholar] [CrossRef]
- Gheorghe, G.; Bungau, S.; Ilie, M.; Behl, T.; Vesa, C.M.; Brisc, C.; Bacalbasa, N.; Turi, V.; Costache, R.S.; Diaconu, C.C. Early Diagnosis of Pancreatic Cancer: The Key for Survival. Diagnostics 2020, 10, 869. [Google Scholar] [CrossRef]
- Dudgeon, C.; Casabianca, A.; Harris, C.; Ogier, C.; Bellina, M.; Fiore, S.; Bernet, A.; Ducarouge, B.; Goldschneider, D.; Su, X.; et al. Netrin-1 feedforward mechanism promotes pancreatic cancer liver metastasis via hepatic stellate cell activation, retinoid, and ELF3 signaling. Cell Rep. 2023, 42, 113369. [Google Scholar] [CrossRef] [PubMed]
- Cugnenc, P.H.; Bethoux, J.P.; Altman, J.J.; Bismuth, H.; Wind, P.; Drevillon, C.; Tessier, C.; Moulonguet, L.; Chrétien, Y. Implantation of pancreatic islets in arteriolar epiploic flap. Preliminary note on 3 cases. Chirurgie 1990, 116, 268–274. [Google Scholar] [PubMed]
- Di Nicola, V. Omentum a powerful biological source in regenerative surgery. Regen. Ther. 2019, 11, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Berkova, Z.; Zacharovova, K.; Patikova, A.; Leontovyc, I.; Hladikova, Z.; Cerveny, D.; Tihlarikova, E.; Nedela, V.; Girman, P.; Jirak, D.; et al. Decellularized Pancreatic Tail as Matrix for Pancreatic Islet Transplantation into the Greater Omentum in Rats. J. Funct. Biomater. 2022, 13, 171. [Google Scholar] [CrossRef]
- Pellicciaro, M.; Vella, I.; Lanzoni, G.; Tisone, G.; Ricordi, C. The greater omentum as a site for pancreatic islet transplantation. CellR4 Repair Replace. Regen. Reprogramming 2017, 5, e2410. [Google Scholar]
- Schaschkow, A.; Mura, C.; Pinget, M.; Bouzakri, K.; Maillard, E. Intra-Omental Islet Transplantation Using h-Omental Matrix Islet filliNG (hOMING). J. Vis. Exp. 2019, e58898. [Google Scholar] [CrossRef]
- al-Abdullah, I.H.; Anil Kumar, M.S.; Kelly-Sullivan, D.; Abouna, G.M. Site for unpurified islet transplantation is an important parameter for determination of the outcome of graft survival and function. Cell Transplant. 1995, 4, 297–305. [Google Scholar] [CrossRef]
- Berman, D.M.; Molano, R.D.; Fotino, C.; Ulissi, U.; Gimeno, J.; Mendez, A.J.; Kenyon, N.M.; Kenyon, N.S.; Andrews, D.M.; Ricordi, C.; et al. Bioengineering the Endocrine Pancreas: Intraomental Islet Transplantation Within a Biologic Resorbable Scaffold. Diabetes 2016, 65, 1350–1361. [Google Scholar] [CrossRef]
- Kim, H.I.; Yu, J.E.; Park, C.G.; Kim, S.J. Comparison of four pancreatic islet implantation sites. J. Korean Med. Sci. 2010, 25, 203–210. [Google Scholar] [CrossRef]
- Rajab, A.A.; Ahrén, B.; Bengmark, S. Islet transplantation to the renal subcapsular space in streptozotocin-diabetic rats: Short-term effects on glucose-stimulated insulin secretion. Diabetes Res. Clin. Pract. 1989, 7, 197–204. [Google Scholar] [CrossRef]
- Reece-Smith, H.; McShane, P.; Morris, P.J. Glucose and insulin changes following a renoportal shunt in streptozotocin diabetic rats with pancreatic islet isografts under the kidney capsule. Diabetologia 1982, 23, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.J.; Gala-Lopez, B.L.; Pepper, A.R.; Pawlick, R.L.; Shapiro, A.J. Bioengineered stem cells as an alternative for islet cell transplantation. World J. Transplant. 2015, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rajab, A. Islet transplantation: Alternative sites. Curr. Diab Rep. 2010, 10, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Hirakata, A.; Tchipashvili, V.; Shimizu, A.; Iwaki, H.; Griesemer, A.; Vallabhajosyula, P.; Moran, S.; Sachs, D.H. Composite islet-kidneys from single baboon donors cure diabetes across fully allogenic barriers. Am. J. Transplant. 2011, 11, 2603–2612. [Google Scholar] [CrossRef]
- Pathiraja, V.; Villani, V.; Tasaki, M.; Matar, A.J.; Duran-Struuck, R.; Yamada, R.; Moran, S.G.; Clayman, E.S.; Hanekamp, J.; Shimizu, A.; et al. Tolerance of Vascularized Islet-Kidney Transplants in Rhesus Monkeys. Am. J. Transplant. 2017, 17, 91–102. [Google Scholar] [CrossRef]
- Mitsugashira, H.; Imura, T.; Inagaki, A.; Endo, Y.; Katano, T.; Saito, R.; Miyagi, S.; Watanabe, K.; Kamei, T.; Unno, M.; et al. Development of a novel method for measuring tissue oxygen pressure to improve the hypoxic condition in subcutaneous islet transplantation. Sci. Rep. 2022, 12, 14731. [Google Scholar] [CrossRef]
- Halberstadt, C.R.; Williams, D.; Emerich, D.; Goddard, M.; Vasconcellos, A.V.; Curry, W.; Bhatia, A.; Gores, P.F. Subcutaneous transplantation of islets into streptozocin-induced diabetic rats. Cell Transplant. 2005, 14, 595–605. [Google Scholar] [CrossRef]
- Weidling, J.; Sameni, S.; Lakey, J.R.; Botvinick, E. Method measuring oxygen tension and transport within subcutaneous devices. J. Biomed. Opt. 2014, 19, 087006. [Google Scholar] [CrossRef]
- Nakamura, K.; Iwazawa, R.; Yoshioka, Y. Introduction to a new cell transplantation platform via recombinant peptide petaloid pieces and its application to islet transplantation with mesenchymal stem cells. Transpl. Int. 2016, 29, 1039–1050. [Google Scholar] [CrossRef]
- Patikova, A.; Vojtiskova, A.; Fabryova, E.; Kosinova, L.; Heribanova, A.; Sticova, E.; Berkova, Z.; Hladikova, Z.; Kriz, J. The Optimal Maturation of Subcutaneous Pouch Can Improve Pancreatic Islets Engraftment in Rat Model. Transplantation 2022, 106, 531–542. [Google Scholar] [CrossRef]
- Pepper, A.R.; Gala-Lopez, B.; Pawlick, R.; Merani, S.; Kin, T.; Shapiro, A.M. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat. Biotechnol. 2015, 33, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, Y.; Uchida, K.; Haba, T.; Katayama, A.; Sato, T.; Hibi, Y.; Numano, M.; Tanaka, Y.; Inagaki, H.; Watanabe, I.; et al. More than 1000 cases of total parathyroidectomy with forearm autograft for renal hyperparathyroidism. Am. J. Kidney Dis. 2001, 38, S168–S171. [Google Scholar] [CrossRef] [PubMed]
- Svensson, J.; Lau, J.; Sandberg, M.; Carlsson, P.O. High vascular density and oxygenation of pancreatic islets transplanted in clusters into striated muscle. Cell Transplant. 2011, 20, 783–788. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, Z.; You, Y.; Yang, W.; Feng, B.; Yang, Y.; Li, F.; Chen, J.; Gao, H. Subcutaneous device-free islet transplantation. Front. Immunol. 2023, 14, 1287182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Du, H.; Guan, Y.; Liu, J.; Wang, S.; Li, H.; Zhang, W.; Han, H.; Zhang, M.; Chen, L. Study on the Effect of PDA-PLGA Scaffold Loaded With Islet Cells for Skeletal Muscle Transplantation in the Treatment of Diabetes. Front. Bioeng. Biotechnol. 2022, 10, 927348. [Google Scholar] [CrossRef]
- Rafael, E.; Tibell, A.; Rydén, M.; Lundgren, T.; Sävendahl, L.; Borgström, B.; Arnelo, U.; Isaksson, B.; Nilsson, B.; Korsgren, O.; et al. Intramuscular autotransplantation of pancreatic islets in a 7-year-old child: A 2-year follow-up. Am. J. Transplant. 2008, 8, 458–462. [Google Scholar] [CrossRef]
- Bertuzzi, F.; Colussi, G.; Lauterio, A.; De Carlis, L. Intramuscular islet allotransplantation in type 1 diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 1731–1736. [Google Scholar] [CrossRef]
- Champault, G.; Michel, F.; Callard, P.; Garnier, M.; Legoult, J.; Soulier, Y.; Burnichon, J.; Mannoux, A.; Patel, J. Pancreatic transplantation. Implantation of auto and allografts of the pancreas into the gastric wall of the diabetic rabbit (author’s transl). J. Chir. 1978, 115, 233–242. [Google Scholar]
- Xiaohui, T.; Wujun, X.; Xiaoming, D.; Xinlu, P.; Yan, T.; Puxun, T.; Xinshun, F. Small intestinal submucosa improves islet survival and function in vitro culture. Transplant. Proc. 2006, 38, 1552–1558. [Google Scholar] [CrossRef]
- Echeverri, G.J.; McGrath, K.; Bottino, R.; Hara, H.; Dons, E.M.; Van Der Windt, D.J.; Ekser, B.; Casu, A.; Houser, S.; Ezzelarab, M.; et al. Endoscopic Gastric Submucosal Transplantation of Islets (ENDO-STI): Technique and Initial Results in Diabetic Pigs. Am. J. Transplant. 2009, 9, 2485–2496. [Google Scholar] [CrossRef]
- Wszola, M.; Berman, A.; Fabisiak, M.; Domagala, P.; Zmudzka, M.; Kieszek, R.; Perkowska-Ptasinska, A.; Sabat, M.; Pawelec, K.; Kownacki, L.; et al. TransEndoscopic Gastric SubMucosa Islet Transplantation (eGSM-ITx) in pigs with streptozotocine induced diabetes—Technical aspects of the procedure—Preliminary report. Ann. Transplant. Q. Pol. Transplant. Soc. 2009, 14, 45–50. [Google Scholar]
- Caiazzo, R.; Gmyr, V.; Hubert, T.; Delalleau, N.; Lamberts, R.; Moerman, E.; Kerr-Conte, J.; Pattou, F. Evaluation of Alternative Sites for Islet Transplantation in the Minipig: Interest and Limits of the Gastric Submucosa. Transplant. Proc. 2007, 39, 2620–2623. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.Z.; Wang, S.S.; Li, Q.; Huang, Y.; Chen, L.; Chen, G.; Liu, R.; Wang, X.M. Gastric submucosa is inferior to the liver as transplant site for autologous islet transplantation in pancreatectomized diabetic Beagles. J. Huazhong Univ. Sci. Technol. Med. Sci. 2016, 36, 529–533. [Google Scholar] [CrossRef]
- Tchervenivanov, N.; Yuan, S.; Lipsett, M.; Agapitos, D.; Rosenberg, L. Morphological and functional studies on submucosal islet transplants in normal and diabetic hamsters. Cell Transplant. 2002, 11, 529–537. [Google Scholar] [CrossRef]
- Kaur, S.; Cortiella, J.; Vacanti, C.A. Identifying a site for maximum delivery of oxygen to transplanted cells. Tissue Eng. 2000, 6, 229–232. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, A.; Deng, H.; Yang, Z.; Peters, C.W.; Lee, K.M.; Wang, Z.; Rosales, I.A.; Rickert, C.G.; Markmann, J.F. Intrapleural transplantation of allogeneic pancreatic islets achieves glycemic control in a diabetic non-human primate. Am. J. Transplant. 2022, 22, 966–972. [Google Scholar] [CrossRef]
- Bellofatto, K.; Moeckli, B.; Wassmer, C.-H.; Laurent, M.; Oldani, G.; Andres, A.; Berney, T.; Berishvili, E.; Toso, C.; Peloso, A. Bioengineered Islet Cell Transplantation. Curr. Transplant. Rep. 2021, 8, 57–66. [Google Scholar] [CrossRef]
- Llacua, L.A.; Faas, M.M.; de Vos, P. Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia 2018, 61, 1261–1272. [Google Scholar] [CrossRef]
- Hendrawan, S.; Yusuf, I.; Hatta, M.; Aman, M.; Patellongi, I.; Serra, A.L.; Lawrence, G.; Weber, U.; Sutedja, B.; Baer, H.U. Allogeneic islet cells implant on poly-l-lactide matrix to reduce hyperglycaemia in streptozotocin-induced diabetic rat. Pancreatology 2017, 17, 411–418. [Google Scholar] [CrossRef]
- Li, H.; Shang, Y.; Feng, Q.; Liu, Y.; Chen, J.; Dong, H. A novel bioartificial pancreas fabricated via islets microencapsulation in anti-adhesive core-shell microgels and macroencapsulation in a hydrogel scaffold prevascularized in vivo. Bioact. Mater. 2023, 27, 362–376. [Google Scholar] [CrossRef]
- Sevastianov, V.I.; Ponomareva, A.S.; Baranova, N.V.; Belova, A.D.; Kirsanova, L.A.; Nikolskaya, A.O.; Kuznetsova, E.G.; Chuykova, E.O.; Skaletskiy, N.N.; Skaletskaya, G.N.; et al. A Tissue-Engineered Construct Based on a Decellularized Scaffold and the Islets of Langerhans: A Streptozotocin-Induced Diabetic Model. Life 2024, 14, 1505. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabriel Silvério Scholl, V.; Todeschini Justus, L.; Girotto, O.S.; Karine Pasqual, K.; Garcia, M.H.H.; da Silva Petronio, F.G.; de Moraes, A.F.; Maria Barbalho, S.; Araújo, A.C.; Fornari Laurindo, L.; et al. Assessing Implantation Sites for Pancreatic Islet Cell Transplantation: Implications for Type 1 Diabetes Mellitus Treatment. Bioengineering 2025, 12, 499. https://doi.org/10.3390/bioengineering12050499
Gabriel Silvério Scholl V, Todeschini Justus L, Girotto OS, Karine Pasqual K, Garcia MHH, da Silva Petronio FG, de Moraes AF, Maria Barbalho S, Araújo AC, Fornari Laurindo L, et al. Assessing Implantation Sites for Pancreatic Islet Cell Transplantation: Implications for Type 1 Diabetes Mellitus Treatment. Bioengineering. 2025; 12(5):499. https://doi.org/10.3390/bioengineering12050499
Chicago/Turabian StyleGabriel Silvério Scholl, Vinícius, Leonardo Todeschini Justus, Otávio Simões Girotto, Kelly Karine Pasqual, Matheus Henrique Herminio Garcia, Fernando Gonçalves da Silva Petronio, Aline Flores de Moraes, Sandra Maria Barbalho, Adriano Cressoni Araújo, Lucas Fornari Laurindo, and et al. 2025. "Assessing Implantation Sites for Pancreatic Islet Cell Transplantation: Implications for Type 1 Diabetes Mellitus Treatment" Bioengineering 12, no. 5: 499. https://doi.org/10.3390/bioengineering12050499
APA StyleGabriel Silvério Scholl, V., Todeschini Justus, L., Girotto, O. S., Karine Pasqual, K., Garcia, M. H. H., da Silva Petronio, F. G., de Moraes, A. F., Maria Barbalho, S., Araújo, A. C., Fornari Laurindo, L., Camargo, C. P., & Miglino, M. A. (2025). Assessing Implantation Sites for Pancreatic Islet Cell Transplantation: Implications for Type 1 Diabetes Mellitus Treatment. Bioengineering, 12(5), 499. https://doi.org/10.3390/bioengineering12050499