Modification of a Two-Part Cancellous Locking Screw: A Pilot Study on Increasing Resistance to Axial Pullout Strength
Abstract
1. Introduction
2. Materials and Methods
2.1. Screw Design and Rationale
2.2. Biomechanical Analysis
3. Results
3.1. Driving Torque
3.2. Axial Pullout Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Egol, K.A.; Kubiak, E.N.; Fulkerson, E.; Kummer, F.J.; Koval, K.J. Biomechanics of locked plates and screws. J. Orthop. Trauma 2004, 18, 488–493. [Google Scholar] [CrossRef]
- Kubiak, E.N.; Fulkerson, E.; Strauss, E.; Egol, K.A. The evolution of locked plates. J. Bone Jt. Surg. Am. 2006, 88 (Suppl. S4), 189–200. [Google Scholar] [CrossRef]
- Bel, J.C. Pitfalls and limits of locking plates. Orthop. Traumatol. Surg. Res. 2019, 105, S103–S109. [Google Scholar] [CrossRef]
- Gueorguiev, B.; Lenz, M. Why and how do locking plates fail? Injury 2018, 49 (Suppl. S1), S56–S60. [Google Scholar] [CrossRef]
- Cronier, P.; Pietu, G.; Dujardin, C.; Bigorre, N.; Ducellier, F.; Gerard, R. The concept of locking plates. Orthop. Traumatol. Surg. Res. 2010, 96, S17–S36. [Google Scholar] [CrossRef]
- Strauss, E.J.; Schwarzkopf, R.; Kummer, F.; Egol, K.A. The current status of locked plating: The good, the bad, and the ugly. J. Orthop. Trauma 2008, 22, 479–486. [Google Scholar] [CrossRef]
- Fernandes, M.G.; Fonseca, E.M.M.; Jorge, R.N.; Vaz, M.; Dias, M.I. Thermal analysis in drilling of ex vivo bovine bones. J. Mech. Med. Biol. 2017, 17, 1750082. [Google Scholar] [CrossRef]
- Feldmann, A.; Anso, J.; Bell, B.; Williamson, T.; Gavaghan, K.; Gerber, N.; Rohrbach, H.; Weber, S.; Zysset, P. Temperature prediction model for bone drilling based on density distribution and in vivo experiments for minimally invasive robotic cochlear implantation. Ann. Biomed. Eng. 2016, 44, 1576–1586. [Google Scholar] [CrossRef]
- Brunner, F.; Sommer, C.; Bahrs, C.; Heuwinkel, R.; Hafner, C.; Rillmann, P.; Kohut, G.; Ekelund, A.; Muller, M.; Audige, L.; et al. Open reduction and internal fixation of proximal humerus fractures using a proximal humeral locked plate: A prospective multicenter analysis. J. Orthop. Trauma 2009, 23, 163–172. [Google Scholar] [CrossRef]
- Brorson, S.; Frich, L.H.; Winther, A.; Hrobjartsson, A. Locking plate osteosynthesis in displaced 4-part fractures of the proximal humerus. Acta Orthop. 2011, 82, 475–481. [Google Scholar] [CrossRef]
- Lee, C.W.; Shin, S.J. Prognostic factors for unstable proximal humeral fractures treated with locking-plate fixation. J. Shoulder Elb. Surg. 2009, 18, 83–88. [Google Scholar] [CrossRef]
- Thanasas, C.; Kontakis, G.; Angoules, A.; Limb, D.; Giannoudis, P. Treatment of proximal humerus fractures with locking plates: A systematic review. J. Shoulder Elb. Surg. 2009, 18, 837–844. [Google Scholar] [CrossRef]
- Schliemann, B.; Siemoneit, J.; Theisen, C.; Kosters, C.; Weimann, A.; Raschke, M.J. Complex fractures of the proximal humerus in the elderly--outcome and complications after locking plate fixation. Musculoskelet. Surg. 2012, 96 (Suppl. S1), S3–S11. [Google Scholar] [CrossRef]
- Moser, J.E.; Kunkel, K.A.R.; Gerard, P.D. Pullout strength of 2.0 mm cancellous and cortical screws in synthetic bone. Vet. Surg. 2017, 46, 1110–1115. [Google Scholar] [CrossRef]
- Wang, T.; Boone, C.; Behn, A.W.; Ledesma, J.B.; Bishop, J.A. Cancellous Screws Are Biomechanically Superior to Cortical Screws in Metaphyseal Bone. Orthopedics 2016, 39, e828–e832. [Google Scholar] [CrossRef]
- ASTM F543-07e1; Standard Specification and Test Methods for Metallic Medical Bone Screws. ASTM International: West Conshohocken, PA, USA, 2016. Available online: https://store.astm.org/f0543-07e01.html (accessed on 20 April 2025).
- ASTM F1839-08(2016); Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments. ASTM International: West Conshohocken, PA, USA, 2016. Available online: https://www.astm.org/Standards/F1839.htm (accessed on 20 April 2025).
- Pacific Research Laboratories, Inc. Solid Rigid Polyurethane Foam Properties (Version 03). 2020. Available online: https://www.sawbones.com/media/assets/product/documents/Solid_Rigid_Polyurethane_Foam_Properties_V03.pdf (accessed on 17 April 2025).
- Robinson, M.A.; Vanrenterghem, J.; Pataky, T.C. Sample size estimation for biomechanical waveforms: Current practice, recommendations and a comparison to discrete power analysis. J. Biomech. 2021, 122, 110451. [Google Scholar] [CrossRef]
- Rothberg, D.L.; Lee, M.A. Internal fixation of osteoporotic fractures. Curr. Osteoporos. Rep. 2015, 13, 16–21. [Google Scholar] [CrossRef]
- Elkins, J.; Marsh, J.L.; Lujan, T.; Peindl, R.; Kellam, J.; Anderson, D.D.; Lack, W. Motion Predicts Clinical Callus Formation: Construct-Specific Finite Element Analysis of Supracondylar Femoral Fractures. J. Bone Jt. Surg. Am. 2016, 98, 276–284. [Google Scholar] [CrossRef]
- Sommer, C.; Gautier, E.; Muller, M.; Helfet, D.L.; Wagner, M. First clinical results of the Locking Compression Plate (LCP). Injury 2003, 34 (Suppl. S2), B43–B54. [Google Scholar] [CrossRef]
- Bottlang, M.; Doornink, J.; Lujan, T.J.; Fitzpatrick, D.C.; Marsh, J.L.; Augat, P.; von Rechenberg, B.; Lesser, M.; Madey, S.M. Effects of construct stiffness on healing of fractures stabilized with locking plates. J. Bone Jt. Surg. Am. 2010, 92 (Suppl. S2), 12–22. [Google Scholar] [CrossRef]
- Lujan, T.J.; Henderson, C.E.; Madey, S.M.; Fitzpatrick, D.C.; Marsh, J.L.; Bottlang, M. Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation. J. Orthop. Trauma 2010, 24, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Bottlang, M.; Shetty, S.S.; Blankenau, C.; Wilk, J.; Tsai, S.; Fitzpatrick, D.C.; Marsh, L.J.; Madey, S.M. Advances in Dynamization of Plate Fixation to Promote Natural Bone Healing. J. Clin. Med. 2024, 13, 2905. [Google Scholar] [CrossRef] [PubMed]
- Huxman, C.; Lewis, G.; Armstrong, A.; Updegrove, G.; Koroneos, Z.; Butler, J. Mechanically compliant locking plates for diaphyseal fracture fixation: A biomechanical study. J. Orthop. Res. 2025, 43, 217–227. [Google Scholar] [CrossRef]
- England, T.; Khan, H.; Moniz, S.; Mitchell, D.; Kuster, M.S. Does Far Cortical Locking Improve Fracture Healing in Distal Femur Fractures: A Randomised, Controlled, Prospective Multicentre Study. J. Clin. Med. 2023, 12, 7554. [Google Scholar] [CrossRef]
- Lee, D.O.; Kang, H.W.; Kim, D.Y.; Park, G.Y.; Hwang, I.U.; Lee, D.Y. Efficacy of Far Cortical Locking Screws in Treating Distal Tibia Fractures in Comparison with That of Standard Locking Screws. J. Foot Ankle Surg. 2023, 62, 422–425. [Google Scholar] [CrossRef]
- Brzozowski, P.; Inculet, C.; Schemitsch, E.H.; Zdero, R. Biomechanical testing of a computationally optimized far cortical locking plate versus traditional implants for distal femur fracture repair. Clin. Biomech. 2024, 117, 106296. [Google Scholar] [CrossRef]
- Lim, E.J.; Cho, J.W.; Shon, O.J.; Oh, J.K.; Hwang, K.T.; Lee, G.C. Far cortical locking constructs for fixation of distal femur fractures in an Asian population: A prospective observational study. J. Orthop. Sci. 2024, 30, 372–378. [Google Scholar] [CrossRef]
- Bullock, R.S.; Coury, J.G.; Liakos, B.; Huish, E.G. Far cortical locking versus standard locking screw fixation in simulated femoral fractures: A biomechanical meta-analysis. J. Orthop. 2025, 61, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Dobele, S.; Horn, C.; Eichhorn, S.; Buchholtz, A.; Lenich, A.; Burgkart, R.; Nussler, A.K.; Lucke, M.; Andermatt, D.; Koch, R.; et al. The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. Langenbecks Arch. Surg. 2010, 395, 421–428. [Google Scholar] [CrossRef]
- Freude, T.; Schroeter, S.; Plecko, M.; Bahrs, C.; Martetschlaeger, F.; Kraus, T.M.; Stoeckle, U.; Doebele, S. Dynamic-locking-screw (DLS)-leads to less secondary screw perforations in proximal humerus fractures. BMC Musculoskelet. Disord. 2014, 15, 194. [Google Scholar] [CrossRef]
- Vicenti, G.; Pesce, V.; Tartaglia, N.; Abate, A.; Mori, C.M.; Moretti, B. Micromotion in the fracture healing of closed distal metaphyseal tibial fractures: A multicentre prospective study. Injury 2014, 45 (Suppl. S6), S27–S35. [Google Scholar] [CrossRef] [PubMed]
- Pohlemann, T.; Gueorguiev, B.; Agarwal, Y.; Wahl, D.; Sprecher, C.; Schwieger, K.; Lenz, M. Dynamic locking screw improves fixation strength in osteoporotic bone: An in vitro study on an artificial bone model. Int. Orthop. 2015, 39, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Richter, H.; Plecko, M.; Andermatt, D.; Frigg, R.; Kronen, P.W.; Klein, K.; Nuss, K.; Ferguson, S.J.; Stockle, U.; von Rechenberg, B. Dynamization at the near cortex in locking plate osteosynthesis by means of dynamic locking screws: An experimental study of transverse tibial osteotomies in sheep. J. Bone Jt. Surg. Am. 2015, 97, 208–215. [Google Scholar] [CrossRef]
- Acklin, Y.P.; Stockle, U.; Sommer, C. Clinical and radiologic outcomes associated with the use of dynamic locking screws (DLS) in distal tibia fractures. Eur. J. Trauma Emerg. Surg. 2016, 42, 351–356. [Google Scholar] [CrossRef] [PubMed]
TP-LCS | LS | p-Value # | TP-LCS/LS | Raw Data of TP-LCS and LS | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Property | Mean | SD | Mean | SD | Screw 1 | Screw 2 | Screw 3 | Screw 4 | Screw 5 | ||
Driving torque test | |||||||||||
Max. insertion torque (N·cm) | 4.9 | 0.4 | 4.2 | 0.4 | 0.0269 | TP-LCS LS | 5.0 4.6 | 5.0 3.6 | 5.3 4.1 | 4.7 4.5 | 4.3 4.2 |
Max. removal torque (N·cm) | −3.8 | 0.2 | −3.5 | 0.3 | 0.1046 | TP-LCS LS | −3.5 −3.5 | −4.0 −3.5 | −3.8 −3.9 | −3.9 −3.1 | −3.7 −3.5 |
Axial pullout test | |||||||||||
Axial pullout strength (N) | 223.5 | 12.2 | 203.5 | 11.5 | 0.0284 | TP-LCS LS | 213.1 204.7 | 224.6 197.8 | 213.5 221.9 | 243.2 191.1 | 223.1 201.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-H.; Hsu, N.-C.; Lin, S.-Y.; Lu, C.-C.; Fu, Y.-C.; Huang, H.-T.; Chen, C.-H.; Chou, P.-H. Modification of a Two-Part Cancellous Locking Screw: A Pilot Study on Increasing Resistance to Axial Pullout Strength. Bioengineering 2025, 12, 444. https://doi.org/10.3390/bioengineering12050444
Hsu C-H, Hsu N-C, Lin S-Y, Lu C-C, Fu Y-C, Huang H-T, Chen C-H, Chou P-H. Modification of a Two-Part Cancellous Locking Screw: A Pilot Study on Increasing Resistance to Axial Pullout Strength. Bioengineering. 2025; 12(5):444. https://doi.org/10.3390/bioengineering12050444
Chicago/Turabian StyleHsu, Chia-Hao, Nin-Chieh Hsu, Sung-Yen Lin, Cheng-Chang Lu, Yin-Chih Fu, Hsuan-Ti Huang, Chung-Hwan Chen, and Pei-Hsi Chou. 2025. "Modification of a Two-Part Cancellous Locking Screw: A Pilot Study on Increasing Resistance to Axial Pullout Strength" Bioengineering 12, no. 5: 444. https://doi.org/10.3390/bioengineering12050444
APA StyleHsu, C.-H., Hsu, N.-C., Lin, S.-Y., Lu, C.-C., Fu, Y.-C., Huang, H.-T., Chen, C.-H., & Chou, P.-H. (2025). Modification of a Two-Part Cancellous Locking Screw: A Pilot Study on Increasing Resistance to Axial Pullout Strength. Bioengineering, 12(5), 444. https://doi.org/10.3390/bioengineering12050444