Pressure–Flow Relation of Porcine Thoracic Duct Segment
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Pressure, Flow, and Resistance
2.2.1. Total Resistance of the Setup
2.2.2. Resistance of the Connectors
2.2.3. Resistance of the TD Segment
2.3. Model of the Valve Resistance
2.4. Analysis
3. Results
3.1. Bench Measurements
3.2. Resistance of the Connectors
3.3. Resistance of TD Vessel and Valve
3.4. Model of TD Valve Resistance
4. Discussion
4.1. TD Vessel and Valve Resistances
4.2. Model of the Valve Resistance
4.3. Limitations
4.4. Implications of the Findings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Itkin, M. Invited Commentary: Lymphatic (or “Forgotten”) Circulation Has to Be Rediscovered. Radiographics 2016, 36, 2212–2213. [Google Scholar]
- Hu, Z.; Zhao, X.; Wu, Z.; Qu, B.; Yuan, M.; Xing, Y.; Song, Y.; Wang, Z. Lymphatic vessel: Origin, heterogeneity, biological functions and therapeutic targets. Signal Transduct. Target. Ther. 2024, 9, 9. [Google Scholar] [CrossRef]
- Houck, P.D.; Dandapantula, H.K.; Massey, J.M. Lymphatics: Future Perspectives Unrealized Potential. Lymphatics 2023, 1, 87–96. [Google Scholar] [CrossRef]
- Sisson, S.; Grossman, J. The Anatomy of the Domestic Animals, 4th ed.; W.B. Saunders Company: Philadelphia, PA, USA, 1956. [Google Scholar]
- Dumont, A.E.; Clauss, R.H.; Reed, G.E.; Tice, D.A. Lymph Drainage in Patients with Congestive Heart Failure—Comparison with Findings in Hepatic Cirrhosis. N. Engl. J. Med. 1963, 269, 949–952. [Google Scholar] [PubMed]
- Witte, M.H.; Dumont, A.E.; Clauss, R.H.; Rader, B.; Levine, N.; Breed, E.S. Lymph circulation in congestive heart failure: Effect of external thoracic duct drainage. Circulation 1969, 39, 723–733. [Google Scholar] [CrossRef]
- Dumont, A.E.; Mulholland, J.H. Flow rate and composition of thoracic-duct lymph in patients with cirrhosis. N. Engl. J. Med. 1960, 263, 471–474. [Google Scholar]
- Dumont, A.E.; Mulholland, J.H. Alterations in Thoracic Duct Lymph Flow in Hepatic Cirrhosis: Significance in Portal Hypertension. Ann. Surg. 1962, 156, 668–675. [Google Scholar]
- Hall, J.G.; Morris, B.; Woolley, G. Intrinsic rhythmic propulsion of lymph in the unanaesthetized sheep. J. Physiol. 1965, 180, 336–349. [Google Scholar]
- McHale, N.G.; Roddie, I.C. The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J. Physiol. 1976, 261, 255–269. [Google Scholar]
- Ohhashi, T.; Azuma, T.; Sakaguchi, M. Active and passive mechanical characteristics of bovine mesenteric lymphatics. Am. J. Physiol. 1980, 239, H88–H95. [Google Scholar]
- Courtice, F.C.; Morris, B. The effect of diaphragmatic movement on the absorption of protein and of red cells from the pleural cavity. Aust. J. Exp. Biol. Med. Sci. 1953, 31, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Morris, B. The Effect of Diaphragmatic Movement on the Absorption of Protein and of Red Cells From the Peritoneal Cavity. Aust. J. Exp. Biol. Med. Sci. 1953, 31, 239–246. [Google Scholar] [CrossRef]
- Parsons, R.J.; McMaster, P.D. The effect of the pulse upon the formation and flow of lymph. J. Exp. Med. 1938, 68, 353. [Google Scholar]
- Webb, R.C.; Starzl, T.E. The effect of blood vessel pulsations on lymph pressure in large lymphatics. Bull. Johns Hopkins Hosp. 1953, 93, 401–407. [Google Scholar]
- Drake, R.E.; Allen, S.J.; Katz, J.; Gabel, J.C.; Laine, G.A. Equivalent circuit technique for lymph flow studies. Am. J. Physiol. Heart Circ. Physiol. 1986, 251, H1090–H1094. [Google Scholar]
- Bertram, C.D.; Macaskill, C.; Moore, J.E., Jr. Simulation of a Chain of Collapsible Contracting Lymphangions With Progressive Valve Closure. J. Biomech. Eng. 2011, 133, 011008. [Google Scholar]
- Drake, R.E.; Dhother, S.; Oppenlander, V.M.; Gabel, J.C. Lymphatic pump function curves in awake sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1996, 270, R486–R488. [Google Scholar]
- Macdonald, A.J. The Computational Modelling of Collecting Lymphatic Vessels; University of Exeter: Exeter, UK, 2008. [Google Scholar]
- Gajani, G.S. A Circuit Based Model of the Lymphatic System. In Proceedings of the 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic, 20–22 July 2022; pp. 1–6. [Google Scholar]
- Gajani, G.S.; Boschetti, F.; Negrini, D.; Martellaccio, R.; Milanese, G.; Bizzarri, F.; Brambilla, A. A lumped model of lymphatic systems suitable for large scale simulations. In Proceedings of the 2015 European Conference on Circuit Theory and Design (ECCTD), Trondheim, Norway, 24–26 August 2015; pp. 1–4. [Google Scholar]
- Reddy, N.P.; Krouskop, T.A.; Newell, P.H., Jr. A computer model of the lymphatic system. Comput. Biol. Med. 1977, 7, 181–197. [Google Scholar]
- Margaris, K.N.; Black, R.A. Modelling the lymphatic system: Challenges and opportunities. J. R. Soc. Interface 2012, 9, 601–612. [Google Scholar]
- Kandhai, R.; Bridge, J. Mathematical and Computational Modelling of the Lymphatic System: A Review. In Proceedings of the 10th World Congress on Electrical Engineering and Computer Systems and Sciences (Eecss’24), Barcelona, Spain, 19–21 August 2024. [Google Scholar]
- Papp, M.; Makara, G.B.; Hajtman, B. The resistance of in situ perfused lymph trunks and lymph nodes to flow. Experientia 1971, 27, 391–392. [Google Scholar]
- Browse, N.L.; Rutt, D.R.; Sizeland, D.; Taylor, A. The velocity of lymph flow in the canine thoracic duct. J. Physiol. 1974, 237, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Riquet, M.; Souilamas, R.; Hubsch, J.P.; Brière, J.; Colomer, S.; Hidden, G. Lymphatic drainage of heart and lungs comparison between pig and man. Surg. Radiol. Anat. 2000, 22, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Duras Gomercic, M.; Trbojevic Vukicevic, T.; Gomercic, T.; Galov, A.; Fruk, T.; Gomercic, H. The cisterna chyli and thoracic duct in pigs (Sus scrofa domestica). Vet. Med. 2010, 55, 30–34. [Google Scholar] [CrossRef]
- Lu, X.; Wang, M.; Han, L.; Krieger, J.; Noblet, J.; Chambers, S.; Itkin, M.; Kassab, G.S. Morphometry and Lymph Dynamics of Swine Thoracic Duct. Lymphat. Res. Biol. 2020, 18, 406–415. [Google Scholar]
- Lu, X.; Wang, M.; Han, L.; Krieger, J.; Ivers, J.; Chambers, S.; Itkin, M.; Burkhoff, D.; Kassab, G.S. Changes of thoracic duct flow and morphology in an animal model of elevated central venous pressure. Front. Physiol. 2022, 13, 798284. [Google Scholar]
- Gutelius, J.R.; Shizgal, H.M. Resistance at the Thoracic Duct Subclavian Vein Junction. Arch. Surg. 1966, 93, 755. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar]
- Bertram, C.D.; Macaskill, C.; Moore, J.E., Jr. Incorporating measured valve properties into a numerical model of a lymphatic vessel. Comput. Med. Biomech. Biomed. Eng. 2014, 17, 1519–1534. [Google Scholar]
- Jamalian, S.; Davis, M.J.; Zawieja, D.C.; Moore, J.E. Network Scale Modeling of Lymph Transport and Its Effective Pumping Parameters. PLoS ONE 2016, 11, e0148384. [Google Scholar] [CrossRef]
- Fiori, S.; Wang, J. External Identification of a Reciprocal Lossy Multiport Circuit under Measurement Uncertainties by Riemannian Gradient Descent. Energies 2023, 16, 2585. [Google Scholar] [CrossRef]
- Fiori, S.; Cisse, C. Identification of Lossy Y-Type Two-Port Circuit Models under Measurement Uncertainties: Closed-Form Solution and Statistical–Perturbative Characterization. Energies 2023, 16, 6037. [Google Scholar] [CrossRef]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; Dewitt, D.P. Fundamentals of Heat and Mass Transfer, 7th ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.E.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.B.; Grout, J.; Corlay, S.; et al. Jupyter Notebooks-a publishing format for reproducible computational workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas; Loizides, F., Schmidt, B., Eds.; IOS Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Mckinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, Texas, 28 June–3 July 2010. [Google Scholar]
- Oliphant, T.E. Guide to NumPy; Trelgol Publishing: Spanish Fork, UT, USA, 2006. [Google Scholar]
- Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open Source Scientific Tools for Python. Available online: http://www.scipy.org/ (accessed on 12 April 2019).
- Newville, M.; Stensitzki, T.; Allen, D.B.; Ingargiola, A. LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python. Zenodo 2014. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Gallagher, H.; Garewal, D.; Drake, R.E.; Gabel, J.C. Estimation of lymph flow by relating lymphatic pump function to passive flow curves. Lymphology 1993, 26, 56–60. [Google Scholar]
- Schad, H.; Brechtelsbauer, H. Thoracic duct lymph flow and composition in conscious dogs and the influence of anaesthesia and passive limb movement. Pflug. Arch. 1977, 371, 25–31. [Google Scholar] [CrossRef]
- Babaei, A.; Aminian, E.; Saffari, H. Enhanced heat transfer performance in a parabolic trough solar collector: A CFD investigation of silver and copper nanofluids utilizing porous medium. Proc. Inst. Mech. Eng. Part E 2024. [Google Scholar] [CrossRef]
- Moghadasi, H.; Bayat, M.; Aminian, E.; Hattel, J.H.; Bodaghi, M. A Computational Fluid Dynamics Study of Laminar Forced Convection Improvement of a Non-Newtonian Hybrid Nanofluid within an Annular Pipe in Porous Media. Energies 2022, 15, 8207. [Google Scholar] [CrossRef]
- Lu, X.; Patel, B.; Kassab, G. Dataset: Thoracic Duct Pressure Flow Relation Paper. [Data set] Zenodo. 2024. [Google Scholar] [CrossRef]
- Patel, B. Code: Thoracic Duct Pressure Flow Relation Paper v1.0.0 Zenodo. 2024. [Google Scholar] [CrossRef]
- Patel, B.; Soundarajan, S.; Ménager, H.; Hu, Z. Making Biomedical Research Software FAIR: Actionable Step-by-step Guidelines with a User-support Tool. Sci. Data 2023, 10, 557. [Google Scholar] [CrossRef]
TD | Rvl (cmH20/(mL/min)) | Rvh (cmH20/(mL/min)) | s (cmH20−1) |
---|---|---|---|
1 | 0.088 | 1.54 × 104 | 25.4 |
2 | 0.085 | 6.42 × 1010 | 85.8 |
3 | 0.154 | 6.33 × 107 | 28.5 |
4 | 0.011 | 7.38 × 109 | 19 |
5 | 0.071 | 9.09 × 102 | 14.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, B.; Lu, X.; Ahuja, A.; Noblet, J.N.; Krieger, J.F.; Chambers, S.; Itkin, M.; Kassab, G.S. Pressure–Flow Relation of Porcine Thoracic Duct Segment. Bioengineering 2025, 12, 401. https://doi.org/10.3390/bioengineering12040401
Patel B, Lu X, Ahuja A, Noblet JN, Krieger JF, Chambers S, Itkin M, Kassab GS. Pressure–Flow Relation of Porcine Thoracic Duct Segment. Bioengineering. 2025; 12(4):401. https://doi.org/10.3390/bioengineering12040401
Chicago/Turabian StylePatel, Bhavesh, Xiao Lu, Aashish Ahuja, Jillian N. Noblet, Joshua F. Krieger, Sean Chambers, Max Itkin, and Ghassan S. Kassab. 2025. "Pressure–Flow Relation of Porcine Thoracic Duct Segment" Bioengineering 12, no. 4: 401. https://doi.org/10.3390/bioengineering12040401
APA StylePatel, B., Lu, X., Ahuja, A., Noblet, J. N., Krieger, J. F., Chambers, S., Itkin, M., & Kassab, G. S. (2025). Pressure–Flow Relation of Porcine Thoracic Duct Segment. Bioengineering, 12(4), 401. https://doi.org/10.3390/bioengineering12040401