Next-Generation Biomaterials for Vital Pulp Therapy: Exploring Biological Properties and Dentin Regeneration Mechanisms
Abstract
:1. Introduction
2. Traditional Dental Pulp Capping Materials: Mechanisms of Action and Biological Properties
3. Next-Generation Scaffold Materials
3.1. Natural Biomaterials and Their Application in VPT
3.1.1. Collagen and Gelatin
3.1.2. Chitosan
3.1.3. Alginate
3.1.4. Platelet-Rich Fibrins
3.1.5. Demineralized Dentin Matrix
3.2. Synthetic Polymers
3.2.1. Self-Assembling Peptides
3.2.2. DNA-Based Nanomaterials
3.2.3. Other Synthetic Polymers
4. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- AAE. Position statement on vital pulp therapy. J. Endod. 2021, 47, 1340–1344. [Google Scholar] [CrossRef] [PubMed]
- Duncan, H.F. Present status and future directions—Vital pulp treatment and pulp preservation strategies. Int. Endod. J. 2022, 55, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Malek, M.; Sigurdsson, A.; Lin, L.M.; Kahler, B. Regenerative endodontics: A comprehensive review. Int. Endod. J. 2018, 51, 1367–1388. [Google Scholar] [CrossRef] [PubMed]
- Athirasala, A.; Tahayeri, A.; Thrivikraman, G.; França, C.M.; Monteiro, N.; Tran, V.; Ferracane, J.; Bertassoni, L.E. A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry. Biofabrication 2018, 10, 24101. [Google Scholar] [CrossRef]
- Kirkham, J.; Firth, A.; Vernals, D.; Boden, N.; Robinson, C.; Shore, R.; Brookes, S.; Aggeli, A. Self-assembling peptide scaffolds promote enamel remineralization. J. Dent. Res. 2007, 86, 426–430. [Google Scholar] [CrossRef]
- Baume, L.J.; Holz, J. Long term clinical assessment of direct pulp capping. Int. Dent. J. 1981, 31, 251–260. [Google Scholar]
- Willershausen, B.; Willershausen, I.; Ross, A.; Velikonja, S.; Kasaj, A.; Blettner, M. Retrospective study on direct pulp capping with calcium hydroxide. Quintessence Int. 2011, 42, 165. [Google Scholar]
- Hilton, T.J. Keys to clinical success with pulp capping: A review of the literature. Oper. Dent. 2009, 34, 615–625. [Google Scholar] [CrossRef]
- Cox, C.F.; Bergenholtz, G.; Heys, D.R.; Syed, S.A.; Fitzgerald, M.; Heys, R.J. Pulp capping of dental pulp mechanically exposed to oral microflora: A 1–2 year observation of wound healing in the monkey. J. Oral Pathol. Med. 1985, 14, 156–168. [Google Scholar] [CrossRef]
- Torabinejad, M.; Watson, T.F.; Ford, T.R.P. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J. Endod. 1993, 19, 591–595. [Google Scholar] [CrossRef]
- Sunanda, Y.L.; Parvathaneni, K.P.; Raju, T.; Seshadri, A.; Dondapati, G.D. Effect of blood and artificial saliva contamination on marginal adaptation and sealing ability of different retrograde filling materials: A comparative analysis. J. Conserv. Dent. Endod. 2024, 27, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Farsi, N.; Alamoudi, N.; Balto, K.; Al Mushayt, A. Clinical assessment of mineral trioxide aggregate (MTA) as direct pulp capping in young permanent teeth. J. Clin. Pediatr. Dent. 2007, 31, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Bogen, G.; Kim, J.S.; Bakland, L.K. Direct pulp capping with mineral trioxide aggregate: An observational study. J. Am. Dent. Assoc. 2008, 139, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z.; Dummer, P.M.H. Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int. Endod. J. 2011, 44, 697–730. [Google Scholar] [CrossRef]
- Lenherr, P.; Allgayer, N.; Weiger, R.; Filippi, A.; Attin, T.; Krastl, G. Tooth discoloration induced by endodontic materials: A laboratory study. Int. Endod. J. 2012, 45, 942–949. [Google Scholar] [CrossRef]
- Linde, A. Dentin mineralization and the role of odontoblasts in calcium transport. Connect. Tissue Res. 1995, 33, 163–170. [Google Scholar] [CrossRef]
- Jeon, M.J.; Park, J.W.; Seo, D.G. Intratubular crystal formation in the exposed dentin from nano-sized calcium silicate for dentin hypersensitivity treatment. Sci. Rep. 2023, 13, 14243. [Google Scholar] [CrossRef]
- Kanaya, S.; Nemoto, E.; Ebe, Y.; Somerman, M.J.; Shimauchi, H. Elevated extracellular calcium increases fibroblast growth factor-2 gene and protein expression levels via a cAMP/PKA dependent pathway in cementoblasts. Bone 2010, 47, 564–572. [Google Scholar] [CrossRef]
- Lyons, R.M.; Keski-Oja, J.; Moses, H.L. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J. Cell Biol. 1988, 106, 1659–1665. [Google Scholar] [CrossRef]
- Barcellos-Hoff, M.H. Latency and activation in the control of TGF-β. J. Mammary Gland. Biol. Neoplasia 1996, 1, 353–363. [Google Scholar] [CrossRef]
- Wang, J.D.; Hume, W.R. Diffusion of hydrogen ion and hydroxyl ion from various sources through dentine. Int. Endod. J. 1988, 21, 17. [Google Scholar] [CrossRef] [PubMed]
- Heithersay, G.S. Calcium hydroxide in the treatment of pulpless teeth with associated pathology. Int. Endod. J. 1975, 8, 74–93. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F., Jr.; Lopes, H. Mechanisms of antimicrobial activity of calcium hydroxide: A critical review. Int. Endod. J. 1999, 32, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Delgado, R.J.R.; Gasparoto, T.H.; Sipert, C.R.; Pinheiro, C.R.; de Moraes, I.G.; Garcia, R.B.; Duarte, M.A.H.; Bramante, C.M.; Torres, S.A.; Garlet, G.P.; et al. Antimicrobial activity of calcium hydroxide and chlorhexidine on intratubular Candida albicans. Int. J. Oral Sci. 2013, 5, 32–36. [Google Scholar] [CrossRef]
- Vilaça-Faria, H.; Noro, J.; Reis, R.L.; Pirraco, R.P. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioact. Mater. 2024, 34, 494–519. [Google Scholar] [CrossRef]
- Xie, W.; Wei, X.; Kang, H.; Jiang, H.; Chu, Z.; Lin, Y.; Hou, Y.; Wei, Q. Static and dynamic: Evolving biomaterial mechanical properties to control cellular mechanotransduction. Adv. Sci. 2023, 10, 2204594. [Google Scholar] [CrossRef]
- Sumita, Y.; Honda, M.J.; Ohara, T.; Tsuchiya, S.; Sagara, H.; Kagami, H.; Ueda, M. Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials 2006, 27, 3238–3248. [Google Scholar] [CrossRef]
- Mohs, A.; Popiel, M.; Li, Y.; Baum, J.; Brodsky, B. Conformational features of a natural break in the type IV collagen Gly-XY repeat. J. Biol. Chem. 2006, 281, 17197–17202. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, Z.; Yuan, D.; Yu, M.; Min, J. Tissue engineering applications of recombinant human collagen: A review of recent progress. Front. Bioeng. Biotechnol. 2024, 12, 1358246. [Google Scholar] [CrossRef]
- Gomez d’Ayala, G.; Malinconico, M.; Laurienzo, P. Marine derived polysaccharides for biomedical applications: Chemical modification approaches. Molecules 2008, 13, 2069–2106. [Google Scholar] [CrossRef]
- Watanabe, M.; Okamoto, M.; Komichi, S.; Huang, H.; Matsumoto, S.; Moriyama, K.; Ohshima, J.; Abe, S.; Morita, M.; Ali, M.; et al. Novel functional peptide for next-generation vital pulp therapy. J. Dent. Res. 2023, 102, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Neves, V.C.M.; Babb, R.; Chandrasekaran, D.; Sharpe, P.T. Promotion of natural tooth repair by small molecule GSK3 antagonists. Sci. Rep. 2017, 7, 39654. [Google Scholar] [CrossRef] [PubMed]
- Duconseille, A.; Astruc, T.; Quintana, N.; Meersman, F.; Sante-Lhoutellier, V. Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocoll. 2015, 43, 360–376. [Google Scholar] [CrossRef]
- Alia, A.; Gao, F.; Mitchell, J.C.; Gasiorowski, J.; Ciancio, M.; Kuppast, B.; Pfeifer, C.; Carrilho, M.R. Dentin primer based on a highly functionalized gelatin-methacryloyl hydrogel. Dent. Mater. 2023, 39, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Annamalai, R.T.; Turner, P.A.; Carson, I.V.W.F.; Levi, B.; Kunkel, S.; Stegemann, J.P. Harnessing macrophage-mediated degradation of gelatin microspheres for spatiotemporal control of BMP2 release. Biomaterials 2018, 161, 216–227. [Google Scholar] [CrossRef]
- Liu, D.; Nikoo, M.; Boran, G.; Zhou, P.; Regenstein, J.M. Collagen and gelatin. Annu. Rev. Food Sci. Technol. 2015, 6, 527–557. [Google Scholar] [CrossRef]
- Hutson, C.B.; Nichol, J.W.; Aubin, H.; Bae, H.; Yamanlar, S.; Al-Haque, S.; Koshy, S.T.; Khademhosseini, A. Synthesis and characterization of tunable poly (ethylene glycol): Gelatin methacrylate composite hydrogels. Tissue Eng. Part A 2011, 17, 1713–1723. [Google Scholar] [CrossRef]
- Yue, K.; Trujillo-de Santiago, G.; Alvarez, M.M.; Tamayol, A.; Annabi, N.; Khademhosseini, A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015, 73, 254–271. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Yang, X.; Zhang, Y.; Qiu, X. GelMA-based hydrogel biomaterial scaffold: A versatile platform for regenerative endodontics. J. Biomed. Mater. Res. B Appl. Biomater. 2024, 112, e35412. [Google Scholar] [CrossRef]
- Alraies, A.; Waddington, R.J.; Sloan, A.J.; Moseley, R. Evaluation of Dental Pulp Stem Cell Heterogeneity and Behaviour in 3D Type I Collagen Gels. BioMed Res. Int. 2020, 2020, 3034727. [Google Scholar] [CrossRef]
- Han, Y.; Dal-Fabbro, R.; Mahmoud, A.H.; Rahimnejad, M.; Xu, J.; Castilho, M.; Dissanayaka, W.L.; Bottino, M.C. GelMA/TCP nanocomposite scaffold for vital pulp therapy. Acta Biomater. 2024, 173, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Tian, J.; Kong, S.; Feng, Y.; Lu, Y.; Su, L.; Cai, Y.; Li, M.; Chang, J.; Yang, C.; et al. SrCuSi4O10/GelMA Composite Hydrogel-Mediated Vital Pulp Therapy: Integrating Antibacterial Property and Enhanced Pulp Regeneration Activity. Adv. Healthc. Mater. 2023, 12, 2300546. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, A.; Kharaziha, M.; Khoroushi, M. Dentin extracellular matrix loaded bioactive glass/GelMA support rapid bone mineralization for potential pulp regeneration. Int. J. Biol. Macromol. 2023, 234, 123771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, T.; Zhang, R.; Liang, X.; Wang, G.; Tian, Y.; Xie, L.; Tian, W. Platelet lysate functionalized gelatin methacrylate microspheres for improving angiogenesis in endodontic regeneration. Acta Biomater. 2021, 136, 441–455. [Google Scholar] [CrossRef]
- Atila, D.; Keskin, D.; Lee, Y.L.; Lin, F.H.; Hasirci, V.; Tezcaner, A. Injectable methacrylated gelatin/thiolated pectin hydrogels carrying melatonin/tideglusib-loaded core/shell PMMA/silk fibroin electrospun fibers for vital pulp regeneration. Colloids Surf. B Biointerfaces 2023, 222, 113078. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, Y.; Jiang, L.; Wang, X.; Chen, Y.; Li, L.; Song, M.; Zhang, H.; Zhang, Y.S.; Zhang, X. Injectable decellularized dental pulp matrix-functionalized hydrogel microspheres for endodontic regeneration. Acta Biomater. 2023, 156, 37–48. [Google Scholar] [CrossRef]
- Xie, Z.; Jiang, W.; Liu, H.; Chen, L.; Xuan, C.; Wang, Z.; Shi, X.; Lin, Z.; Gao, X. Antimicrobial Peptide-and Dentin Matrix-Functionalized Hydrogel for Vital Pulp Therapy via Synergistic Bacteriostasis, Immunomodulation, and Dentinogenesis. Adv. Healthc. Mater. 2024, 13, 2303709. [Google Scholar] [CrossRef]
- Koike, T.; Polan, M.A.A.; Izumikawa, M.; Saito, T. Induction of reparative dentin formation on exposed dental pulp by dentin phosphophoryn/collagen composite. BioMed Res. Int. 2014, 2014, 745139. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers 2018, 10, 462. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Caballero, A.H.; Acosta, N. Chitosan: An overview of its properties and applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Kim, S. Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int. J. Polym. Sci. 2018, 2018, 1708172. [Google Scholar] [CrossRef]
- Nimbeni, S.B.; Nimbeni, B.S.; Divakar, D.D. Role of chitosan in remineralization of enamel and dentin: A systematic review. Int. J. Clin. Pediatr. Dent. 2021, 14, 562. [Google Scholar] [CrossRef] [PubMed]
- Garg, U.; Chauhan, S.; Nagaich, U.; Jain, N. Current Advances in Chitosan Nanoparticles Based Drug Delivery and Targeting. Adv. Pharm. Bull. 2019, 9, 195–204. [Google Scholar] [CrossRef] [PubMed]
- He, G.; George, A. Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro. J. Biol. Chem. 2004, 279, 11649–11656. [Google Scholar] [CrossRef]
- Santoso, T.; Djauharie, N.K.; Ahdi, W.; Latief, F.D.E.; Suprastiwi, E. Carboxymethyl chitosan/amorphous calcium phosphate and dentin remineralization. J. Int. Dent. Med. Res. 2019, 12, 84–87. [Google Scholar]
- Annisa, R.N.; Djauharie, N.; Suprastiwi, E.; Avanti, N. The effect of carboxymethyl chitosan/amorphous calcium phosphate to guide tissue remineralization of dentin collagen. Int. J. Appl. Pharm. 2019, 11, 181–183. [Google Scholar] [CrossRef]
- Alshahhoud, A.; Rekab, M.S.; Issa, N.; Manadili, A.; Alsayed Tolibah, Y. Application of Three Types of Scaffolds in Pulp Regeneration for Permanent Mature Teeth with Periapical Lesions: A Randomized Controlled Trial. Eur. Endod. J. 2024, 9, 352–364. [Google Scholar] [CrossRef]
- Machado, M.A.A.M.; Stafuzza, T.C.; Vitor, L.L.R.; da Costa, S.A.; da Costa, S.M.; Neto, N.L.; Oliveira, T.M. Pulp repair response after the use of a dentin-pulp biostimulation membrane (BBio) in primary teeth: Study protocol for a randomized clinical trial. Trials 2020, 21, 874. [Google Scholar] [CrossRef]
- Atila, D.; Chen, C.Y.; Lin, C.P.; Lee, Y.L.; Hasirci, V.; Tezcaner, A.; Lin, F.H. In vitro evaluation of injectable Tideglusib-loaded hyaluronic acid hydrogels incorporated with Rg1-loaded chitosan microspheres for vital pulp regeneration. Carbohydr. Polym. 2022, 278, 118976. [Google Scholar] [CrossRef]
- Klein-Júnior, C.A.; Reston, E.; Plepis, A.M.; Martins, V.C.; Pötter, I.C.; Lundy, F.; Hentschke, G.S.; Hentschke, V.S.; El Karim, I. Development and evaluation of calcium hydroxide-coated, pericardium-based biomembranes for direct pulp capping. J. Investig. Clin. Dent. 2019, 10, e12380. [Google Scholar] [CrossRef]
- Leite, M.L.; Anselmi, C.; Soares, I.P.M.; Manso, A.P.; Hebling, J.; Carvalho, R.M.; de Souza Costa, C.A. Calcium silicate-coated porous chitosan scaffold as a cell-free tissue engineering system for direct pulp capping. Dent. Mater. 2022, 38, 1763–1776. [Google Scholar] [CrossRef]
- Bordini, E.A.F.; Cassiano, F.B.; Silva, I.S.P.; Usberti, F.R.; Anovazzi, G.; Pacheco, L.E.; Pansani, T.N.; Leite, M.L.; Hebling, J.; de Souza Costa, C.A.; et al. Synergistic potential of 1α, 25-dihydroxyvitamin D3 and calcium–aluminate–chitosan scaffolds with dental pulp cells. Clin. Oral Investig. 2020, 24, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Hoveizi, E.; Naddaf, H.; Ahmadianfar, S.; Gutmann, J.L. Encapsulation of human endometrial stem cells in chitosan hydrogel containing titanium oxide nanoparticles for dental pulp repair and tissue regeneration in male Wistar rats. J. Biosci. Bioeng. 2023, 135, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Chatzistavrou, X.; Papagerakis, P.; Ge, L.; Qin, M.; Wang, Y. Silver-doped bioactive glass/chitosan hydrogel with potential application in dental pulp repair. ACS Biomater. Sci. Eng. 2019, 5, 4624–4633. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, Y.; Yu, Y.; Zhou, X.; Du, W.; Wan, M.; Fan, Y.; Zhou, X.; Xu, X.; Zheng, L. Evaluation of chitosan hydrogel for sustained delivery of VEGF for odontogenic differentiation of dental pulp stem cells. Stem Cells Int. 2019, 2019, 1515040. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, S.; Wang, H.; Li, Y.; Kishen, A.; Deng, X.; Yang, X.; Wang, Y.; Cong, C.; Wang, H.; et al. Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries. PLoS ONE 2015, 10, e0116553. [Google Scholar] [CrossRef]
- Xiao, Z.; Que, K.; Wang, H.; An, R.; Chen, Z.; Qiu, Z.; Lin, M.; Song, J.; Yang, J.; Lu, D.; et al. Rapid biomimetic remineralization of the demineralized enamel surface using nano-particles of amorphous calcium phosphate guided by chimaeric peptides. Dent. Mater. 2017, 33, 1217–1228. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Sun, X.; Kishen, A.; Deng, X.; Yang, X.; Wang, H.; Cong, C.; Wang, Y.; Wu, M. Biomimetic remineralization of demineralized enamel with nano-complexes of phosphorylated chitosan and amorphous calcium phosphate. J. Mater. Sci. Mater. Med. 2014, 25, 2619–2628. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, L.; Wu, H.; Yang, T.; Zhang, Q.; Tian, Y.; Liu, Y.; Han, X.; Guo, W.; He, M.; et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater. 2020, 113, 305–316. [Google Scholar] [CrossRef]
- Su, W.; Ma, L.; Ran, Y.; Ma, X.; Yi, Z.; Chen, G.; Chen, X.; Li, X. Alginate-assisted mineralization of collagen by collagen reconstitution and calcium phosphate formation. ACS Biomater. Sci. Eng. 2020, 6, 3275–3286. [Google Scholar] [CrossRef]
- Alshahhoud, A.; Rikab, M.S.; Issa, N.; Manadili, A.; Alsayed Tolaibah, Y. A Comparison Between Three Types of Scaffolds for Pulp Regeneration: A Histological Study on Dogs. Clin. Exp. Dent. Res. 2024, 10, e70031. [Google Scholar] [CrossRef] [PubMed]
- Alagha, A.; Nourallah, A.; Alhariri, S. Dexamethasone-loaded polymeric porous sponge as a direct pulp capping agent. J. Biomater. Sci. Polym. Ed. 2020, 31, 1689–1705. [Google Scholar] [CrossRef]
- De Melo, C.C.B.; Cassiano, F.B.; Bronze-Uhle, É.S.; de Toledo Stuani, V.; Bordini, E.A.F.; de Oliveira Gallinari, M.; de Souza Costa, C.A.; Soares, D.G. Mineral-induced bubbling effect and biomineralization as strategies to create highly porous and bioactive scaffolds for dentin tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 1757–1770. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, J.; Huang, Z.; Mai, S. Promotion effect of carboxymethyl chitosan on dental caries via intrafibrillar mineralization of collagen and dentin remineralization. Materials 2022, 15, 4835. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Fan, M.; Yang, A.; Chang, D.; Li, J.; Yang, L.; Li, X.; Wang, M.; Zheng, P.; Guo, T.; et al. Sodium alginate-polyethylene glycol paste loaded with zinc-doped tricalcium phosphate particles for the treatment of dentin hypersensitivity. Appl. Mater. Today 2024, 38, 102171. [Google Scholar] [CrossRef]
- Al-Shamkhani, A.; Duncan, R. Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo. J. Bioact. Compat. Polym. 1995, 10, 4–13. [Google Scholar] [CrossRef]
- Sahoo, D.R.; Biswal, T. Alginate and its application to tissue engineering. SN Appl. Sci. 2021, 3, 30. [Google Scholar] [CrossRef]
- Dohan, D.M.; Choukroun, J.; Diss, A.; Dohan, S.L.; Dohan, A.J.J.; Mouhyi, J.; Gogly, B. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part II: Platelet-related biologic features. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2006, 101, e45–e50. [Google Scholar] [CrossRef]
- Kang, Y.-H.; Jeon, S.H.; Park, J.-Y.; Chung, J.-H.; Choung, Y.-H.; Choung, H.-W.; Kim, E.-S.; Choung, P.-H. Platelet-rich fibrin is a Bioscaffold and reservoir of growth factors for tissue regeneration. Tissue Eng. Part A 2011, 17, 349–359. [Google Scholar] [CrossRef]
- Kim, J.H.; Woo, S.M.; Choi, N.K.; Kim, W.J.; Kim, S.M.; Jung, J.Y. Effect of platelet-rich fibrin on odontoblastic differentiation in human dental pulp cells exposed to lipopolysaccharide. J. Endod. 2017, 43, 433–438. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Lin, X.; Liu, X. Platelet-rich fibrin promotes the proliferation and osteo-/odontoblastic differentiation of human dental pulp stem cells. Curr. Stem Cell Res. Ther. 2023, 18, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Shobana, S.; Kavitha, M.; Srinivasan, N. Efficacy of platelet rich plasma and platelet rich fibrin for direct pulp capping in adult patients with carious pulp exposure-a randomised controlled trial. Eur. Endod. J. 2022, 7, 114. [Google Scholar] [PubMed]
- Elkady, D.M.; Helaly, Y.R.; El Fayoumy, H.W.; AbuBakr, H.O.; Yassin, A.M.; AbdElkader, N.A.; Farag, D.B.E.; El Aziz, P.M.A.; Scarano, A.; Khater, A.G.A. An animal study on the effectiveness of platelet-rich plasma as a direct pulp capping agent. Sci. Rep. 2024, 14, 3699. [Google Scholar] [CrossRef] [PubMed]
- Barhate, U.H.; Mangaraj, M.; Jena, A.K.; Sharan, J. Applications of Platelet Rich Fibrin in Dental Surgery: A Comprehensive Literature Review. Trends Biomater. Artif. Organs 2021, 35, 203–213. [Google Scholar]
- Wakhloo, T.; Shukla, S.; Chug, A.; Dhar, M. Advanced Platelet-rich Fibrin-mediated Regeneration of Necrotic Immature Permanent Teeth: A Clinico-radiographic Observational Study. Int. J. Clin. Pediatr. Dent. 2022, 15, 402–406. [Google Scholar]
- Tiwari, T.; Tyagi, P.; Tiwari, S.; Mali, S.; Moudgalya, M.S.; Jaiswal, N. To evaluate and compare platelet-rich fibrin and mineral trioxide aggregate as direct pulp capping agents in primary molars: A randomized prospective clinical study. Int. J. Clin. Pediatr. Dent. 2024, 17 (Suppl. 1), S25. [Google Scholar]
- Panda, P.; Govind, S.; Sahoo, S.K.; Pattanaik, S.; Mallikarjuna, R.M.; Nalawade, T.; Saraf, S.; Al Khaldi, N.; Al Jahdhami, S.; Shivagange, V.; et al. Analysis of Pulp Tissue Viability and Cytotoxicity of Pulp Capping Agents. J. Clin. Med. 2023, 12, 539. [Google Scholar] [CrossRef]
- Dou, L.; Yan, Q.; Yang, D. Effect of five dental pulp capping agents on cell proliferation, viability, apoptosis and mineralization of human dental pulp cells. Exp. Ther. Med. 2020, 19, 2377–2383. [Google Scholar] [CrossRef]
- Singh, R.; Singh, R.; Kavita, K.; Kommula, A.; Kulkarni, G.; Jois, H.S. To compare mineral trioxide aggregate, platelet-rich fibrin, and calcium hydroxide in teeth with irreversible pulpitis: A clinical study. J. Pharm. Bioallied Sci. 2020, 12 (Suppl. 1), S436–S439. [Google Scholar] [CrossRef]
- Cunha, D.; Souza, N.; Moreira, M.; Rodrigues, N.; Silva, P.; Franca, C.; Horsophonphong, S.; Sercia, A.; Subbiah, R.; Tahayeri, A.; et al. 3D-printed microgels supplemented with dentin matrix molecules as a novel biomaterial for direct pulp capping. Clin. Oral Investig. 2023, 27, 1799–1800. [Google Scholar] [CrossRef]
- Holiel, A.A.; Mahmoud, E.M.; Abdel-Fattah, W.M. Tomographic evaluation of direct pulp capping using a novel injectable treated dentin matrix hydrogel: A 2-year randomized controlled clinical trial. Clin. Oral Investig. 2021, 25, 4621–4634. [Google Scholar] [CrossRef] [PubMed]
- Holiel, A.A.; Mahmoud, E.M.; Abdel-Fattah, W.M.; Kawana, K.Y. Histological evaluation of the regenerative potential of a novel treated dentin matrix hydrogel in direct pulp capping. Clin. Oral Investig. 2021, 25, 2101–2112. [Google Scholar] [CrossRef] [PubMed]
- Sedek, E.M.; Abdelkader, S.; Fahmy, A.E.; Kamoun, E.A.; Nouh, S.R.; Khalil, N.M. Histological evaluation of the regenerative potential of a novel photocrosslinkable gelatin-treated dentin matrix hydrogel in direct pulp capping: An animal study. BMC Oral Health 2024, 24, 114. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Sun, M.; Wu, D. Clinical studies on apexification with demineralized dentin matrix. Hua Xi Kou Qiang Yi Xue Za Zhi 2003, 21, 460–462. [Google Scholar]
- Li, Z.; Zheng, C.; Jiang, P.; Xu, X.; Tang, Y.; Dou, L. Human digested dentin matrix for dentin regeneration and the applicative potential in vital pulp therapy. J. Endod. 2023, 49, 861–870. [Google Scholar] [CrossRef]
- Sultan, N.; Camilleri, J.; Scheven, B.A. Biocompatibility and antimicrobial effect of demineralised dentin matrix hydrogel for dental pulp preservation. Odontology 2024, 1–13. [Google Scholar] [CrossRef]
- Goldberg, M.; Lacerda-Pinheiro, S.; Jegat, N.; Sixa, N.; Septiera, D.; Priama, F.; Bonnefoixa, M.; Tompkinsc, K.; Chardina, H.; Denbesten, P.; et al. The impact of bioactive molecules to stimulate tooth repair and regeneration as part of restorative dentistry. Dent. Clin. 2006, 50, 277–298. [Google Scholar] [CrossRef]
- Wu, D.T.; Munguia-Lopez, J.G.; Cho, Y.W.; Ma, X.; Song, V.; Zhu, Z.; Tran, S.D. Polymeric scaffolds for dental, oral, and craniofacial regenerative medicine. Molecules 2021, 26, 7043. [Google Scholar] [CrossRef]
- Abbasian, M.; Massoumi, B.; Mohammad-Rezaei, R.; Samadian, H.; Jaymand, M. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int. J. Biol. Macromol. 2019, 134, 673–694. [Google Scholar] [CrossRef]
- Koutsopoulos, S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. J. Biomed. Mater. Res. Part A 2016, 104, 1002–1016. [Google Scholar] [CrossRef]
- Zhang, S.; Holmes, T.; Lockshin, C.; Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. USA 1993, 90, 3334–3338. [Google Scholar] [CrossRef] [PubMed]
- Ryadnov, M.G.; Woolfson, D.N. Engineering the morphology of a self-assembling protein fibre. Nat. Mater. 2003, 2, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.; Shirazi, A.N.; Parang, K. Self-assembly of peptides to nanostructures. Org. Biomol. Chem. 2014, 12, 3544–3561. [Google Scholar] [CrossRef]
- Luo, T.; Kiick, K.L. Collagen-like peptides and peptide–polymer conjugates in the design of assembled materials. Eur. Polym. J. 2013, 49, 2998–3009. [Google Scholar] [CrossRef]
- Zhang, S. Discovery and design of self-assembling peptides. Interface Focus 2017, 7, 20170028. [Google Scholar] [CrossRef]
- Sankar, S.; O’Neill, K.; D’Arc, M.B.; Rebeca, F.; Buffier, M.; Aleksi, E.; Fan, M.; Matsuda, N.; Gil, E.S.; Spirio, L. Clinical use of the self-assembling peptide RADA16: A review of current and future trends in biomedicine. Front. Bioeng. Biotechnol. 2021, 9, 679525. [Google Scholar] [CrossRef]
- Cavalcanti, B.N.; Zeitlin, B.D.; Nör, J.E. A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dent. Mater. 2013, 29, 97–102. [Google Scholar] [CrossRef]
- Alkilzy, M.; Santamaria, R.M.; Schmoeckel, J.; Splieth, C.H. Treatment of carious lesions using self-assembling peptides. Adv. Dent. Res. 2018, 29, 42–47. [Google Scholar] [CrossRef]
- Sedlakova Kondelova, P.; Mannaa, A.; Bommer, C.; Abdelaziz, M.; Daeniker, L.; di Bella, E.; Krejci, I. Efficacy of P11-4 for the treatment of initial buccal caries: A randomized clinical trial. Sci. Rep. 2020, 10, 20211. [Google Scholar] [CrossRef]
- Alkilzy, M.; Qadri, G.; Splieth, C.H.; Santamaría, R.M. Biomimetic Enamel Regeneration Using Self-Assembling Peptide P11-4. Biomimetics 2023, 8, 290. [Google Scholar] [CrossRef]
- De Sousa, J.P.; Carvalho, R.G.; Barbosa-Martins, L.F.; Torquato, R.; Mugnol, K.; Nascimento, F.; Tersariol, I.; Puppin-Rontani, R. The self-assembling peptide P11-4 prevents collagen proteolysis in dentin. J. Dent. Res. 2019, 98, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Jablonski-Momeni, A.; Korbmacher-Steiner, H.; Heinzel-Gutenbrunner, M.; Jablonski, B.; Jaquet, W.; Bottenberg, P. Randomised in situ clinical trial investigating self-assembling peptide matrix P11-4 in the prevention of artificial caries lesions. Sci. Rep. 2019, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- Dawasaz, A.A.; Togoo, R.A.; Mahmood, Z.; Azlina, A.; Thirumulu Ponnuraj, K. Effectiveness of Self-Assembling Peptide (P11-4) in Dental Hard Tissue Conditions: A Comprehensive Review. Polymers 2022, 14, 792. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.Y.; Nam, O.H.; Kim, M.; Lee, H.S.; Kaushik, S.N.; Cruz Walma, D.A.; Jun, H.W.; Cheon, K.; Choi, S.C. Effects of the nitric oxide releasing biomimetic nanomatrix gel on pulp-dentin regeneration: Pilot study. PLoS ONE 2018, 13, e0205534. [Google Scholar] [CrossRef]
- Shao, X.; Lin, S.; Peng, Q.; Shi, S.; Wei, X.; Zhang, T.; Lin, Y. Tetrahedral DNA nanostructure: A potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation. Small 2017, 13, 1602770. [Google Scholar] [CrossRef]
- Marzano, M.; Falanga, A.P.; Dardano, P.; D’Errico, S.; Rea, I.; Terracciano, M.; De Stefano, L.; Piccialli, G.; Borbone, N.; Oliviero, G. π–π stacked DNA G-wire nanostructures formed by a short G-rich oligonucleotide containing a 3′–3′ inversion of polarity site. Org. Chem. Front. 2020, 7, 2187–2195. [Google Scholar] [CrossRef]
- Mengrani, Z.; Hong, W.; Palma, M. DNA-Mediated Carbon Nanotubes Heterojunction Assembly. ACS Nanosci. Au 2024, 4, 391–398. [Google Scholar] [CrossRef]
- Liu, X.; Jing, X.; Liu, P.; Pan, M.; Liu, Z.; Dai, X.; Lin, J.; Li, Q.; Wang, F.; Yang, S.; et al. DNA framework-encoded mineralization of calcium phosphate. Chem 2020, 6, 472–485. [Google Scholar] [CrossRef]
- Ding, H.; Pan, H.; Xu, X.; Tang, R. Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition. Cryst. Growth Des. 2014, 14, 763–769. [Google Scholar] [CrossRef]
- Athanasiadou, D.; Carneiro, K.M.M. DNA nanostructures as templates for biomineralization. Nat. Rev. Chem. 2021, 5, 93–108. [Google Scholar] [CrossRef]
- Sugiaman, V.K.; Jeffrey; Naliani, S.; Pranata, N.; Djuanda, R.; Saputri, R.I. Polymeric scaffolds used in dental pulp regeneration by tissue engineering approach. Polymers 2023, 15, 1082. [Google Scholar] [CrossRef]
S. No. | Materials | Effect on DPSCs | Dentin Repair—In Vivo | Antibacterial Effects | References |
---|---|---|---|---|---|
1. | GelMA with tricalcium phosphate (TCP) nanocomposite | Promoted odontogenic differentiation of DPSCs | Enhanced dentin repair | - | [41] |
2. | SrCuSi4 O10/GelMA composite hydrogel | Promoted odontogenic differentiation | Enhanced dentin repair | Antibacterial and anti-biofilm effect against S. mutans and L.casei | [42] |
3. | Dentin extracellular matrix-loaded bioactive glass/GelMA | Promoted odontogenic differentiation | - | - | [43] |
4. | Platelet lysate functionalized gelatin methacrylate microspheres | Improved proliferation and odontogenic differentiation of DPSCs | Subcutaneous implantation into SCID mice-enhanced angiogenesis, pulp-like tissue formation | - | [44] |
5. | Methacrylated gelatin/thiolated pectin hydrogels with melatonin/tideglusib-loaded core/shell PMMA/silk fibroin electrospun fibres | Promoted odontogenic differentiation | - | - | [45] |
6. | Injectable decellularized dental pulp matrix/gelatin hydrogel microspheres | Increased odontogenic differentiation | Tooth slices: Nude mice- promoted pulp–dentin formation with rich blood vessels and odontoblasts | - | [46] |
7. | Antimicrobial peptide- and dentin matrix-functionalized gelatin hydrogel | Reduced inflammatory responses and prompted odontogenic differentiation of inflamed hDPSCs | Mice-induced M2 macrophage phenotype Beagle dogs: Promoted pulp–dentin formation | Antibacterial effect against L. casei and A. naeslundii | [47] |
8. | Collagen sponges with regenerative peptide and molecules—Tideglusib, S100A8, and S100A9 | Enhanced odontogenic differentiation | Enhanced dentin reparative effect | - | [31,32] |
9. | Beta-tricalcium phosphate (β-TCP), hydroxyapatite (HA), and collagen scaffold with mineral trioxide aggregate (MTA) | - | Enhanced reparative dentin formation | - | |
10. | Phosphophoryn/ collagen composite | - | Enhanced reparative dentin formation | - | [48] |
S. No. | Materials | Effect on DPSCs | Dentin Repair—In Vivo | Antibacterial Effects | References |
---|---|---|---|---|---|
1. | Tideglusib-hyaluronic acid hydrogels with Rg1-loaded chitosan microspheres | Promoted odontogenic differentiation | - | - | [59] |
2. | A double-layer bovine BPB/chitosan: calcium hydroxide | - | Enhanced dentin repair in the presence of calcium | - | [60] |
3. | Porous chitosan scaffolds (SCH) with calcium silicate (CaSi) | Enhanced odontogenic differentiation of DPSCs | - | - | [61] |
4. | Porous chitosan/calcium/aluminate scaffold (CH-AlCa)with 1α,25-dihydroxyvitamin D3 (1α,25VD) | Enhanced odontogenic differentiation of DPSCs | - | - | [62] |
5. | Endometrial stem cells were put on a three-dimensional (3D) chitosan scaffold containing TiO2 NPs | - | Enhanced dentin regeneration | - | [63] |
6. | Silver-doped bioactive glass/chitosan hydrogel | Promoted odontogenic differentiation of DPSCs | Enhanced dentin repair | - | [64] |
7. | VEGF-loaded chitosan hydrogel | Promoted odontogenic differentiation | - | - | [65] |
8. | Carboxymethyl chitosan (CMC)/amorphous calcium phosphate (CMC/ACP) | CMC facilitated formation of ACP nano-precursors by chelating capacity Tooth model of deep caries Excellent remineralization capacity | - | - | [66,67,68] |
9. | RGD-alginate/laponite (RGD-Alg/Lap) hydrogel micropsheres | Promoted odontogenic differentiation | Promoted neovascularization | - | [69] |
10. | Collagen alginate with hydroxyapatite | Promoted odontogenic differentiation of DPSCs | - | - | [70] |
11. | Native and enzymatically modified chitosan with blood clot | - | Enzymatically modified chitosan enhanced dentin repair | - | [71] |
12. | Dexamethasone-loaded chitosan sponge | Increased odontogenic differentiation of hDPSCs | Renewed dentin bridge, with minimal inflammatory response | - | [72] |
13. | Porous chitosan scaffold mixed with calcium cements | Increased odontogenic differentiation of hDPSCs | - | - | [73] |
14. | CMC mediated intrafibrillar mineralization | Remineralized artificial caries affected dentin | - | - | [74] |
S. No. | Materials | Dentin Repair—In Vivo and In Vivo | Antibacterial Effects | Clinical Study | References |
---|---|---|---|---|---|
1. | PRF | - | - | 12 month success rate: 82.6% for PRF and 61.9% for MTA | [86] |
2. | PRF | Showed increased pulp viability and MTA | - | - | [87] |
3. | PRP and PRF | Randomized controlled trial: Significantly higher volume of dentin formed than MTA | [82] | ||
4. | PRF | Increased odontogenic differentiation of DPSCs | - | - | [88] |
5. | PRF | - | - | Mandibular molar teeth with irreversible pulpitis: MTA, PRF, and Ca(OH)2 showed similar increase in dentin deposition | [89] |
S. No. | Materials | Effect on DPSCs | Dentin Repair—In Vivo | Antibacterial Effects | References |
---|---|---|---|---|---|
1. | Gelatin methacryloyl microgels (7% w/v) mixed with dentin matrix molecules | - | Pulp tissue formation, newly formed tubular and atubular dentin, and blood vessel formation | - | [90] |
2. | Treated dentin matrix hydrogel (TDMH) | - | Induced dentin bridge formation | - | [91,92] |
3. | Photocrosslinkable gelatin-treated dentin matrix hydrogel | - | Increased dentin repair | - | [93] |
4. | Digested dentin matrix extract (DDME) | Induced proliferation, differentiation of DPSCs | Regenerated dentin in an in situ animal model | - | [95] |
5. | Sodium alginate with DDM | DPSCs showed enhanced COL-1 gene expression | - | More enhanced antimicrobial effect than MTA | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajasekar, V.; Abdalla, M.M.; Huang, M.; Neelakantan, P.; Yiu, C.K.Y. Next-Generation Biomaterials for Vital Pulp Therapy: Exploring Biological Properties and Dentin Regeneration Mechanisms. Bioengineering 2025, 12, 248. https://doi.org/10.3390/bioengineering12030248
Rajasekar V, Abdalla MM, Huang M, Neelakantan P, Yiu CKY. Next-Generation Biomaterials for Vital Pulp Therapy: Exploring Biological Properties and Dentin Regeneration Mechanisms. Bioengineering. 2025; 12(3):248. https://doi.org/10.3390/bioengineering12030248
Chicago/Turabian StyleRajasekar, Vidhyashree, Mohamed Mahmoud Abdalla, Mengyu Huang, Prasanna Neelakantan, and Cynthia Kar Yung Yiu. 2025. "Next-Generation Biomaterials for Vital Pulp Therapy: Exploring Biological Properties and Dentin Regeneration Mechanisms" Bioengineering 12, no. 3: 248. https://doi.org/10.3390/bioengineering12030248
APA StyleRajasekar, V., Abdalla, M. M., Huang, M., Neelakantan, P., & Yiu, C. K. Y. (2025). Next-Generation Biomaterials for Vital Pulp Therapy: Exploring Biological Properties and Dentin Regeneration Mechanisms. Bioengineering, 12(3), 248. https://doi.org/10.3390/bioengineering12030248