Anterior Cruciate Ligament Reconstruction Rehabilitation as a Complex Adaptive Process: From Control–Chaos to Actionable Return-to-Sport Decisions
Abstract
1. Introduction—Complexity and the Illusion of Linear Recovery
2. Why Control–Chaos Continuum Matters in ACLR Rehabilitation
3. From Fixed Stages to Adaptive Periodization
4. Neuroplasticity and Variability as Drivers of Recovery
5. Operationalizing the Control–Chaos Continuum
5.1. Closed-Loop Assessment: From Isolated Signals to Converging Evidence
5.2. Dosing Complexity: Manipulating Constraints to Regulate Entropy
5.3. Inflection Points and Recalibration: Advancing When Errors Become Information
5.4. Task Representativeness and Chaotic Load
5.5. Integration with External/Internal Load and the Psychological Dimension
5.6. Biological Rationale: Directed Plasticity and Reorganization
5.7. Ethical and Educational Implications
6. Future Directions
7. Take-Home Messages
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dingenen, B.; Gokeler, A. Optimization of the Return-to-Sport Paradigm after Anterior Cruciate Ligament Reconstruction: A Critical Step Back to Move Forward. Sports Med. 2017, 47, 1487–1500. [Google Scholar] [CrossRef] [PubMed]
- Niederer, D.; Wilke, J.; Vogt, L.; Banzer, W. Functional outcomes after anterior cruciate ligament reconstruction: A multicentre cohort study. BMC Sports Sci. Med. Rehabil. 2023, 15, 54. [Google Scholar] [CrossRef]
- Meredith, S.J.; Rauer, T.; Chmielewski, T.L.; Fink, C.; Diermeier, T.; Rothrauff, B.B.; Svantesson, E.; Senorski, E.H.; Hewett, T.E.; Sherman, S.L.; et al. Return to sport after anterior cruciate ligament injury: Panther Symposium ACL Return to Sport Consensus Group. Orthop. J. Sports Med. 2020, 8, 2325967120930829. [Google Scholar] [CrossRef]
- Bahr, R.; Krosshaug, T. Understanding Injury Mechanisms: A Key Component of Preventing Injuries in Sport. Br. J. Sports Med. 2005, 39, 324–329. [Google Scholar] [CrossRef]
- Plsek, P.E.; Greenhalgh, T. Complexity Science: The Challenge of Complexity in Health Care. BMJ 2001, 323, 625–628. [Google Scholar] [CrossRef]
- Sturmberg, J.P.; Martin, C.M. Complexity and Health—Yesterday’s Traditions, Tomorrow’s Future. J. Eval. Clin. Pract. 2009, 15, 543–548. [Google Scholar] [CrossRef] [PubMed]
- West, B.J. Fractal Physiology and the Fractional Calculus. Front. Physiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Stergiou, N.; Decker, L.M. Human Movement Variability, Nonlinear Dynamics, and Pathology: Is There a Connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar] [CrossRef]
- Preatoni, E.; Ferrario, M.; Donà, G.; Hamill, J.; Rodano, R. Movement Variability and Skills Monitoring in Sports. Sports Biomech. 2013, 12, 69–92. [Google Scholar] [CrossRef]
- Kelso, J.A.S. Dynamic Patterns: The Self-Organization of Brain and Behavior; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Taberner, M.; Allen, T.; Cohen, D.D. Progressing Rehabilitation after Injury: Consider the “Control–Chaos Continuum”. Br. J. Sports Med. 2019, 53, 1132–1136. [Google Scholar] [CrossRef]
- Taberner, M.; Cohen, D.D.; van Dyk, N. Infographic: Progressing Rehabilitation after Injury—Consider the “Control–Chaos Continuum”. Br. J. Sports Med. 2020, 54, 116–117. [Google Scholar] [CrossRef]
- Davids, K.; Araújo, D.; Hristovski, R.; Passos, P.; Chow, J.Y. Ecological dynamics and motor learning design in sport. In Skill Acquisition in Sport: Research, Theory and Practice, 2nd ed.; Hodges, N.J., Williams, A.M., Eds.; Routledge: London, UK, 2012; pp. 112–130. [Google Scholar]
- Davids, K.; Glazier, P.; Araújo, D.; Bartlett, R. Movement Systems as Dynamical Systems: The Functional Role of Variability and Its Implications for Sports Medicine. Sports Med. 2003, 33, 245–260. [Google Scholar] [CrossRef]
- Seifert, L.; Komar, J.; Araújo, D.; Davids, K. Neurobiological Degeneracy: A Key Property for Functional Adaptations of Perception and Action to Constraints. Neurosci. Biobehav. Rev. 2016, 69, 159–165. [Google Scholar] [CrossRef]
- Stergiou, N.; Harbourne, R.T.; Cavanaugh, J.T. Optimal Movement Variability: A New Theoretical Perspective for Neurologic Physical Therapy. J. Neurol. Phys. Ther. 2006, 30, 120–129. [Google Scholar] [CrossRef]
- Faisal, A.A.; Selen, L.P.J.; Wolpert, D.M. Noise in the Nervous System. Nat. Rev. Neurosci. 2008, 9, 292–303. [Google Scholar] [CrossRef] [PubMed]
- van Beers, R.J. How does our motor system determine its learning rate? PLoS ONE 2012, 7, e49373. [Google Scholar] [CrossRef] [PubMed]
- Newell, K.M. Constraints on the Development of Coordination. In Motor Development in Children: Aspects of Coordination and Control; Martinus Nijhoff: Dordrecht, The Netherlands, 1986; pp. 341–360. [Google Scholar]
- Kakavas, G.; Forelli, F.; Malliaropoulos, N.; Hewett, T.E.; Tsaklis, P. Periodization in Anterior Cruciate Ligament Rehabilitation: New Framework versus Old Model? Int. J. Sports Phys. Ther. 2023, 18, 541–546. [Google Scholar] [CrossRef]
- Campardo, G.; Ricupito, R.; Vercesi, C.; Mourad, F.; Kakavas, G.; Forelli, F. Think Outside the Block: Rehabilitation Continuum after ACL Reconstruction with Adaptive Macro-Blocks—A Narrative Review. Healthcare 2025, 13, 2480. [Google Scholar] [CrossRef]
- Issurin, V.B. Block Periodization versus Traditional Training Theory: A Review. J. Sports Med. Phys. Fit. 2008, 48, 65–75. [Google Scholar]
- Kiely, J. Periodization Theory: Confronting an Inconvenient Truth. Sports Med. 2018, 48, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.G. Periodization for Strength and Power Development. In NSCA’s Essentials of Strength Training and Conditioning; Human Kinetics: Champaign, IL, USA, 2015; pp. 583–603. [Google Scholar]
- Meeuwisse, W.H.; Tyreman, H.; Hagel, B.; Emery, C. A Dynamic Model of Etiology in Sport Injury: The Recursive Nature of Risk and Causation. Clin. J. Sport Med. 2007, 17, 215–219. [Google Scholar] [CrossRef]
- Bittencourt, N.F.N.; Meeuwisse, W.H.; Mendonça, L.D.; Nettel-Aguirre, A.; Ocarino, J.M.; Fonseca, S.T. Complex Systems Approach for Sports Injuries: Moving from Risk Factor Identification toward Pattern Recognition—A Narrative Review. Br. J. Sports Med. 2016, 50, 1309–1314. [Google Scholar] [CrossRef]
- Martin, R.L.; Chimenti, R.; Cuddeford, T.; Houck, J.; Matheson, J.W.; McDonough, C.M.; Paulseth, S.; Wukich, D.K.; Carcia, C.R. Achilles Pain, Stiffness, and Muscle Power Deficits: Midportion Achilles Tendinopathy Revision 2018—Clinical Practice Guidelines. J. Orthop. Sports Phys. Ther. 2018, 48, A1–A38. [Google Scholar] [CrossRef]
- Hickey, J.T.; Opar, D.A.; Weiss, L.J.; Heiderscheit, B.C. Hamstring strain injury rehabilitation. J. Athl. Train. 2022, 57, 125–135. [Google Scholar] [CrossRef]
- Kleim, J.A.; Jones, T.A. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage. J. Speech Lang. Hear. Res. 2008, 51, S225–S239. [Google Scholar] [CrossRef] [PubMed]
- Kakavas, G.; Malliaropoulos, N.; Pruna, R.; Traster, D.; Bikos, G.; Maffulli, N. Neuroplasticity and Anterior Cruciate Ligament Injury. Indian J. Orthop. 2020, 54, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Grooms, D.R.; Appelbaum, G.; Onate, J.A. Neuroplasticity Following ACL Injury: A Framework for Visual-Motor Training Approaches in Rehabilitation. J. Orthop. Sports Phys. Ther. 2015, 45, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, J.; Reinecke, K.; Weiss, M. Changed cortical activity after anterior cruciate ligament reconstruction in a joint position paradigm: A EEG study. Scand. J. Med. Sci. Sports 2008, 18, 473–484. [Google Scholar] [CrossRef]
- Ardern, C.L.; Taylor, N.F.; Feller, J.A.; Whitehead, T.S.; Webster, K.E. Psychological responses matter in returning to preinjury level of sport after anterior cruciate ligament reconstruction surgery. Am. J. Sports Med. 2013, 41, 1549–1558. [Google Scholar] [CrossRef]
- Moiroux-Sahraoui, A.; Mazeas, J.; Gold, M.; Kakavas, G.; Forelli, F. Neuromuscular Control Deficits after Anterior Cruciate Ligament Reconstruction: A Pilot Study Using Single-Leg Functional Tests and Electromyography. J. Funct. Morphol. Kinesiol. 2025, 10, 98. [Google Scholar] [CrossRef]
- Forelli, F.; Moiroux-Sahraoui, A.; Mazeas, J.; Dugernier, J.; Cerrito, A. Rethinking the Assessment of Arthrogenic Muscle Inhibition after ACL Reconstruction: Implications for Return-to-Sport Decision-Making—A Narrative Review. J. Clin. Med. 2025, 14, 2633. [Google Scholar] [CrossRef]
- Rice, D.A.; McNair, P.J.; Lewis, G.N. Mechanisms of Arthrogenic Muscle Inhibition: Implications for Rehabilitation. Man. Ther. 2014, 19, 2–9. [Google Scholar] [CrossRef]
- Paoloni, M.; Mangone, M.; Scettri, P.; Procaccianti, R.; Santilli, V. Surface EMG in Rehabilitation: Clinical Value and Limits. Eur. J. Phys. Rehabil. Med. 2011, 47, 485–505. [Google Scholar]
- Biały, M.; Wilczyński, B.; Forelli, F.; Hewett, T.E.; Gnat, R. Functional Deficits in Non-Elite Soccer Players after ACL Reconstruction: A Strength, Balance, and Movement Quality Assessment. Cureus 2024, 16, e75846. [Google Scholar] [CrossRef] [PubMed]
- Blanch, P.; Gabbett, T.J. Has the Athlete Trained Enough to Return to Play Safely? The Acute: Chronic Workload Ratio Permits Clinicians to Quantify a Player’s Risk of Subsequent Injury. Br. J. Sports Med. 2016, 50, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Bowen, L.; Gross, A.S.; Gimpel, M.; Bruce-Lockhart, F. Accumulated workloads and the acute:chronic workload ratio relate to injury risk in elite youth football players. Br. J. Sports Med. 2017, 51, 452–459. [Google Scholar] [CrossRef]
- Webster, K.E.; Feller, J.A. Development and validation of a short version of the Anterior Cruciate Ligament Return to Sport after Injury (ACL-RSI) scale. Orthop. J. Sports Med. 2018, 6, 2325967118763763. [Google Scholar] [CrossRef] [PubMed]
- Yung, K.K.; Meir, R.; Lloyd, D.G.; Hendricks, S.; Salmon, P.M. Judgement and decision making in clinical and return-to-sport practice: Implications for sports rehabilitation. Sports Med. 2024, 54, 1517–1533. [Google Scholar] [CrossRef]
- Welling, W.; Benjaminse, A.; Lemmink, K.; Gokeler, A. Return to sports after an ACL reconstruction in 2024: What have we learned? Phys. Ther. Sport 2024, 66, 58–68. [Google Scholar] [CrossRef]
- Mottram, S.; Comerford, M. Functional Stability and Movement Control: The Essential Subsystems. Man. Ther. 2008, 13, 3–9. [Google Scholar] [CrossRef]
- Myer, G.D.; DiCesare, C.A.; Gribble, P.A.; Paterno, M.V. The Back-to-Sport Conundrum: Time to Reframe Return Criteria. Br. J. Sports Med. 2022, 56, 1–3. [Google Scholar]
- Saw, A.E.; Main, L.C.; Gastin, P.B. Monitoring the Athlete Training Response: Subjective Self-Reported Measures Trump Commonly Used Objective Measures. Br. J. Sports Med. 2016, 50, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M. Optimising the late-stage rehabilitation and return-to-sport training and testing process after ACL reconstruction. Sports Med. 2019, 49, 1043–1058. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J. The Training–Injury Prevention Paradox: Should Athletes Be Training Smarter and Harder? Br. J. Sports Med. 2016, 50, 273–280. [Google Scholar] [CrossRef]
- Belloir, M.; Mazeas, J.; Traullé, M.; Vandebrouck, A.; Duffiet, P.; Ratté, L.; Forelli, F. Influence of the Open Kinetic Chain on the Distension of the Transplant after Anterior Cruciate Ligament Surgery with Hamstring Graft: Search for Risk Factors. Int. J. Physiother. 2020, 7, 256–263. [Google Scholar] [CrossRef]
- Scheffer, M. Critical Transitions in Nature and Society; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Corral-Acero, J.; Margara, F.; Marciniak, M.; Rodero, C.; Loncaric, F.; Feng, Y.; Gilbert, A.; Fernandes, J.F.; Bukhari, H.A.; Wajdan, A.; et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur. Heart J. 2020, 41, 4556–4564. [Google Scholar] [CrossRef]
- Viceconti, M.; Pappalardo, F.; Horner, M.; Bischoff, J.; Musuamba, F.; Rostami-Hodjegan, A. In Silico Trials: A Roadmap for Regulatory Acceptance. WIREs Syst. Biol. Med. 2021, 13, e1510. [Google Scholar] [CrossRef]
- Lipsitz, L.A.; Goldberger, A.L. Loss of “Complexity” and Aging: Potential Applications of Fractals and Chaos Theory to Senescence. JAMA 1992, 267, 1806–1809. [Google Scholar] [CrossRef]
- Hollnagel, E.; Pariès, J.; Woods, D.D.; Wreathall, J. Resilience Engineering in Practice: A Guidebook; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Ardern, C.L.; Rädler, M.; Pizzari, T.; Webster, K.E. Shifting Paradigms in Sports Physiotherapy Education: Integrating Complexity and Uncertainty. Phys. Ther. Sport 2023, 60, 1–6. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakavas, G.; Malliaropoulos, N.; Forelli, F. Anterior Cruciate Ligament Reconstruction Rehabilitation as a Complex Adaptive Process: From Control–Chaos to Actionable Return-to-Sport Decisions. Bioengineering 2025, 12, 1229. https://doi.org/10.3390/bioengineering12111229
Kakavas G, Malliaropoulos N, Forelli F. Anterior Cruciate Ligament Reconstruction Rehabilitation as a Complex Adaptive Process: From Control–Chaos to Actionable Return-to-Sport Decisions. Bioengineering. 2025; 12(11):1229. https://doi.org/10.3390/bioengineering12111229
Chicago/Turabian StyleKakavas, Georgios, Nikoloaos Malliaropoulos, and Florian Forelli. 2025. "Anterior Cruciate Ligament Reconstruction Rehabilitation as a Complex Adaptive Process: From Control–Chaos to Actionable Return-to-Sport Decisions" Bioengineering 12, no. 11: 1229. https://doi.org/10.3390/bioengineering12111229
APA StyleKakavas, G., Malliaropoulos, N., & Forelli, F. (2025). Anterior Cruciate Ligament Reconstruction Rehabilitation as a Complex Adaptive Process: From Control–Chaos to Actionable Return-to-Sport Decisions. Bioengineering, 12(11), 1229. https://doi.org/10.3390/bioengineering12111229

