A Protocol for the In Vitro Culturing of Vascularized Pancreatic Islet Organoids
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissues and Cells
2.2. Acquisition of Pancreatic Islet Samples
2.3. Immunofluorescent Staining
2.4. Calcein and Propidium Iodide (PI) Staining
2.5. Glucose-Stimulated Insulin Secretion Test (GSIS)
2.6. Reverse Transcription Quantitative PCR Analysis
2.7. Immunohistochemistry (IHC) Analysis
2.8. Statistical Analysis
3. Results
3.1. Culture of Pancreatic Islet Cells
3.2. Specific Antigen Detection of Pancreatic Islet Cells
3.3. Culture and Identification of Endothelial Cells
3.4. Vascularized Islet-like Organoids Exhibit Good Physiological Activity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HUVEC | Human umbilical vein endothelial cells |
| VEGF | Vascular Endothelial Growth Factor |
| FGF | Fibroblast Growth Factor |
| EGF | Epidermal Growth Factor |
| iPSCs | Induced Pluripotent Stem Cells |
| ESC | Embryonic Stem Cells |
| INS | Insulin |
| GCG | Glucagon |
References
- Rheinheimer, J.; Bauer, A.C.; Silveiro, S.P.; Estivalet, A.A.; Bouças, A.P.; Rosa, A.R.; Souza, B.M.D.; Oliveira, F.S.D.; Cruz, L.A.; Brondani, L.A.; et al. Human pancreatic islet transplantation: An update and description of the establishment of a pancreatic islet isolation laboratory. Arch. Endocrinol. Metab. 2015, 59, 161–170. [Google Scholar] [CrossRef]
- Lysy, P.A.; Weir, G.C.; Bonner-Weir, S. Making β Cells from Adult Cells Within the Pancreas. Curr. Diabetes Rep. 2013, 13, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, O.; Berman, D.M.; Kenyon, N.S.; Ricordi, C.; Berggrern, P.O.; Caicedo, A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 2006, 103, 2334–2339. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.C.; Wright, C. Pancreas Organogenesis: From Bud to Plexus to Gland. Dev. Dyn. 2011, 240, 530–565. [Google Scholar] [CrossRef]
- Rafii, S.; Butler, J.M.; Ding, B.S. Angiocrine functions of organ-specific endothelial cells. Nature 2016, 529, 316–325. [Google Scholar] [CrossRef]
- Rajasekar, S.; Lin, D.S.Y.; Abdul, L.; Liu, A.; Sotra, A.; Zhang, F.; Zhang, B. IFlowPlate-A Customized 384-Well Plate for the Culture of Perfusable Vascularized Colon Organoids. Adv. Mater. 2020, 32, 12. [Google Scholar] [CrossRef] [PubMed]
- Latres, E.; Finan, D.A.; Greenstein, J.L.; Kowalski, A.; Kieffer, T.J. Navigating Two Roads to Glucose Normalization in Diabetes: Automated Insulin Delivery Devices and Cell Therapy. Cell Metab. 2019, 29, 545–563. [Google Scholar] [CrossRef]
- D’Amour, K.A.; Agulnick, A.D.; Eliazer, S.; Kelly, O.G.; Kroon, E.; Baetge, E.E. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 2005, 23, 1534–1541. [Google Scholar] [CrossRef]
- Roche, E.; Sepulcre, M.P.; Enseñat-Waser, R.; Maestre, I.; Reig, J.A.; Soria, B. Bio-engineering insulin-secreting cells from embryonic stem cells: A review of progress. Med. Biol. Eng. Comput. 2003, 41, 384–391. [Google Scholar] [CrossRef]
- Rezania, A.; Bruin, J.E.; Riedel, M.J.; Mojibian, M.; Asadi, A.; Xu, J.; Gauvin, R.; Narayan, K.; Karanu, F.; O’Neil, J.J.; et al. Maturation of Human Embryonic Stem Cell-Derived Pancreatic Progenitors into Functional Islets Capable of Treating Pre-existing Diabetes in Mice. Diabetes 2012, 61, 2016–2029. [Google Scholar] [CrossRef]
- Rezania, A.; Bruin, J.E.; Xu, J.; Narayan, K.; Fox, J.K.; O’Neil, J.J.; Kieffer, T.J. Enrichment of Human Embryonic Stem Cell-Derived NKX6.1-Expressing Pancreatic Progenitor Cells Accelerates the Maturation of Insulin-Secreting Cells In Vivo. Stem Cells 2013, 31, 2432–2442. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.Y.; Wu, S.; Wang, D.; Chu, C.; Hong, Y.; Tao, M.; Hu, H.; Xu, M.; Guo, X.; Liu, Y. Human organoids in basic research and clinical applications. Signal Transduct. Target. Ther. 2022, 7, 17. [Google Scholar] [CrossRef]
- Han, R.N.N.; Post, M.; Tanswell, A.K.; Lye, S.J. Insulin-like growth factor-I receptor-mediated vasculogenesis/angiogenesis in human lung development. Am. J. Respir. Cell Mol. Biol. 2003, 28, 159–169. [Google Scholar] [CrossRef]
- Miao, Y.; Pek, N.M.; Tan, C.; Jiang, C.; Yu, Z.; Iwasawa, K.; Shi, M.; Kechele, D.O.; Sundaram, N.; Pastrana-Gomez, V.; et al. Co-development of mesoderm and endoderm enables organotypic vascularization in lung and gut organoids. Cell 2025, 188, 4295–4313. [Google Scholar] [CrossRef]
- Fatehullah, A.; Tan, S.H.; Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 2016, 18, 246–254. [Google Scholar] [CrossRef]
- Schutgens, F.; Clevers, H. Human Organoids: Tools for Understanding Biology and Treating Diseases. Annu. Rev. Pathol. Mech. Dis. 2020, 15, 211–234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Ma, Z.; Song, E.L.; Xu, T. Islet organoid as a promising model for diabetes. Protein Cell 2022, 13, 239–257. [Google Scholar] [CrossRef] [PubMed]
- Li, X.R.; Carmeliet, P. Targeting angiogenic metabolism in disease. Science 2018, 359, 1335–1336. [Google Scholar] [CrossRef]
- Couffinhal, T.; Dufourcq, P.; Daret, D.; Duplaà, C. Mechanisms of angiogenesis: Clinical and therapeutic applications. Rev. Med. Interne 2001, 22, 1064–1082. [Google Scholar] [CrossRef]
- Nolan, D.J.; Ginsberg, M.; Israely, E.; Palikuqi, B.; Poulos, M.G.; James, D.; Ding, B.S.; Schachterle, W.; Liu, Y.; Rosenwaks, Z.; et al. Molecular Signatures of Tissue-Specific Microvascular Endothelial Cell Heterogeneity in Organ Maintenance and Regeneration. Dev. Cell 2013, 26, 204–219. [Google Scholar] [CrossRef]
- Chow, B.W.; Gu, C.H. The Molecular Constituents of the Blood-Brain Barrier. Trends Neurosci. 2015, 38, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, M.; Mousa, S.A. The Role of Angiogenesis in Cancer Treatment. Biomedicines 2017, 5, 34. [Google Scholar] [CrossRef]
- Phipson, B.; Er, P.X.; Combes, A.N.; Forbes, T.A.; Howden, S.E.; Zappia, L.; Yen, H.J.; Lawlor, K.T.; Hale, L.J.; Sun, J.; et al. Evaluation of variability in human kidney organoids. Nat. Methods 2019, 16, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.S.; Wang, J.Q.; Bai, L.Y.; Pan, H.; Feng, H.; Clevers, H.; Zeng, Y.A. Long-Term Expansion of Pancreatic Islet Organoids from Resident Procr+ Progenitors. Cell 2020, 180, 1198–1211. [Google Scholar] [CrossRef] [PubMed]
- Bonner-Weir, S.; Taneja, M.; Weir, G.C.; Tatarkiewicz, K.; Song, K.H.; Sharma, A.; O’Neil, J.J. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA 2000, 97, 7999–8004. [Google Scholar] [CrossRef]
- Rodriguez, U.A.; Socorro, M.; Criscimanna, A.; Martins, C.P.; Mohamed, N.; Hu, J.; Prasadan, K.; Gittes, G.K.; Esni, F. Conversion of α-Cells to β-Cells in the Postpartum Mouse Pancreas Involves Lgr5 Progeny. Diabetes 2021, 70, 1508–1518. [Google Scholar] [CrossRef]
- Jin, L.; Feng, T.; Shih, H.P.; Zerda, R.; Luo, A.; Hsu, J.; Mahdavi, A.; Sander, M.; Tirrell, D.A.; Riggs, A.D.; et al. Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel. Proc. Natl. Acad. Sci. USA 2013, 110, 3907–3912. [Google Scholar] [CrossRef]
- Lima, M.J.; Muir, K.R.; Docherty, H.M.; Drummond, R.; McGowan, N.W.; Forbes, S.; Heremans, Y.; Houbracken, I.; Ross, J.A.; Forbes, S.J.; et al. Suppression of Epithelial-to-Mesenchymal Transitioning Enhances Ex Vivo Reprogramming of Human Exocrine Pancreatic Tissue Toward Functional Insulin-Producing β-Like Cells. Diabetes 2013, 62, 2821–2833. [Google Scholar] [CrossRef]
- Russell, R.; Carnese, P.P.; Hennings, T.G.; Walker, E.M.; Russ, H.A.; Liu, J.S.; Giacometti, S.; Stein, R.; Hebrok, M. Loss of the transcription factor MAFB limits β-cell derivation from human PSCs. Nat. Commun. 2020, 11, 15. [Google Scholar] [CrossRef]
- Melton, D. The promise of stem cell-derived islet replacement therapy. Diabetologia 2021, 64, 1030–1036. [Google Scholar] [CrossRef]
- Lammert, E.; Cleaver, O.; Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science 2001, 294, 564–567. [Google Scholar] [CrossRef]
- Pierreux, C.E.; Cordi, S.; Hick, A.C.; Achouri, Y.; De Almodovar, C.R.; Prévot, P.P.; Courtoy, P.J.; Carmeliet, P.; Lemaigre, F.P. Epithelial: Endothelial cross-talk regulates exocrine differentiation in developing pancreas. Dev. Biol. 2010, 347, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Talavera-Adame, D.; Woolcott, O.O.; Ignatius-Irudayam, J.; Arumugaswami, V.; Geller, D.H.; Dafoe, D.C. Effective endothelial cell and human pluripotent stem cell interactions generate functional insulin-producing beta cells. Diabetologia 2016, 59, 2378–2386. [Google Scholar] [CrossRef] [PubMed]
- Veres, A.; Faust, A.L.; Bushnell, H.L.; Engquist, E.N.; Kenty, J.H.R.; Harb, G.; Poh, Y.C.; Sintov, E.; Gürtler, M.; Pagliuca, F.W.; et al. Charting cellular identity during human in vitro β-cell differentiation. Nature 2019, 569, 368–373. [Google Scholar] [CrossRef]
- Jansson, L.; Carlsson, P.O. Graft vascular function after transplantation of pancreatic islets. Diabetologia 2002, 45, 749–763. [Google Scholar] [CrossRef] [PubMed]





| Component | Concentration | Function |
|---|---|---|
| DMEM/F12 | 500 mL | Nutrients necessary for life activities |
| B27 | 1× | Maintains long-term in vitro culture of cells |
| Penicillin and Streptomycin | 1× | Antibiotics to prevent contamination |
| HEPES | 10 mM | Buffering agent |
| Glutamine | 2 mM | Provides energy to support the synthesis of proteins and nucleic acids |
| heparin | 2.5 µg/mL | Viscopolysaccharides with anticoagulant properties |
| FGF2 | 10 ng/mL | Affects cell proliferation and tissue neovascularization |
| EGF | 50 ng/mL | Mitogenic factor |
| IGF-1 | 100 ng/mL | Promotes growth activity and activates the AKT signaling pathway |
| VEGF | 5 ng/mL | Relates to fetal and adult angiogenesis |
| ITS | 100× | Promotes cell growth and regulates nutrient intake |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, P.; Wang, Y.; Peng, J.; Liu, L.; Du, L. A Protocol for the In Vitro Culturing of Vascularized Pancreatic Islet Organoids. Bioengineering 2025, 12, 1222. https://doi.org/10.3390/bioengineering12111222
Song P, Wang Y, Peng J, Liu L, Du L. A Protocol for the In Vitro Culturing of Vascularized Pancreatic Islet Organoids. Bioengineering. 2025; 12(11):1222. https://doi.org/10.3390/bioengineering12111222
Chicago/Turabian StyleSong, Pengkun, Yue Wang, Junya Peng, Lei Liu, and Lei Du. 2025. "A Protocol for the In Vitro Culturing of Vascularized Pancreatic Islet Organoids" Bioengineering 12, no. 11: 1222. https://doi.org/10.3390/bioengineering12111222
APA StyleSong, P., Wang, Y., Peng, J., Liu, L., & Du, L. (2025). A Protocol for the In Vitro Culturing of Vascularized Pancreatic Islet Organoids. Bioengineering, 12(11), 1222. https://doi.org/10.3390/bioengineering12111222

