Risk of Fall in Patients with Functional Hallux Limitus: A Case–Control Study Using an Inertial Measurement Unit
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Size
2.1.1. FHL Patient Group
2.1.2. Control Group
2.2. Gait Mobility Assessment and Measurement Instrument
2.3. Postural Stability Analysis
2.4. Fear of Falling Assessment
2.5. Statistical Analysis
3. Results
3.1. Analysis of Gait Mobility, Postural Stability, and Fear of Falling
3.2. Gait Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FHL | Functional hallux limitus |
TUG | Timed Up and Go Test |
BBS | Berg Balance Scale |
FES-I | Falls Efficacy Scale—International |
ROM | Range of Motion |
IMUs | Inertial measurement units |
HV | Hallux Valgus |
References
- Ambrose, A.F.; Paul, G.; Hausdorff, J.M. Risk factors for falls among older adults: A review of the literature. Maturitas 2013, 75, 51–61. [Google Scholar] [CrossRef]
- Howe, T.E.; Rochester, L.; Jackson, A.; Banks, P.M.; Blair, V.A. Exercise for improving balance in older people. Cochrane Database Syst Rev. 2007, 11, CD004963. [Google Scholar] [CrossRef]
- Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006, 35 (Suppl. 2), ii37–ii41. [Google Scholar] [CrossRef]
- Colón-Emeric, C.S.; McDermott, C.L.; Lee, D.S.; Berry, S.D. Risk assessment and prevention of falls in older community-dwelling adults: A review. JAMA 2024, 331, 1397–1406. [Google Scholar] [CrossRef]
- Gschwind, Y.J.; Kressig, R.W.; Lacroix, A.; Muehlbauer, T.; Pfenninger, B.; Granacher, U. A best practice fall prevention exercise program to improve balance, strength/power, and psychosocial health in older adults: Study protocol for a randomized controlled trial. BMC Geriatr. 2013, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, K.; Greene, B.; Cunningham, C.; Crosby, L.; Kenny, R. Early identification of balance deterioration in older adults with higher-level functional abilities: A method based on inertial sensors. Gait Posture 2014, 39, 1034–1039. [Google Scholar] [CrossRef]
- Seo, J.; Kim, T.; Lee, J.; Kim, J.; Choi, J.; Tack, G. Prediction of falls in the elderly using logistic regression model based on instrumented, timed and go test. J. Mech. Sci. Technol. 2019, 33, 3813–3818. [Google Scholar] [CrossRef]
- Picardi, M.; Redaelli, V.; Antoniotti, P.; Pintavalle, G.; Aristidou, E.; Sterpi, I.; Meloni, M.; Corbo, M.; Caronni, A. Turning and sit-to-walk measures from the instrumented Timed Up and Go test return valid and responsive measures of dynamic balance in Parkinson’s disease. Clin Biomech 2020, 80, 105177. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.P.; Ayachi, F.; Lavigne–Pelletier, C.; Blamoutier, M.; Rahimi, F.; Boissy, P.; Jog, M.; Duval, C. Automatic detection and segmentation of physical activities during Timed-Up-and-Go test using multiple inertial sensors in older adults. J. Neuroeng. Rehabil. 2015, 12, 36. [Google Scholar] [CrossRef]
- Najafi, B.; Armstrong, D.G.; Mohler, J. Novel wearable technology for assessing spontaneous daily physical activity and risk of falling in older adults with diabetes. J. Diabetes Sci. Technol. 2013, 7, 1147–1160. [Google Scholar] [CrossRef]
- Mirelman, A.; Weiss, A.; Buchman, A.S.; Bennett, D.A.; Giladi, N.; Hausdorff, J.M. Association between performance on subtests of the Timed Up and Go and cognitive function in healthy older adults: Further insights into the links between cognitive and motor function. J. Am. Geriatr. Soc. 2014, 62, 673–678. [Google Scholar] [CrossRef]
- Mariani, B.; Jiménez, M.C.; Vingerhoets, F.J.; Aminian, K. Ambulatory monitoring of physical activity and gait in Parkinson’s disease patients using wearable sensors. IEEE Trans. Biomed. Eng. 2012, 60, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Ayena, J.C.; Otis, M.J. Validation of minimal number of force sensitive resistors to predict risk of falling during a Timed Up and Go test. J. Med. Biol. Eng. 2020, 40, 348–355. [Google Scholar] [CrossRef]
- Galán-Mercant, A.; Cuesta-Vargas, A. Clinical frailty syndrome assessment using inertial sensors embedded in smartphones. Physiol. Meas. 2015, 36, 1929. [Google Scholar] [CrossRef]
- Galán-Mercant, A.; Cuesta-Vargas, A.I. Differences in trunk kinematics between frail and non-frail elderly persons during turn transition based on a smartphone inertial sensor. Biomed. Res. Int. 2013, 2013, 279197. [Google Scholar]
- Galán-Mercant, A.; Cuesta-Vargas, A.I. Differences in trunk accelerometry between frail and non-frail elderly persons in functional tasks. BMC Res. Notes 2014, 7, 100. [Google Scholar] [CrossRef]
- Gasparutto, X.; Gueugnon, M.; Laroche, D.; Martz, P.; Hannouche, D.; Armand, S. Which functional tasks present the largest deficits for patients with total hip arthroplasty before and six months after surgery? A study of the Timed Up-and-Go test phases. PLoS ONE 2021, 16, e0255037. [Google Scholar] [CrossRef]
- Shima, H.; Yasuda, T.; Hida, T.; Tsujinaka, S.; Togei, K.; Nakamura, G.; Neo, M. Postural stability impairment in patients with bilateral hallux valgus: A case-control study using a stabilometer. Foot Ankle Surg. 2021, 27, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Warrington, D.J.; Shortis, E.J.; Whittaker, P.J. Are wearable devices effective for preventing and detecting falls: An umbrella review (a review of systematic reviews). BMC Public Health 2021, 21, 2091. [Google Scholar] [CrossRef]
- Muchna, A.; Najafi, B.; Wendel, C.S.; Schwenk, M.; Armstrong, D.G.; Mohler, J. Foot problems in older adults: Associations with incident falls, frailty syndrome, and sensor-derived gait, balance, and physical activity measures. J. Am. Podiatr. Med. Assoc. 2018, 108, 126–139. [Google Scholar] [CrossRef]
- Mecagni, C.; Smith, J.P.; Roberts, K.E.; O’Sullivan, S.B. Balance and ankle range of motion in community-dwelling women aged 64 to 87 years: A correlational study. Phys. Ther. 2000, 80, 1001–1011. [Google Scholar] [CrossRef]
- Menz, H.B.; Morris, M.E.; Lord, S.R. Foot and ankle characteristics associated with impaired balance and functional ability in older people. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 1546–1552. [Google Scholar] [CrossRef]
- Cuevas-Martínez, C.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Casado-Hernández, I.; Navarro-Flores, E.; Pérez-Palma, L.; Martiniano, J.; Gómez-Salgado, J.; López-López, D. Hallux limitus influence on plantar pressure variations during the gait cycle: A case-control study. Bioengineering 2023, 10, 772. [Google Scholar] [CrossRef] [PubMed]
- Tovaruela-Carrión, N.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; López-López, D.; Gómez-Salgado, J.; Bayod-López, J. Hallux limitus: Exploring the variability in lower limb symmetry and its connection to gait parameters—A case–control study. Bioengineering 2025, 12, 298. [Google Scholar] [CrossRef] [PubMed]
- Dananberg, H.J. Sagittal plane biomechanics. J. Am. Podiatr. Med. Assoc. 2000, 90, 47–50. [Google Scholar] [CrossRef]
- Yardley, L.; Beyer, N.; Hauer, K.; Kempen, G.; Piot-Ziegler, C.; Todd, C. Development and initial validation of the Falls Efficacy Scale-International (FES-I). Age Ageing 2005, 34, 614–619. [Google Scholar] [CrossRef]
- Lomas-Vega, R.; Hita-Contreras, F.; Mendoza, N.; Martínez-Amat, A. Cross-cultural adaptation and validation of the Falls Efficacy Scale-International in Spanish postmenopausal women. Menopause 2012, 19, 904–908. [Google Scholar] [CrossRef]
- Medina-Jiménez, E.A.; Acosta-Quiroz, C.O.; García-Flores, R. Adaptation and validation of the Falls Efficacy Scale-International (FES-I) in community-dwelling older Mexican adults. Gerontol. Geriatr. Med. 2023, 9, 23337214231208528. [Google Scholar] [CrossRef]
- Delbaere, K.; Close, J.C.; Mikolaizak, A.S.; Sachdev, P.S.; Brodaty, H.; Lord, S.R. The Falls Efficacy Scale International (FES-I): A comprehensive longitudinal validation study. Age Ageing 2010, 39, 210–216. [Google Scholar] [CrossRef]
- Freixes, O.; Passuni, D.A.; Buffetti, E.; Elizalde, M.; Lastiri, F. Berg Balance Scale: Inter-rater and intra-rater reliability of the Spanish version with incomplete spinal cord injured subjects. Spinal Cord. Ser. Cases 2020, 6, 28. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Gayton, D. Measuring balance in the elderly: Preliminary development of an instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Nightingale, C.J.; Mitchell, S.N.; Butterfield, S.A. Validation of the Timed Up and Go Test for assessing balance variables in adults aged 65 and older. J. Aging Phys. Act. 2019, 27, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Cancela Carral, J.M.; Pallin, E.; Orbegozo, A.; Ayán Pérez, C. Effects of three different chair-based exercise programs on people older than 80 years. Rejuvenation Res. 2017, 20, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Cancela Carral, J.M.; López Rodríguez, A.; Mollinedo Cardalda, I.; Arieiro Gonçalves Bezerra, J.P. Muscle strength training program in nonagenarians: A randomized controlled trial. Rev. Assoc. Med. Bras. 2019, 65, 851–856. [Google Scholar] [CrossRef]
- Posada-Ordax, J.; Cosin-Matamoros, J.; Losa-Iglesias, M.E.; Becerro-de-Bengoa-Vallejo, R.; Esteban-Gonzalo, L.; Martin-Villa, C.; Calvo-Lobo, C.; Rodriguez-Sanz, D. Accuracy and repeatability of spatiotemporal gait parameters measured with an inertial measurement unit. J. Clin. Med. 2021, 10, 1804. [Google Scholar] [CrossRef]
- Barry, E.; Galvin, R.; Keogh, C.; Horgan, F.; Fahey, T. Is the Timed Up and Go test a useful predictor of risk of falls in community dwelling older adults: A systematic review and meta-analysis. BMC Geriatr. 2014, 14, 14. [Google Scholar] [CrossRef]
- Greene, B.R.; Doheny, E.P.; Walsh, C.; Cunningham, C.; Crosby, L.; Kenny, R.A. Evaluation of falls risk in community-dwelling older adults using body-worn sensors. Gerontology 2012, 58, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Singh, D.K.A.; Shahar, S.; Omar, M.A. Timed up and go test combined with self-rated multifactorial questionnaire on falls risk and sociodemographic factors predicts falls among community-dwelling older adults better than the timed up and go test on its own. J. Multidiscip. Healthc. 2017, 10, 409–416. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki. JAMA 2013, 310, 2191. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M.; Initiative, S. Strengthening the Reporting of Observational Research in Epidemiology (STROBE): Explanation and elaboration. Int. J. Surg. 2014, 12, 1500–1524. [Google Scholar] [CrossRef]
- Dananberg, H.J. Functional hallux limitus and its relationship to gait efficiency. J. Am. Podiatr. Med. Assoc. 1986, 76, 648–669. [Google Scholar] [CrossRef]
- Halstead, J.; Redmond, A.C. Weight-bearing passive dorsiflexion of the hallux in standing is not related to hallux dorsiflexion during walking. J. Orthop. Sports Phys. Ther. 2006, 36, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Moisan, G.; McBride, S.; Isabelle, P.L.; Chicoine, D.; Walha, R. Intrarater and interrater reliability of the first metatarsophalangeal joint dorsiflexion resistance test. Musculoskelet. Care 2023, 21, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Gatt, A.; Mifsud, T.; Chockalingam, N. Severity of pronation and classification of first MTPJ dorsiflexion increase the validity of the Hubscher Manoeuvre for FHL diagnosis. Gait Posture 2014, 39, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.J.; Jones, C.J.; Lucchese, N. Predicting the probability of falls in community-residing older adults using the 8-foot up-and-go: A new measure of functional mobility. JAPA 2002, 10, 466–475. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Buganè, F.; Benedetti, M.G.; D’Angeli, V.; Leardini, A. Estimation of pelvis kinematics in level walking based on a single inertial sensor positioned close to the sacrum: Validation on healthy subjects with stereophotogrammetric system. Biomed. Eng. Online 2014, 13, 146. [Google Scholar] [CrossRef] [PubMed]
- Buganè, F.; Benedetti, M.G.; Casadio, G.; Attala, S.; Biagi, F.; Manca, M.; Leardini, A. Estimation of spatial-temporal gait parameters in level walking based on a single accelerometer: Validation on normal subjects by standard gait analysis. Comput. Methods Programs Biomed. 2012, 108, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Garrow, J.S. Quetelet Index as Indicator of Obesity. Lancet 1986, 1, 1219. [Google Scholar] [CrossRef]
- Menz, H.B.; Morris, M.E.; Lord, S.R. Foot and ankle risk factors for falls in older people: A prospective study. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 866–870. [Google Scholar] [CrossRef]
- Mickle, K.J.; Munro, B.J.; Lord, S.R.; Menz, H.B.; Steele, J.R. Toe weakness and deformity increase the risk of falls in older people. Clin. Biomech. 2009, 24, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Bahat Öztürk, G.; Kılıç, C.; Bozkurt, M.E.; Karan, M.A. Prevalence and associates of fear of falling among community-dwelling older adults. J. Nutr. Health Aging 2021, 25, 433–439. [Google Scholar] [CrossRef]
- Menz, H.B.; Lord, S.R. Foot pain impairs balance and functional ability in community-dwelling older people. J. Am. Podiatr. Med. Assoc. 2001, 91, 222–229. [Google Scholar] [CrossRef]
- Ortega-Bastidas, P.; Gómez, B.; Aqueveque, P.; Luarte-Martínez, S.; Cano-de-la-Cuerda, R. Instrumented Timed Up and Go Test (iTUG)—More Than Assessing Time to Predict Falls: A Systematic Review. Sensors 2023, 23, 3426. [Google Scholar] [CrossRef]
- Williams, J.M.; Nyman, S.R. Association between the instrumented timed up and go test and cognitive function, fear of falling and quality of life in community dwelling people with dementia. J. Frailty Sarcopenia Falls 2018, 3, 185–193. [Google Scholar] [CrossRef]
- Schoene, D.; Wu, S.M.; Mikolaizak, A.S.; Menant, J.C.; Smith, S.T.; Delbaere, K.; Lord, S.R. Discriminative ability and predictive validity of the Timed Up and Go test in identifying older people who fall: Systematic review and meta-analysis. J. Am. Geriatr. Soc. 2013, 61, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Donath, L.; Faude, O.; Lichtenstein, E.; Nüesch, C.; Mündermann, A. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: Comparison with an instrumented treadmill. J. Neuroeng. Rehabil. 2016, 13, 6. [Google Scholar] [CrossRef] [PubMed]
Variable | Control Group Mean ± SD (IC95%) | FHL Group Mean ± SD (IC95%) | p Value |
---|---|---|---|
Age (years) | 81.20 ± 7.92 (73.27–84.67) | 76.65 ± 9.59 (72.44–80.85) | 0.110 |
Height (cm) | 159.7 ± 7.99 (151.70–163.20) | 160.35 ± 6.89 (157.32–163.37) | 0.784 |
Body mass (kg) | 68.30 ± 11.11 (57.18–73.17) | 65.35 ± 13.16 (59.57–71.12) | 0.448 |
BMI (kg/m2) | 26.71 ± 3.32 (23.38–28.16) | 25.41 ± 4.64 (23.37–27.45) | 0.317 |
Variable | Control Group Mean ± SD (IC95%) | FHL Group Mean ± SD (IC95%) | p Value |
---|---|---|---|
TUG (s) | 14.09 ± 4.25 (9.83–15.95) | 14.04 ± 6.140 (11.348–16.731) | 0.694 |
VALUE BERG (points) | 35.70 ± 14.30 (21.39–41.96) | 35 ± 14.991 (28.429–41.570) | 0.903 |
FES (points) | 27.25 ± 14.26 (12.98–33.50) | 27.35 ± 11.944 (22.115–32.584) | 0.913 |
Variable | Control Group | FHL Group | p Value | ||
---|---|---|---|---|---|
Mean ± SD (IC95%) | Median (IR) | Mean ± SD (IC95%) | Median (IR) | ||
Step rate (step/min) | 50.15 ± 6.68 (47.02–53.27) | 51.4 (47.92–53.89) | 48.91 ± 6.07 (46.06–51.75) | 49.65 (47.23–50.73) | 0.473 |
Gait Cycle Duration (s) | 1.21 ± 0.21 (1.11–1.31) | 1.15 (1.11–1.25) | 1.24 ± 0.21 | 1.20 (1.11–1.27) | 0.551 |
Right Step Duration (s) | 0.61 ± 0.10 (0.55–0.66) | 0.58 (0.56–0.63) | 0.63 ± 0.10 | 0.60 (0.58–0.66) | 0.266 |
Left Step Duration (s) | 0.61 ± 0.10 (0.56–0.66) | 0.59 (0.56–0.63) | 0.61 ± 0.12 (0.55–0.67) | 0.60 (0.55–0.62) | 0.684 |
Swing Phase Duration (%) | 25.01 ± 2.41 (23.88–26.14) | 24.95 (24.10–25.79) | 24.99 ± 1.79 (24.16–25.83) | 25.15 (24.16–26.68) | 0.532 |
Right Foot Swing Phase Duration (%) | 25.19 ± 3.34 (23.62–26.75) | 25.15 (23.81–25.78) | 24.11 ± 2.92 (22.73–25.48) | 24.30 (23.23–26.36) | 0.371 |
Left Foot Swing Phase Duration (%) | 24.93 ± 2.42 (23.79–26.07) | 25.05 (24.21–26.04) | 25.06 ± 2.70 (23.79–26.33) | 25.45 (24.13–26.79) | 0.704 |
Stance Phase Duration (%) | 74.98 ± 2.41 (73.85–76.11) | 75.05 (74.20–75.90) | 75.00 ± 1.79 (74.16–75.83) | 74.85 (73.31–75.83) | 0.532 |
Right Foot Stance Phase Duration (%) | 74.81 ± 3.34 (73.24–76.37) | 74.85 (74.21–76.18) | 75.89 ± 2.92 (74.51–77.26) | 75.70 (73.63–76.76) | 0.371 |
Left Foot Stance Phase Duration (%) | 75.06 ± 2.42 (73.92–76.20) | 74.95 (73.95–75.78) | 74.93 ± 2.70 (73.66–76.20) | 74.55 (73.20–75.86) | 0.704 |
Right Step Length (cm) | 48.28 ± 3.80 (46.49–50.06) | 47.85 (46.10–50.89) | 50.77 ± 6.36 (47.79–53.75) | 52.60 (46.78–55.08) | 0.119 |
Left Step Length (cm) | 51.57 ± 3.72 (49.82–53.31) | 52.15 (49.10–53.71) | 49.22 ± 6.36 (46.24–52.20) | 47.40 (44.91–53.21) | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posada-Ordax, J.; Losa-Iglesias, M.E.; Becerro-de-Bengoa-Vallejo, R.; Pérez-Boal, E.; Trevissón-Redondo, B.; Casado-Hernández, I.; Martínez-Córcoles, V.; Sánchez-Serena, A.; Martínez-Jiménez, E.M. Risk of Fall in Patients with Functional Hallux Limitus: A Case–Control Study Using an Inertial Measurement Unit. Bioengineering 2025, 12, 1094. https://doi.org/10.3390/bioengineering12101094
Posada-Ordax J, Losa-Iglesias ME, Becerro-de-Bengoa-Vallejo R, Pérez-Boal E, Trevissón-Redondo B, Casado-Hernández I, Martínez-Córcoles V, Sánchez-Serena A, Martínez-Jiménez EM. Risk of Fall in Patients with Functional Hallux Limitus: A Case–Control Study Using an Inertial Measurement Unit. Bioengineering. 2025; 12(10):1094. https://doi.org/10.3390/bioengineering12101094
Chicago/Turabian StylePosada-Ordax, Jorge, Marta Elena Losa-Iglesias, Ricardo Becerro-de-Bengoa-Vallejo, Eduardo Pérez-Boal, Bibiana Trevissón-Redondo, Israel Casado-Hernández, Vicenta Martínez-Córcoles, Anna Sánchez-Serena, and Eva María Martínez-Jiménez. 2025. "Risk of Fall in Patients with Functional Hallux Limitus: A Case–Control Study Using an Inertial Measurement Unit" Bioengineering 12, no. 10: 1094. https://doi.org/10.3390/bioengineering12101094
APA StylePosada-Ordax, J., Losa-Iglesias, M. E., Becerro-de-Bengoa-Vallejo, R., Pérez-Boal, E., Trevissón-Redondo, B., Casado-Hernández, I., Martínez-Córcoles, V., Sánchez-Serena, A., & Martínez-Jiménez, E. M. (2025). Risk of Fall in Patients with Functional Hallux Limitus: A Case–Control Study Using an Inertial Measurement Unit. Bioengineering, 12(10), 1094. https://doi.org/10.3390/bioengineering12101094