Could Novel Spinal Braces with Flexibility, Robotic Components, and Individualized Design Generate Sufficient Biomechanical Treatment Efficacy in Patients with Scoliosis?
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Assessment of Methodological Quality
2.3. Extraction and Analysis
3. Results
3.1. Search Results
3.2. Methodological Quality
3.3. Characteristics of the Included Studies
3.4. Novel Designs Features
3.5. Analysis of Correction Principles
3.6. Interface Pressure Measurement
3.7. Outcomes of Morphological Evaluation
4. Discussion
4.1. Novel Designs
4.2. Correction Principles
4.3. Interface Pressure
4.4. Morphological Evaluation
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AIS | Adolescent Idiopathic Scoliosis |
| ATSI | Anterior Trunk Symmetry Index |
| DSB | Dynamic Spinal Brace |
| L/T curve | Lumbar curve/Thoracic curve |
| m | month |
| No. | Number |
| POTSI | Posterior Trunk Asymmetry Index |
| PRISMA | The Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| SMA | Shape Memory Alloy |
| SPO | Spinal Pelvic Obliquity |
| SVA | Sagittal Vertical Axis |
| TLSO | Thoracic Lumbosacral Orthosis |
| TSA | Twisted String Actuation |
| UPS | The Universal Prismatic and Spherical joint |
| ys | years |
References
- Niu, X.; Yang, C.; Tian, B.; Li, X.; Zheng, S.; Cong, D.; Han, J.; Agrawal, S.K. Investigation of robotic braces for patients with idiopathic scoliosis (IS)—Review of the literature and description of a novel brace. J. Mech. Med. Biol. 2018, 18, 180038. [Google Scholar] [CrossRef]
- Stokes, I.A.; Bigalow, L.C.; Moreland, M.S. Three-dimensional spinal curvature in idiopathic scoliosis. J. Orthop. Res. 1987, 5, 102–113. [Google Scholar] [CrossRef]
- Ali, A.; Fontanari, V.; Fontana, M.; Schmoelz, W. Soft Active Dynamic Brace for Spinal Deformities. In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, Vienna, Austria, 11–13 February 2021; Volume 1, pp. 169–174. [Google Scholar]
- Weinstein, S.L.; Dolan, L.A.; Cheng, J.C.Y.; Danielsson, A.; Morcuende, J.A. Adolescent idiopathic scoliosis. Lancet 2008, 371, 1527–1537. [Google Scholar] [CrossRef]
- Fung, O.H.-Y.; Yip, J.; Cheung, M.-C.; Yick, K.-L.; Kwan, K.Y.-H.; Cheung, K.M.-C.; Cheung, J.P.-Y.; Tse, C.-Y. Exploring mass customization and textile application in medical products: Re-designing scoliosis brace for shorter production lead time and better quality of life. Text. Res. J. 2020, 90, 2304–2321. [Google Scholar] [CrossRef]
- Negrini, S.; Aulisa, A.G.; Aulisa, L.; Circo, A.B.; de Mauroy, J.C.; Durmala, J.; Grivas, T.B.; Knott, P.; Kotwicki, T.; Maruyama, T.; et al. 2011 SOSORT guidelines: Orthopaedic and Rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis 2012, 7, 3. [Google Scholar] [CrossRef]
- Keim, H.A. The Milwaukee brace for treatment of scoliosis. J. Pediatr. 1971, 78, 864–866. [Google Scholar] [CrossRef] [PubMed]
- Watts, H.G.; Hall, J.E.; Stanish, W. The Boston brace system for the treatment of low thoracic and lumbar scoliosis by the use of a girdle without superstructure. Clin. Orthop. Relat. Res. 1977, 126, 87–92. [Google Scholar] [CrossRef]
- De Giorgi, S.; Piazzolla, A.; Tafuri, S.; Borracci, C.; Martucci, A.; De Giorgi, G. Chneau brace for adolescent idiopathic scoliosis: Long-term results. Can it prevent surgery? Eur. Spine J. 2013, 22, S815–S822. [Google Scholar] [CrossRef]
- de Mauroy, J.C.; Lecante, C.; Barral, F.; Daureu, D.; Gualerzi, S.; Gagliano, R. The Lyon brace. Disabil. Rehabil. Assist. Technol. 2008, 3, 139–145. [Google Scholar] [CrossRef]
- Bassett, G.S.; Bunnell, W.P.; MacEwen, G.D. Treatment of idiopathic scoliosis with the Wilmington brace. Results in patients with a twenty to thirty-nine-degree curve. J. Bone Joint Surg. Am. 1986, 68, 602–605. [Google Scholar] [CrossRef]
- Grivas, T.B.; Kaspiris, A. European Braces Widely Used for Conservative Scoliosis Treatment; Studies in Health Technology and Informatics; IOS Press: Amsterdam, The Netherlands, 2010; Volume 158, pp. 157–166. [Google Scholar] [CrossRef]
- Weinstein, S.L.; Dolan, L.A.; Wright, J.G.; Dobbs, M.B. Effects of bracing in adolescents with idiopathic scoliosis. N. Engl. J. Med. 2013, 369, 1512–1521. [Google Scholar] [CrossRef]
- Lee, C.S.; Hwang, C.J.; Kim, D.J.; Kim, J.H.; Kim, Y.T.; Lee, M.Y.; Yoon, S.J.; Lee, D.H. Effectiveness of the Charleston Night-time Bending Brace in the Treatment of Adolescent Idiopathic Scoliosis. J. Pediatr. Orthoped. 2012, 32, 368–372. [Google Scholar] [CrossRef]
- Wiemann, J.M.; Shah, S.A.; Price, C.T. Nighttime Bracing Versus Observation for Early Adolescent Idiopathic Scoliosis. J. Pediatr. Orthoped. 2014, 34, 603–606. [Google Scholar] [CrossRef]
- Karol, L.A.; Virostek, D.; Felton, K.; Wheeler, L. Effect of Compliance Counseling on Brace Use and Success in Patients with Adolescent Idiopathic Scoliosis. J. Bone Joint Surg. Am. 2016, 98, 9–14. [Google Scholar] [CrossRef]
- Coillard, C.; Leroux, M.A.; Zabjek, K.F.; Rivard, C.H. SpineCor--a non-rigid brace for the treatment of idiopathic scoliosis: Post-treatment results. Eur. Spine J. 2003, 12, 141–148. [Google Scholar] [CrossRef]
- Veldhuizen, A.G.; Cheung, J.; Bulthuis, G.J.; Nijenbanning, G. A new orthotic device in the non-operative treatment of idiopathic scoliosis. Med. Eng. Phys. 2002, 24, 209–218. [Google Scholar] [CrossRef]
- Gonzalez Vicente, L.; Jimenez Barrios, M.; Gonzalez-Santos, J.; Santamaria-Pelaez, M.; Soto-Camara, R.; Mielgo-Ayuso, J.; Fernandez-Lazaro, D.; Gonzalez-Bernal, J.J. The ISJ 3D Brace, a Providence Brace Evolution, as a Surgery Prevention Method in Idiopathic Scoliosis. J. Clin. Med. 2021, 10, 3915. [Google Scholar] [CrossRef]
- Capek, V.; Baranto, A.; Brisby, H.; Westin, O. Nighttime versus Fulltime Brace Treatment for Adolescent Idiopathic Scoliosis: Which Brace to Choose? A Retrospective Study on 358 Patients. J. Clin. Med. 2023, 12, 7684. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.V.; Zing, S. Bracing Effects of the Flexpine in Scoliosis Patients. Am. Sci. Res. J. Eng. Technol. Sci. 2017, 34, 261–268. [Google Scholar]
- Niu, X.; Yang, C.; Han, J.; Agrawal, S.K. Concept design of a novel robotic spinal brace for the treatment of scoliosis. Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 2018, 232, 1230–1244. [Google Scholar] [CrossRef]
- Park, J.H.; Stegall, P.R.; Roye, D.P.; Agrawal, S.K. Robotic Spine Exoskeleton (RoSE): Characterizing the 3-D Stiffness of the Human Torso in the Treatment of Spine Deformity. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.; Nouaille, L.; Colobert, B.; Calistri, L.; Poisson, G. Design and position control of a robotic brace dedicated to the treatment of scoliosis. Robotica 2023, 41, 1466–1482. [Google Scholar] [CrossRef]
- Mac-Thiong, J.M.; Petit, Y.; Aubin, C.E.; Delorme, S.; Dansereau, J.; Labelle, H. Biomechanical evaluation of the Boston brace system for the treatment of adolescent idiopathic scoliosis: Relationship between strap tension and brace interface forces. Spine 2004, 29, 26–32. [Google Scholar] [CrossRef]
- van den Hout, J.A.; van Rhijn, L.W.; van den Munckhof, R.J.; van Ooy, A. Interface corrective force measurements in Boston brace treatment. Eur. Spine J. 2002, 11, 332–335. [Google Scholar] [CrossRef]
- Pham, V.M.; Houilliez, A.; Schill, A.; Carpentier, A.; Herbaux, B.; Thevenon, A. Study of the pressures applied by a Cheneau brace for correction of adolescent idiopathic scoliosis. Prosthet. Orthot. Int. 2008, 32, 345–355. [Google Scholar] [CrossRef]
- Babaee, T.; Kamyab, M.; Ahmadi, A.; Sanjari, M.A.; Ganjavian, M.S. Measurement of Milwaukee Brace Pad Pressure in Adolescent Round Back Deformity Treatment. Asian Spine J. 2017, 11, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.S.; Evans, J.H. Biomechanical evaluation of the Milwaukee brace. Prosthet. Orthot. Int. 1998, 22, 54–67. [Google Scholar] [CrossRef]
- Wong, M.S.; Mak, A.F.; Luk, K.D.; Evans, J.H.; Brown, B. Effectiveness and biomechanics of spinal orthoses in the treatment of adolescent idiopathic scoliosis (AIS). Prosthet. Orthot. Int. 2000, 24, 148–162. [Google Scholar] [CrossRef]
- Lou, E.; Durdle, N.G.; Raso, V.J.; Hill, D.L. A system for measuring pressures exerted by braces in the treatment of scoliosis. IEEE Trans. Instrum. Meas. 1994, 43, 661–664. [Google Scholar] [CrossRef]
- Wong, M.S.; Cheng, J.C.Y.; Lam, T.P.; Ng, B.K.W.; Sin, S.W.; Lee-Shum, S.L.F.; Chow, D.H.K.; Tam, S.Y.P. The effect of rigid versus flexible spinal orthosis on the clinical efficacy and acceptance of the patients with adolescent idiopathic scoliosis. Spine 2008, 33, 1360–1365. [Google Scholar] [CrossRef]
- Guo, J.; Lam, T.P.; Wong, M.S.; Ng, B.K.W.; Lee, K.M.; Liu, K.L.; Hung, L.H.; Lau, A.H.Y.; Sin, S.W.; Kwok, W.K.; et al. A prospective randomized controlled study on the treatment outcome of SpineCor brace versus rigid brace for adolescent idiopathic scoliosis with follow-up according to the SRS standardized criteria. Eur. Spine J. 2014, 23, 2650–2657. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Nadi, A. Comparative analysis of Boston and Cheneau braces in treating scoliosis: A 2-year follow-up study on curve reduction. N. Am. Spine Soc. J. 2024, 19, 100337. [Google Scholar] [CrossRef]
- Korovessis, P.; Syrimpeis, V.; Tsekouras, V.; Vardakastanis, K.; Fennema, P. Effect of the Cheneau Brace in the Natural History of Moderate Adolescent Idiopathic Scoliosis in Girls: Cohort Analysis of a Selected Homogenous Population of 100 Consecutive Skeletally Immature Patients. Spine Deform. 2018, 6, 514–522. [Google Scholar] [CrossRef]
- Gutman, G.; Benoit, M.; Joncas, J.; Beauséjour, M.; Barchi, S.; Labelle, H.; Parent, S.; Mac-Thiong, J.M. The effectiveness of the SpineCor brace for the conservative treatment of adolescent idiopathic scoliosis. Comparison with the Boston brace. Spine J. 2016, 16, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Minsk, M.K.; Venuti, K.D.; Daumit, G.L.; Sponseller, P.D. Effectiveness of the Rigo Cheneau versus Boston-style orthoses for adolescent idiopathic scoliosis: A retrospective study. Scoliosis Spinal Disord. 2017, 12, 7. [Google Scholar] [CrossRef]
- Zaina, F.; Negrini, S.; Atanasio, S. TRACE (Trunk Aesthetic Clinical Evaluation), a routine clinical tool to evaluate aesthetics in scoliosis patients: Development from the Aesthetic Index (AI) and repeatability. Scoliosis 2009, 4, 3. [Google Scholar] [CrossRef]
- Han, K.-S.; Kim, G.-W.; Kang, S.-R.; Ko, M.-H.; Seo, J.-H. Clinical evaluation of the effectiveness of a new orthotic device for the non-operative treatment of scoliosis. Technol. Health Care 2020, 28, S229–S236. [Google Scholar] [CrossRef]
- Drummond, D.; Breed, A.L.; Narechania, R. Relationship of spine deformity and pelvic obliquity on sitting pressure distributions and decubitus ulceration. J. Pediatr. Orthop. 1985, 5, 396–402. [Google Scholar] [CrossRef]
- Ruffilli, A.; Fiore, M.; Barile, F.; Pasini, S.; Faldini, C. Evaluation of night-time bracing efficacy in the treatment of adolescent idiopathic scoliosis: A systematic review. Spine Deform. 2021, 9, 671–678. [Google Scholar] [CrossRef]
- Angelliaume, A.; Pfirrmann, C.; Alhada, T.; Sales de Gauzy, J. Non-operative treatment of adolescent idiopathic scoliosis. Orthop. Traumatol. Surg. Res. OTSR 2025, 111, 104078. [Google Scholar] [CrossRef] [PubMed]
- Karavidas, N. Bracing In The Treatment Of Adolescent Idiopathic Scoliosis: Evidence To Date. Adolesc. Health Med. Ther. 2019, 10, 153–172. [Google Scholar] [CrossRef]
- Lee, Y.J.; Wang, W.J.; Mohamad, S.M.; Chandren, J.R.; Abd Gani, S.M.; Chung, W.H.; Chiu, C.K.; Chan, C.Y.W. A comparison between Boston brace and European braces in the treatment of adolescent idiopathic scoliosis (AIS) patients: A systematic review based on the standardised Scoliosis Research Society (SRS) inclusion criteria for brace treatment. Eur. Spine J. 2024, 33, 93–102. [Google Scholar] [CrossRef]
- Luo, C.; Wu, H.; Liu, W.; Luo, Y.; Jie, Y.; Ma, C.Z.; Wong, M. The Biomechanics of Spinal Orthoses for Adolescent Idiopathic Scoliosis: A Systematic Review of the Controlling Forces. Bioengineering 2024, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.Z.; Ye, M.; Wang, Z.Y. Infinite models in scoliosis: A review of the literature and analysis of personal experience. Biomed. Tech. 2008, 53, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, S.; Kiaghadi, A.; Fallahian, N. Effective factors on brace compliance in idiopathic scoliosis: A literature review. Disabil. Rehabil. Assist. Technol. 2020, 15, 917–923. [Google Scholar] [CrossRef]
- Wang, H.; Tetteroo, D.; Arts, J.J.C.; Markopoulos, P.; Ito, K. Quality of life of adolescent idiopathic scoliosis patients under brace treatment: A brief communication of literature review. Qual. Life Res. 2021, 30, 703–711. [Google Scholar] [CrossRef]
- Liu, P.; Yip, J.; Yick, K.; Yuen, C.; Law, D. An Ergonomic Flexible Girdle Design for Preteen and Teenage Girls with Early Scoliosis. J. Fiber Bioeng. Inform. 2014, 7, 233–246. [Google Scholar] [CrossRef]
- Liu, P.-Y.; Yip, J.; Yick, K.-L.; Yuen, C.-W.; Tse, C.-Y.; Ng, Z.; Law, D. Effects of a tailor-made girdle on posture of adolescents with early scoliosis. Text. Res. J. 2015, 85, 1234–1246. [Google Scholar] [CrossRef]
- Yip, J.; Liu, P.-Y.; Yick, K.-L.; Cheung, M.-C.; Tse, C.-Y.; Ng, Z. Effect of a Functional Garment on Postural Control for Adolescents with Early Scoliosis: A Six-Month Wear Trial Study. In Advances in Physical Ergonomics and Human Factors, Proceedings of the AHFE 2016 International Conference on Physical Ergonomics and Human Factors, Orlando, FL, USA, 27–31 July 2016; Springer International Publishing: Cham, Switzerland, 2016; Volume 489, pp. 143–154. [Google Scholar]
- Fok, Q.; Yip, J.; Yick, K.L.; Ng, S.P.; Tse, C.Y. Effectiveness of Posture Correction Girdle as Conservative Treatment for Adolescent Idiopathic Scoliosis: A Preliminary Study. Orthop. Res. Online J. 2018, 1, 91–93. [Google Scholar] [CrossRef]
- Liu, P.; Yip, J.; Chen, B.; He, L.; Cheung, J.; Yick, K.; Ng, Z. Immediate Effects of Posture Correction Girdle on Adolescents with Early Scoliosis. In Healthcare and Medical Devices; AHFE International: Orlando, FL, USA, 2022; Volume 51, pp. 100–107. [Google Scholar] [CrossRef]
- Chan, W.Y.; Yip, J.; Yick, K.L.; Ng, S.P.; Lu, L.; Cheung, K.M.; Kwan, K.Y.; Cheung, J.P.; Yeung, K.W.; Tse, C.Y. Mechanical and Clinical Evaluation of a Shape Memory Alloy and Conventional Struts in a Flexible Scoliotic Brace. Ann. Biomed. Eng. 2018, 46, 1194–1205. [Google Scholar] [CrossRef]
- Ye, Z.; Yip, J.; Cheung, J.P.Y.; Liang, R.; Zhang, J.; Li, X.; Tong, R.K.-Y. Posture correction girdle with intelligent padding system to dynamically adjust the pressure distribution and correct the scoliotic spine. In Healthcare and Medical Devices; AHFE International: Orlando, FL, USA, 2023; Volume 79, pp. 12–20. [Google Scholar] [CrossRef]
- Wong, S.-H.; Yip, J.; Yick, K.; Ng, Z. Preliminary wear trial of anisotropic textile brace for adolescent idiopathic scoliosis. In Proceedings of the ISERD International Conference, Zurich, Switzerland, 16–17 February 2020. [Google Scholar]
- Wong, C.S.; Yip, J.; Yick, K.; Ng, Z.S. A Case Study of Initial In-Brace Spinal Correction of Anisotropic Textile Brace and Boston Brace. In Proceedings of the AHFE Virtual Conference on Human Factors and Ergonomics in Healthcare and Medical Devices, Electr Network, Virtual, 25–29 July 2021; pp. 109–115. [Google Scholar]
- Fok, Q.; Yip, J.; Yick, K.; Ng, S. Design and fabrication of anisotropic textile brace for exerting corrective forces on spinal curvature. J. Ind. Text. 2022, 51, 1682S–1702S. [Google Scholar] [CrossRef]
- Nakamura, N.; Uesugi, M.; Inaba, Y.; Machida, J.; Okuzumi, S.; Saito, T. Use of dynamic spinal brace in the management of neuromuscular scoliosis: A preliminary report. J. Pediatr. Orthop. B 2014, 23, 291–298. [Google Scholar] [CrossRef]
- Kajiura, I.; Kawabata, H.; Okawa, A.; Minobe, Y.; Matsuyama, M.; Yoshida, K.; Suzuki, T. Concept and treatment outcomes of dynamic spinal brace for scoliosis in cerebral palsy. J. Pediatr. Orthop. B 2019, 28, 351–355. [Google Scholar] [CrossRef]
- Ring, J.B.; Kim, C. A passive brace to improve activities of daily living utilizing compliant parallel mechanisms. In Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE), Charlotte, NC, USA, 21–24 August 2016. [Google Scholar]
- Nijssen, J.P.A.; Radaelli, G.; Herder, J.L.; Kim, C.J.; Ring, J.B. Design and Analysis of a Shell Mechanism Based Two-Fold Force Controlled Scoliosis Brace. In Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Cleveland, OH, USA, 6–9 August 2017. [Google Scholar]
- Park, J.-H.; Stegall, P.; Agrawal, S.K. Dynamic Brace for Correction of Abnormal Postures of the Human Spine. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 5922–5927. [Google Scholar]
- Périé, D.; Aubin, C.E.; Petit, Y.; Beauséjour, M.; Dansereau, J.; Labelle, H. Boston brace correction in idiopathic scoliosis: A biomechanical study. Spine 2003, 28, 1672–1677. [Google Scholar] [CrossRef] [PubMed]
- Terjesen, T.; Lange, J.E.; Steen, H. Treatment of scoliosis with spinal bracing in quadriplegic cerebral palsy. Dev. Med. Child. Neurol. 2000, 42, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.-L.; Piao, J.; Wong, M.S.; Chen, Z. Study of Textile Fabric Materials used in Spinal Braces for Scoliosis. J. Med. Biol. Eng. 2020, 40, 356–371. [Google Scholar] [CrossRef]
- Aulisa, A.G.; Giordano, M.; Falciglia, F.; Marzetti, E.; Poscia, A.; Guzzanti, V. Correlation between compliance and brace treatment in juvenile and adolescent idiopathic scoliosis: SOSORT 2014 award winner. Scoliosis 2014, 9, 6. [Google Scholar] [CrossRef]
- Haleem, S.; Nnadi, C. Scoliosis: A review. Paediatr. Child Health 2018, 28, 209–217. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, Z.; Mai, J.; Wang, Q. Kinematic and Kinetic Analysis of 3-RPR Based Robotic Lumbar Brace. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Electr Network, Boston, MA, USA, 6–9 July 2020; pp. 1828–1833. [Google Scholar]
- Herget, G.W.; Patermann, S.; Strohm, P.C.; Zwingmann, J.; Eichelberger, P.; SÜDkamp, N.P.; HirschmÜLler, A. Spinal Orthoses: The Crucial Role of Comfort on Compliance of Wearing—Monocentric Prospective Pilot Study of Randomized Cross-Over Design. Acta Chir. Orthop. et Traumatol. Cechoslov. 2017, 84, 91–96. [Google Scholar] [CrossRef]
- Niu, X.; Yang, C.; Tian, B.; Li, X.; Han, J. Modal Decoupled Dynamics Feed-Forward Active Force Control of Spatial Multi-DOF Parallel Robotic Manipulator. Math. Probl. Eng. 2019, 2019, 1835308. [Google Scholar] [CrossRef]


| Search | Query | Results |
|---|---|---|
| Web of science | Search:(((TS = (scoliosis)) OR TS = (Spine deformity)) OR TS = (AIS)) AND ((((((((TS = (orthosis*)) OR TS = (Orthotic Devices)) OR TS = (Orthosis)) OR TS = (Orthose*)) OR TS = (Parapodium*)) OR TS = (Conservative Treatment)) OR TS = (Conservative Management)) OR TS = (Conservative Therapy)) AND ((((((((((((((TS = (Biomechanical Phenomena)) OR TS = (Biomechanics)) OR TS = (Biomechanic*)) OR TS = (Biomechanic Phenomena)) OR TS = (Kinematics)) OR TS = (Invention*)) OR TS = (Technological Innovations)) OR TS = (design)) OR TS = (new)) OR TS = (devise*)) OR TS = (exploitation)) OR TS = (develop)) OR TS = (development)) OR TS = (exploiting)) | 668 |
| No. | Author | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Liu et al. (2014) [49] | N | Y | Y | N | N | Y | Y | N | N | N | N | 4/11 |
| 2 | Liu et al. (2015) [50] | N | Y | Y | N | N | Y | Y | N | N | N | Y | 5/11 |
| 3 | Yip et al. (2016) [51] | N | Y | Y | N | N | Y | Y | Y | N | N | Y | 6/11 |
| 4 | Fok et al. (2018) [52] | N | N | Y | N | N | Y | Y | Y | N | N | Y | 5/11 |
| 5 | Liu et al. (2022) [53] | N | Y | Y | N | N | Y | Y | N | N | N | Y | 5/11 |
| 6 | Chan et al. (2018) [54] | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | 7/11 |
| 7 | Ye et al. (2023) [55] | N | Y | Y | N | N | Y | Y | N | N | N | Y | 5/11 |
| 8 | Wang and Zing. (2017) [21] | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 10/11 |
| 9 | Wong et al. (2020) [56] | N | Y | Y | N | N | Y | Y | N | N | N | Y | 5/11 |
| 10 | Wong et al. (2021) [57] | N | Y | Y | N | N | Y | Y | N | N | N | Y | 5/11 |
| 11 | Fok et al. (2022) [58] | N | N | Y | N | N | N | Y | N | N | N | Y | 3/11 |
| 12 | Fung et al. (2020) [5] | N | Y | Y | N | N | Y | Y | N | N | N | Y | 5/11 |
| 13 | Ali et al. (2021) [3] | N | N | N | N | N | N | N | N | N | N | N | 0/11 |
| 14 | Nakamura et al. (2014) [59] | N | Y | Y | N | N | Y | Y | Y | Y | Y | Y | 8/11 |
| 15 | Kajiura et al. (2019) [60] | N | Y | Y | N | N | Y | Y | Y | Y | N | Y | 7/11 |
| 16 | Ring and Kim. (2016) [61] | N | N | N | N | N | N | N | N | N | N | N | 0/11 |
| 17 | Nijssen et al. (2017) [62] | N | N | N | N | N | N | N | N | N | N | N | 0/11 |
| 18 | Park et al. (2015) [63] | N | N | N | N | N | N | N | N | N | N | N | 0/11 |
| 19 | Park et al. (2018) [23] | N | N | N | N | N | N | N | N | N | N | N | 0/11 |
| NO. | Authors | Brace Design | Clinical Outcomes | ||||
|---|---|---|---|---|---|---|---|
| Brace Name/Type | Brace Components | Correction Principle | Subjects | Study Duration | Results | ||
| 1. | Liu et al. (2014) [49] | Posture correction girdle (1st edition) | Resin bones; Elastic straps; Pads. | Elastic stretch; Corrective point pressure force | N = 7; 11.43 ± 0.98 ys; Cobb = 10–20° | 3 h |
|
| 2. | Liu et al. (2015) [50] | N = 9; 11.33 ± 1.00 ys; Cobb = 12.33° ± 4.99° | 8 h/d for 3 m |
| |||
| 3. | Yip et al. (2016) [51] | N = 7; 11.14 ± 0.90 ys; Cobb = 9.43° ± 6.11° (T); 10.57° ± 4.79° (L) | 8 h/d for 6 m | Rotation angle decrease: 2.78° to 1.16° | |||
| 4. | Fok et al. (2018) [52] | N = 10; 13.5 ± 1.4 ys; Cobb = 19.0° ± 6.4° | 8 h/d for 6 m |
| |||
| 5. | Liu et al. (2022) [53] | N = 4; 12.25 ± 0.50 ys; Cobb = 15.78° ± 2.63° | 2 h | Cobb decrease: 11° ± 4.55° | |||
| 6. | Chan et al. (2018) [54] | Posture correction girdle (2nd edition) | Shape Memory Alloy (SMA); Elastic straps; Semi-rigid Pads. | Elastic stretch; Corrective point pressure | Study Group (2nd edition): N = 1; 14 ys; Cobb = 34° (T)/24° (L); Control Group (1nd edition): N = 1; 14 ys; Cobb = 28.9° | 2 h |
Control Group: 21.4° |
| 7. | Ye et al. (2023) [55] | Posture correction girdle (3rd edition) | Resin bones; Elastic straps; Smart air cushion system | Dynamic pressure control via airbag; Three-point pressure | N = 3; 12.33 ± 0.47 ys; Cobb = 13.60° ± 3.45° | 2 h |
|
| 8. | Wang and Zing. (2017) [21] | FLEXpine | Soft frame; Elastic bands. | Three-point pressure; | Study Group: N = 10; wear FLEXpine or traditional brace; Cobb: 16.45° ± 0.98° Control Group: N = 8; wear FLEXpine brace With FLEXpine Exercise program; Cobb: 7.65° ± 2.5° | 3 m |
Control Group: 4.55° ± 2.32° |
| 9. | Wong et al. (2020) [56] | Anisotropic textile brace | Elastic textile material; Hinged artificial backbone; Pads. | Three-point pressure | N = 1; 12 ys; Cobb = 21° | 2 h | Cobb angle decrease: 15.4° |
| 10. | Wong et al. (2021) [57] | N = 1; 11 ys; Cobb: 23.1° (T)/27.8° (L); Study Group (Boston); Control Group (Anisotropic textile brace) | 2 h |
Control Group: 14.8° (T)/22.6° (L) SVA (−21.2° to −26°) | |||
| 11. | Fok et al. (2022) [58] | N = 5; 12.2 ± 0.45 ys; Cobb: 20.7° ± 4.13° (T) 20.2° ± 2.13° (L) | 2 h |
| |||
| 12. | Fung et al. (2020) [5] | Textile-based scoliosis brace | Pads; Rigid straps; BOA lancing system; Resin Bones. | Three-point pressure | N = 1; 21 ys; Cobb: 11.1° (T)/24.8° (L) | 2 h | |
| 13. | Ali et al. (2021) [3] | Soft Active Dynamic Brace | Twisted String Actuation (TSA); Corrective band. | Three-point pressure correction; Trunk rotation with lateral flexion | No subject | Not applicable | Not Applicable |
| 14. | Nakamura et al. (2014) [59] | Dynamic Spinal Brace (DSB) (1st edition) | Rigid shell; Polycarbonate strut; Corrective band. | Posture control Three-point pressure | N = 52; 10 ys; Cobb: 41.9° ± 16.91° SPO: 9.4° ± 7.01° | 20.8 m (6.8–35.7 m) |
|
| 15. | Kajiura et al. (2019) [60] | Dynamic Spinal Brace (DSB) (2nd edition) | Elastic ring-shaped support | Posture control Three-point pressure | N = 219; 13.4 ys; Cobb ≥ 20° | 6 y (3–9 y) |
|
| 16. | Ring and kim (2016) [61] | Soft brace (1st edition) | Corrective rings | Spine displacement control | No subject | Not applicable | Not applicable |
| 17. | Nijssen et al. (2017) [62] | Soft brace (2nd edition) | Shell mechanisms; Force generators. | Two-fold force-controlled correction method | No subject | Not applicable | Not applicable |
| 18. | Park et al. (2015) [63] | Robotic Spine Exoskeleton (RoSE) | Corrective rings; Stewart platforms; UPS configuration; Force and position sensor. | Displacement control; 3D dynamic adjustable correction | No subject | Not applicable | Not applicable |
| 19. | Park et al. (2018) [23] | No subject | Not applicable | Not applicable | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Xie, J.; Pang, R.; Hu, B.; Ma, C.Z.-H. Could Novel Spinal Braces with Flexibility, Robotic Components, and Individualized Design Generate Sufficient Biomechanical Treatment Efficacy in Patients with Scoliosis? Bioengineering 2025, 12, 1083. https://doi.org/10.3390/bioengineering12101083
He C, Xie J, Pang R, Hu B, Ma CZ-H. Could Novel Spinal Braces with Flexibility, Robotic Components, and Individualized Design Generate Sufficient Biomechanical Treatment Efficacy in Patients with Scoliosis? Bioengineering. 2025; 12(10):1083. https://doi.org/10.3390/bioengineering12101083
Chicago/Turabian StyleHe, Chen, Jinkun Xie, Rong Pang, Bingshan Hu, and Christina Zong-Hao Ma. 2025. "Could Novel Spinal Braces with Flexibility, Robotic Components, and Individualized Design Generate Sufficient Biomechanical Treatment Efficacy in Patients with Scoliosis?" Bioengineering 12, no. 10: 1083. https://doi.org/10.3390/bioengineering12101083
APA StyleHe, C., Xie, J., Pang, R., Hu, B., & Ma, C. Z.-H. (2025). Could Novel Spinal Braces with Flexibility, Robotic Components, and Individualized Design Generate Sufficient Biomechanical Treatment Efficacy in Patients with Scoliosis? Bioengineering, 12(10), 1083. https://doi.org/10.3390/bioengineering12101083

