Prediction of Range of Motion in Patients After Total Knee Arthroplasty by Shear Wave Elastography
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical Assessment
2.3. Elasticity Measurement by SWE
2.4. Prediction of Postoperative ROM
3. Results
Patient Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Taljanovic, M.S.; Gimber, L.H.; Becker, G.W.; Latt, L.D.; Klauser, A.S.; Melville, D.M.; Gao, L.; Witte, R.S. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications. Radiographics 2017, 37, 855–870. [Google Scholar] [CrossRef]
- Prado-Costa, R.; Rebelo, J.; Monteiro-Barroso, J.; Preto, A.S. Ultrasound elastography: Compression elastography and shear-wave elastography in the assessment of tendon injury. Insights Imaging 2018, 9, 791–814. [Google Scholar] [CrossRef] [PubMed]
- Schneebeli, A.; Fiorina, I.; Bortolotto, C.; Barbero, M.; Falla, D.; Cescon, C.; Raciti, M.V.; Tarantino, F.; Preda, L. Shear wave and strain sonoelastography for the evaluation of the Achilles tendon during isometric contractions. Insights Imaging 2021, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Klauser, A.S.; Miyamoto, H.; Bellmann-Weiler, R.; Feuchtner, G.M.; Wick, M.C.; Jaschke, W.R. Sonoelastography: Musculoskeletal applications. Radiology 2014, 272, 622–633. [Google Scholar] [CrossRef]
- Mutsuzaki, H.; Takeuchi, R.; Mataki, Y.; Wadano, Y. Target range of motion for rehabilitation after total knee arthroplasty. J. Rural Med. 2017, 12, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Rigney, A.; Webb, K.; Wesney, J.; Stratford, P.W.; Shuler, F.D.; Oliashirazi, A. Characterizing the recovery trajectories of knee range of motion for one year after total knee replacement. Physiother. Theory Pract. 2020, 36, 176–185. [Google Scholar] [CrossRef]
- Matsuda, S.; Kawahara, S.; Okazaki, K.; Tashiro, Y.; Iwamoto, Y. Postoperative alignment and ROM affect patient satisfaction after TKA. Clin. Orthop. Relat. Res. 2013, 471, 127–133. [Google Scholar] [CrossRef]
- Huang, Y.; Lee, M.; Chong, H.C.; Ning, Y.; Lo, N.N.; Yeo, S.J. Reasons and Factors Behind Post-Total Knee Arthroplasty Dissatisfaction in an Asian Population. Ann. Acad. Med. Singap. 2017, 46, 303–309. [Google Scholar] [CrossRef]
- Kornuijt, A.; de Kort, G.J.L.; Das, D.; Lenssen, A.F.; van der Weegen, W. Recovery of knee range of motion after total knee arthroplasty in the first postoperative weeks: Poor recovery can be detected early. Musculoskelet. Surg. 2019, 103, 289–297. [Google Scholar] [CrossRef]
- Attaallh Alrefaee, S.T.; Alfeqqy, M.; Apostu, D. Excellent vs. Good Range of Motion after TKA, What Makes the Difference? Open Access J. Surg. 2017, 2, 555581. [Google Scholar] [CrossRef]
- Mizner, R.L.; Petterson, S.C.; Snyder-Mackler, L. Quadriceps strength and the time course of functional recovery after total knee arthroplasty. J. Orthop. Sports Phys. Ther. 2005, 35, 424–436. [Google Scholar] [CrossRef] [PubMed]
- Judd, D.L.; Eckhoff, D.G.; Stevens-Lapsley, J.E. Muscle strength loss in the lower limb after total knee arthroplasty. Am. J. Phys. Med. Rehabil. 2012, 91, 220–226; quiz 227–230. [Google Scholar] [CrossRef]
- Kang, H.J.; Lee, J.Y.; Lee, K.B.; Joo, I.; Suh, K.S.; Lee, H.K.; Han, J.K. Addition of Reliability Measurement Index to Point Shear Wave Elastography: Prospective Validation via Diagnostic Performance and Reproducibility. Ultrasound Med. Biol. 2019, 45, 1594–1602. [Google Scholar] [CrossRef]
- Joo, I.; Kim, S.Y.; Park, H.S.; Lee, E.S.; Kang, H.J.; Lee, J.M. Validation of a New Point Shear-Wave Elastography Method for Noninvasive Assessment of Liver Fibrosis: A Prospective Multicenter Study. Korean J. Radiol. 2019, 20, 1527–1535. [Google Scholar] [CrossRef]
- Abdulrahman, G.O., Jr.; McKnight, L.; Singh, K.L. The risk of malignancy index (RMI) in women with adnexal masses in Wales. Taiwan. J. Obstet. Gynecol. 2014, 53, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Oka, T.; Wada, O.; Asai, T.; Maruno, H.; Mizuno, K. Importance of knee flexion range of motion during the acute phase after total knee arthroplasty. Phys. Ther. Res. 2020, 23, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Massin, P.; Lautridou, C.; Cappelli, M.; Petit, A.; Odri, G.; Ducellier, F.; Sabatier, C.; Hulet, C.; Canciani, J.; Letenneur, J.; et al. Total knee arthroplasty with limitations of flexion. Orthop. Traumatol. Surg. Res. 2009, 95, 1–6. [Google Scholar] [CrossRef][Green Version]
- Grouven, U.; Küchenhoff, H.; Schräder, P.; Bender, R. Flexible regression models are useful tools to calculate and assess threshold values in the context of minimum provider volumes. J. Clin. Epidemiol. 2008, 61, 1125–1131. [Google Scholar] [CrossRef]
- Verbakel, J.Y.; Steyerberg, E.W.; Uno, H.; De Cock, B.; Wynants, L.; Collins, G.S.; Van Calster, B. ROC curves for clinical prediction models part 1. ROC plots showed no added value above the AUC when evaluating the performance of clinical prediction models. J. Clin. Epidemiol. 2020, 126, 207–216. [Google Scholar] [CrossRef]
- Ito, N.; Sigurðsson, H.B.; Pohlig, R.T.; Cortes, D.H.; Grävare Silbernagel, K.; Sprague, A.L. Reliability of continuous shear wave elastography in the pathological patellar tendon. J. Ultrasound Med. 2023, 42, 1047–1055. [Google Scholar]
- Hsiao, M.Y.; Chen, Y.C.; Lin, C.Y.; Chen, W.S.; Wang, T.G. Reduced patellar tendon elasticity with aging: In vivo assessment by shear wave elastography. Ultrasound Med. Biol. 2015, 41, 2899–2905. [Google Scholar] [CrossRef]
- Pelea, M.A.; Serban, O.; Badarinza, M.; Rosca, R.; Fodor, D. Factors influencing the Shear Wave Elastography evaluation of the patellar tendon. Med. Ultrason. 2023, 25, 145–152. [Google Scholar] [CrossRef]
- Breda, S.J.; van der Vlist, A.; de Vos, R.J.; Krestin, G.P.; Oei, E.H. The association between patellar tendon stiffness measured with shear-wave elastography and patellar tendinopathy—A case-control study. Eur. Radiol. 2020, 30, 5942–5951. [Google Scholar] [CrossRef] [PubMed]
- Dirrichs, T.; Quack, V.; Gatz, M.; Tingart, M.; Rath, B.; Betsch, M.; Kuhl, C.K.; Schrading, S. Shear wave elastography (SWE) for monitoring of treatment of tendinopathies: A double-blinded, longitudinal clinical study. Acad. Radiol. 2018, 25, 265–272. [Google Scholar] [CrossRef]
- Dirrichs, T.; Schrading, S.; Gatz, M.; Tingart, M.; Kuhl, C.K.; Quack, V. Shear wave elastography (SWE) of asymptomatic Achilles tendons: A comparison between semiprofessional athletes and the nonathletic general population. Acad. Radiol. 2019, 26, 1345–1351. [Google Scholar] [CrossRef]
- Hasebe, Y.; Akasaka, K.; Yamamoto, M. Factors affecting early knee-flexion range of motion after total knee arthroplasty. J. Phys. Ther. Sci. 2021, 33, 672–675. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Padki, A.; Han, A.X.; Liu, X.; Liow, M.H.; Pang, H.N.; Chen, J.Y. Preoperative range of motion as a predictor of postoperative outcomes in total knee arthroplasty under enhanced recovery after surgery protocols: Defining clinically relevant cut-offs. J. Orthop. 2025, 66, 232–238. [Google Scholar] [CrossRef]
- Rissman, C.M.; Keeney, B.J.; Ercolano, E.M.; Koenig, K.M. Predictors of facility discharge, range of motion, and patient-reported physical function improvement after primary total knee arthroplasty: A prospective cohort analysis. J. Arthroplast. 2016, 31, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.; de Beer, J.; Leone, J.; Petruccelli, D.; Winemaker, M.; Adili, A. Predictive risk factors for stiff knees in total knee arthroplasty. J. Arthroplast. 2006, 21, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Van Onsem, S.; Verstraete, M.; Dhont, S.; Zwaenepoel, B.; Van Der Straeten, C.; Victor, J. Improved walking distance and range of motion predict patient satisfaction after TKA. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3272–3279. [Google Scholar] [CrossRef]
Total | Group A (ROM > 120) | Group B (ROM < 120) | |
---|---|---|---|
Case (number) | 95 | 61 | 34 |
Mean age (years) | 70 ± 5 | 70 ± 5 | 70 ± 5 |
Sex (Male/female) | 86/9 | 56/5 | 30/4 |
Average ROM | 122 ± 12 | 123 ± 12 | 121 ± 13 |
Patient Basic Info POD28 | SWE Only POD28 | All POD 28 | Patient Basic Info POD56 | SWE Only POD56 | All POD 56 | |
---|---|---|---|---|---|---|
Accuracy | 56/96 0.58 | 63/96 0.65625 | 73/96 0.76 | 59/95 0.62 | 65/95 0.68 | 75/95 0.79 |
Sensitivity | 18/43 0.42 | 24/43 0.56 | 31/43 0.72 | 50/61 0.82 | 51/61 0.84 | 56/61 0.92 |
Specificity | 38/53 0.72 | 39/53 0.74 | 42/53 0.79 | 9/34 0.26 | 14/34 0.41 | 19/34 0.56 |
Patient Basic Info POD28 | SWE Only POD28 | All POD 28 | Patient Basic Info POD56 | SWE Only POD56 | All POD 56 | |
---|---|---|---|---|---|---|
AUC | 0.66 | 0.70 | 0.80 | 0.68 | 0.74 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-W.; Lee, D.-H. Prediction of Range of Motion in Patients After Total Knee Arthroplasty by Shear Wave Elastography. Bioengineering 2025, 12, 1009. https://doi.org/10.3390/bioengineering12101009
Kim M-W, Lee D-H. Prediction of Range of Motion in Patients After Total Knee Arthroplasty by Shear Wave Elastography. Bioengineering. 2025; 12(10):1009. https://doi.org/10.3390/bioengineering12101009
Chicago/Turabian StyleKim, Min-Woo, and Dong-Ha Lee. 2025. "Prediction of Range of Motion in Patients After Total Knee Arthroplasty by Shear Wave Elastography" Bioengineering 12, no. 10: 1009. https://doi.org/10.3390/bioengineering12101009
APA StyleKim, M.-W., & Lee, D.-H. (2025). Prediction of Range of Motion in Patients After Total Knee Arthroplasty by Shear Wave Elastography. Bioengineering, 12(10), 1009. https://doi.org/10.3390/bioengineering12101009