Glioma Image-Level and Slide-Level Gene Predictor (GLISP) for Molecular Diagnosis and Predicting Genetic Events of Adult Diffuse Glioma
Abstract
1. Introduction
2. Method and Materials
2.1. Data Preparation and Patch Preprocessing
2.2. GLISP Framework and Training Process
2.3. Human Evaluation
2.4. Human-AI Integrative Diagnostic Workflow
2.5. Subpopulation Analyses
2.6. Analysis Platform
3. Results
3.1. Cross-Validation Results
3.2. External Validation
3.3. Model Interpretation
3.4. Subpopulation Analyses
4. Discussion
4.1. Principal Findings
4.2. Comparison to Related Works
4.3. Technical Strengths and Challenges
4.4. Future Directions
4.5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eckel-Passow, J.E.; Lachance, D.H.; Molinaro, A.M.; Walsh, K.M.; Decker, P.A.; Sicotte, H.; Pekmezci, M.; Rice, T.W.; Kosel, M.L.; Smirnov, I.V.; et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N. Engl. J. Med. 2015, 372, 2499–2508. [Google Scholar] [CrossRef] [PubMed]
- Komori, T. The 2016 WHO Classification of Tumours of the Central Nervous System: The Major Points of Revision. Neurol. Med. Chir. 2017, 57, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Komori, T. The 2021 WHO classification of tumors, 5th edition, central nervous system tumors: The 10 basic principles. Brain Tumor Pathol. 2022, 39, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Komori, T. Update of the 2021 WHO classification of tumors of the central nervous system: Adult diffuse gliomas. Brain Tumor Pathol. 2023, 40, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Buckland, M.E.; Sarkar, C.; Santosh, V.; Al-Hussaini, M.; Park, S.H.; Tihan, T.; Ng, H.K.; Komori, T. Announcing the Asian Oceanian Society of Neuropathology guidelines for Adapting Diagnostic Approaches for Practical Taxonomy in Resource-Restrained Regions (AOSNP-ADAPTR). Brain Pathol. 2023, 34, e13201. [Google Scholar] [CrossRef]
- Miller, K.D.; Ostrom, Q.T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H.E.; Waite, K.A.; Jemal, A.; Siegel, R.L.; et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J. Clin. 2021, 71, 381–406. [Google Scholar] [CrossRef]
- Sakamoto, T.; Furukawa, T.; Lami, K.; Pham, H.H.N.; Uegami, W.; Kuroda, K.; Kawai, M.; Sakanashi, H.; Cooper, L.A.D.; Bychkov, A.; et al. A narrative review of digital pathology and artificial intelligence: Focusing on lung cancer. Transl. Lung Cancer Res. 2020, 9, 2255–2276. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, I.; Kundra, R.; Mastrogiacomo, B.; Tran, T.N.; Sikina, L.; Mazor, T.; Li, X.; Ochoa, A.; Zhao, G.; Lai, B.; et al. Analysis and Visualization of Longitudinal Genomic and Clinical Data from the AACR Project GENIE Biopharma Collaborative in cBioPortal. Cancer Res. 2023, 83, 3861–3867. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, 269. [Google Scholar] [CrossRef] [PubMed]
- Shrikumar, A.; Greenside, P.; Kundaje, A. Learning Important Features through Propagating Activation Differences. In Proceedings of the 34th International Conference on Machine Learning, ICML, Sydney, Australia, 6–11 August 2017; Volume 7, pp. 4844–4866. Available online: https://arxiv.org/abs/1704.02685v2 (accessed on 25 April 2024).
- Thong, M.K.; See-Toh, Y.; Hassan, J.; Ali, J. Medical genetics in developing countries in the Asia-Pacific region: Challenges and opportunities. Genet. Med. 2018, 20, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Zhang, D.Y. Artificial intelligence and computational pathology. Lab. Investig. 2021, 101, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Fathi Kazerooni, A.; Bakas, S.; Saligheh Rad, H.; Davatzikos, C. Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review. J. Magn. Reson. Imaging 2020, 52, 54–69. [Google Scholar] [CrossRef]
- Liu, S.; Shah, Z.; Sav, A.; Russo, C.; Berkovsky, S.; Qian, Y.; Coiera, E.; Di Ieva, A. Isocitrate dehydrogenase (IDH) status prediction in histopathology images of gliomas using deep learning. Sci. Rep. 2020, 10, 7733. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, Y.; Teng, L.; Yan, J.; Guo, Y.; Qiu, Y.; Ji, Y.; Yu, B.; Pei, D.; Duan, W.; et al. Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images. Nat. Commun. 2023, 14, 6359. [Google Scholar] [CrossRef]
- Calabrese, E.; Villanueva-Meyer, J.E.; Cha, S. A fully automated artificial intelligence method for non-invasive, imaging-based identification of genetic alterations in glioblastomas. Sci. Rep. 2020, 10, 11852. [Google Scholar] [CrossRef]
- Lu, C.F.; Hsu, F.T.; Hsieh, K.L.C.; Kao, Y.-C.J.; Cheng, S.-J.; Hsu, J.B.-K.; Tsai, P.-H.; Chen, R.-J.; Huang, C.-C.; Yen, Y.; et al. Machine Learning-Based Radiomics for Molecular Subtyping of Gliomas. Clin. Cancer Res. 2018, 24, 4429–4436. [Google Scholar] [CrossRef]
- Zadeh Shirazi, A.; McDonnell, M.D.; Fornaciari, E.; Bagherian, N.S.; Scheer, K.G.; Samuel, M.S.; Yaghoobi, M.; Ormsby, R.J.; Poonnoose, S.; Tumes, D.J.; et al. A deep convolutional neural network for segmentation of whole-slide pathology images identifies novel tumour cell-perivascular niche interactions that are associated with poor survival in glioblastoma. Br. J. Cancer 2021, 125, 337–350. [Google Scholar] [CrossRef]
- Shen, X.; Wang, X.; Shen, H.; Feng, M.; Wu, D.; Yang, Y.; Li, Y.; Yang, M.; Ji, W.; Wang, W.; et al. Transcriptomic Analysis Identified Two Subtypes of Brain Tumor Characterized by Distinct Immune Infiltration and Prognosis. Front. Oncol. 2021, 11, 734407. [Google Scholar] [CrossRef] [PubMed]
- Rathore, S.; Chaddad, A.; Iftikhar, M.A.; Bilello, M.; Abdulkadir, A. Combining MRI and Histologic Imaging Features for Predicting Overall Survival in Patients with Glioma. Radiol. Imaging Cancer 2021, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Lal, A.; Chiang, Z.D.; Yakovenko, N.; Duarte, F.M.; Israeli, J.; Buenrostro, J.D. Deep learning-based enhancement of epigenomics data with AtacWorks. Nat. Commun. 2021, 12, 1507. [Google Scholar] [CrossRef] [PubMed]
- Jovčevska, I. Next Generation Sequencing and Machine Learning Technologies Are Painting the Epigenetic Portrait of Glioblastoma. Front. Oncol. 2020, 10, 798. [Google Scholar] [CrossRef] [PubMed]
Astrocytoma | Oligodendroglioma | Glioblastoma | p-Value | ||
---|---|---|---|---|---|
Patient number | 38 | 40 | 30 | ||
Gender | Male/Female | 25/13 | 29/11 | 18/12 | 0.542 |
Age | Mean (range) | 41.5 (22–64) | 43.7 (24–67) | 62.3 (32–82) | 0.107 |
Location | Frontal | 23 | 30 | 16 | 0.135 |
Temporal | 14 | 6 | 11 | ||
Parietal | 1 | 4 | 2 | ||
Occipital | 0 | 0 | 1 | ||
CNS WHO grade | 2 | 11 | 22 | 0 | <0.001 |
3 | 20 | 18 | 0 | ||
4 | 7 | 0 | 30 | ||
IDH and 1p/19q status | IDH-wt | 0 | 0 | 30 | <0.001 |
IDH-mt and codel (+) | 0 | 40 | 0 | ||
IDH-mt and codel (−) | 38 | 0 | 0 |
Patch-Level Prediction | ROC-AUC | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|
IDH1/2 mutation | 0.75 (±0.028) | 0.72 (±0.039) | 0.62 (±0.030) | 0.59 (±0.037) | 0.68 (±0.106) |
TP53 mutation | 0.70 (±0.034) | 0.66 (±0.033) | 0.58 (±0.013) | 0.60 (±0.048) | 0.57 (±0.030) |
ATRX mutation | 0.63 (±0.090) | 0.57 (±0.112) | 0.49 (±0.072) | 0.40 (±0.101) | 0.69 (±0.146) |
TERT promoter mutation | 0.67 (±0.079) | 0.63 (±0.062) | 0.63 (±0.062) | 0.66 (±0.047) | 0.54 (±0.148) |
EGFR amplification | 0.73 (±0.030) | 0.69 (±0.036) | 0.51 (±0.040) | 0.40 (±0.037) | 0.69 (±0.057) |
CDKN2A/B homo. del. | 0.69 (±0.026) | 0.65 (±0.048) | 0.51 (±0.041) | 0.45 (±0.063) | 0.64 (±0.130) |
7 gain/10 loss | 0.75 (±0.028) | 0.72 (±0.039) | 0.62 (±0.030) | 0.59 (±0.037) | 0.68 (±0.106) |
1p/19q codeletion | 0.73 (±0.039) | 0.68 (±0.048) | 0.49 (±0.050) | 0.38 (±0.054) | 0.70 (±0.073) |
MGMT promoter meth. | 0.64 (±0.052) | 0.59 (±0.060) | 0.66 (±0.078) | 0.82 (±0.046) | 0.56 (±0.119) |
WSI-Level Prediction | ROC-AUC | Accuracy | F1 | Precision | Recall |
IDH1/2 mutation | 0.79 (±0.039) | 0.74 (±0.045) | 0.68 (±0.045) | 0.59 (±0.038) | 0.79 (±0.090) |
TP53 mutation | 0.70 (±0.029) | 0.70 (±0.021) | 0.64 (±0.030) | 0.63 (±0.064) | 0.67 (±0.098) |
ATRX mutation | 0.65 (±0.109) | 0.63 (±0.139) | 0.54 (±0.088) | 0.46 (±0.115) | 0.70 (±0.152) |
TERT promoter mutation | 0.73 (±0.083) | 0.71 (±0.052) | 0.64 (±0.081) | 0.82 (±0.101) | 0.55 (±0.133) |
EGFR amplification | 0.78 (±0.029) | 0.73 (±0.054) | 0.57 (±0.044) | 0.45 (±0.097) | 0.80 (±0.105) |
CDKN2A/B homo. del. | 0.74 (±0.032) | 0.66 (±0.059) | 0.57 (±0.029) | 0.47 (±0.091) | 0.80 (±0.152) |
7 gain/10 loss | 0.79 (±0.039) | 0.74 (±0.045) | 0.68 (±0.045) | 0.59 (±0.038) | 0.79 (±0.090) |
1p/19q codeletion | 0.80 (±0.052) | 0.73 (±0.065) | 0.56 (±0.075) | 0.45 (±0.123) | 0.81 (±0.092) |
MGMT promoter meth. | 0.67 (±0.074) | 0.59 (±0.085) | 0.63 (±0.111) | 0.87 (±0.036) | 0.51 (±0.127) |
Ground-Truth Diagnosis | ||||
---|---|---|---|---|
IDH-Mutant Astrocytoma | Oligodendroglioma | IDH-Wildtype Glioblastoma | ||
GLISP-predicted diagnosis | IDH-mutant Astrocytoma | 29 | 2 | 7 |
Oligodendroglioma | 9 | 19 | 12 | |
IDH-wildtype Glioblastoma | 7 | 0 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, M.-K.; Kawai, M.; Masui, K.; Komori, T.; Kawamata, T.; Muragaki, Y.; Inoue, T.; Tahara, I.; Kasai, K.; Kondo, T. Glioma Image-Level and Slide-Level Gene Predictor (GLISP) for Molecular Diagnosis and Predicting Genetic Events of Adult Diffuse Glioma. Bioengineering 2025, 12, 12. https://doi.org/10.3390/bioengineering12010012
Le M-K, Kawai M, Masui K, Komori T, Kawamata T, Muragaki Y, Inoue T, Tahara I, Kasai K, Kondo T. Glioma Image-Level and Slide-Level Gene Predictor (GLISP) for Molecular Diagnosis and Predicting Genetic Events of Adult Diffuse Glioma. Bioengineering. 2025; 12(1):12. https://doi.org/10.3390/bioengineering12010012
Chicago/Turabian StyleLe, Minh-Khang, Masataka Kawai, Kenta Masui, Takashi Komori, Takakazu Kawamata, Yoshihiro Muragaki, Tomohiro Inoue, Ippei Tahara, Kazunari Kasai, and Tetsuo Kondo. 2025. "Glioma Image-Level and Slide-Level Gene Predictor (GLISP) for Molecular Diagnosis and Predicting Genetic Events of Adult Diffuse Glioma" Bioengineering 12, no. 1: 12. https://doi.org/10.3390/bioengineering12010012
APA StyleLe, M.-K., Kawai, M., Masui, K., Komori, T., Kawamata, T., Muragaki, Y., Inoue, T., Tahara, I., Kasai, K., & Kondo, T. (2025). Glioma Image-Level and Slide-Level Gene Predictor (GLISP) for Molecular Diagnosis and Predicting Genetic Events of Adult Diffuse Glioma. Bioengineering, 12(1), 12. https://doi.org/10.3390/bioengineering12010012