Whole-Head Noninvasive Brain Signal Measurement System with High Temporal and Spatial Resolution Using Static Magnetic Field Bias to the Brain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Noninvasive Brain Signal Measurement System Using Static Magnetic Field Bias to the Brain
2.2. Verification of the System by Measurement of Movement-Related Signal
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babiloni, C.; Pizzella, V.; Gratta, C.D.; Ferretti, A.; Romani, G.L. Fundamentals of Electroencefalography, Magnetoencefalography, and Functional Magnetic Resonance Imaging. Int. Rev. Neurobiol. 2009, 86, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Biasiucci, A.; Franceschiello, B.; Murray, M.M. Electroencephalography. Curr. Biol. 2019, 29, R80–R85. [Google Scholar] [CrossRef] [PubMed]
- Chorlian, D.B.; Porjesz, B.; Cohen, H.L. Measuring Electrical Activity of the Brain. Alcohol Health Res. World 1995, 19, 315–320. [Google Scholar] [PubMed]
- Bomela, W.; Wang, S.; Chou, C.-A.; Li, J.-S. Real-Time Inference and Detection of Disruptive EEG Networks for Epileptic Seizures. Sci. Rep. 2020, 10, 8653. [Google Scholar] [CrossRef]
- Burle, B.; Spieser, L.; Roger, C.; Casini, L.; Hasbroucq, T.; Vidal, F. Spatial and Temporal Resolutions of EEG: Is It Really Black and White? A Scalp Current Density View. Int. J. Psychophysiol. 2015, 97, 210–220. [Google Scholar] [CrossRef]
- Michel, C.M.; Brunet, D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front. Neurol. 2019, 10, 325. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Hari, R.; Ilmoniemi, R.J.; Knuutila, J.; Lounasmaa, O.V. Magnetoencephalography—Theory, Instrumentation, and Applications to Noninvasive Studies of the Working Human Brain. Rev. Mod. Phys. 1993, 65, 413–497. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Huang, M.; Bowyer, S.M. Magnetoencephalography Signal Processing, Forward Modeling, Magnetoencephalography Inverse Source Imaging, and Coherence Analysis. Neuroimaging Clin. N. Am. 2020, 30, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Hari, R.; Salmelin, R. Magnetoencephalography: From SQUIDs to Neuroscience: Neuroimage 20th Anniversary Special Edition. NeuroImage 2012, 61, 386–396. [Google Scholar] [CrossRef]
- Barnes, G.R.; Furlong, P.L.; Singh, K.D.; Hillebrand, A. A Verifiable Solution to the MEG Inverse Problem. NeuroImage 2006, 31, 623–626. [Google Scholar] [CrossRef]
- Wens, V. Exploring the Limits of MEG Spatial Resolution with Multipolar Expansions. NeuroImage 2023, 270, 119953. [Google Scholar] [CrossRef]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef] [PubMed]
- Logothetis, N.K. What We Can Do and What We Cannot Do with fMRI. Nature 2008, 453, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Specht, K. Current Challenges in Translational and Clinical fMRI and Future Directions. Front. Psychiatry 2019, 10, 924. [Google Scholar] [CrossRef] [PubMed]
- Villringer, A.; Planck, J.; Hock, C.; Schleinkofer, L.; Dirnagl, U. Near Infrared Spectroscopy (NIRS): A New Tool to Study Hemodynamic Changes during Activation of Brain Function in Human Adults. Neurosci. Lett. 1993, 154, 101–104. [Google Scholar] [CrossRef]
- Chen, W.-L.; Wagner, J.; Heugel, N.; Sugar, J.; Lee, Y.-W.; Conant, L.; Malloy, M.; Heffernan, J.; Quirk, B.; Zinos, A.; et al. Functional Near-Infrared Spectroscopy and Its Clinical Application in the Field of Neuroscience: Advances and Future Directions. Front. Neurosci. 2020, 14, 724. [Google Scholar] [CrossRef]
- Herold, F.; Wiegel, P.; Scholkmann, F.; Müller, N.G. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise–Cognition Science: A Systematic, Methodology-Focused Review. J. Clin. Med. 2018, 7, 466. [Google Scholar] [CrossRef]
- Gomez, A.; Sainbhi, A.S.; Froese, L.; Batson, C.; Alizadeh, A.; Mendelson, A.A.; Zeiler, F.A. Near Infrared Spectroscopy for High-Temporal Resolution Cerebral Physiome Characterization in TBI: A Narrative Review of Techniques, Applications, and Future Directions. Front. Pharmacol. 2021, 12, 719501. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, E.; Saharkhiz, S.; Rajabion, L.; Oskouei, H.B.; Seraji, M.; Fayaz, F.; Saliminia, S.; Sadjadi, S.M.; Soltanian-Zadeh, H. Simultaneous Electroencephalography-Functional Magnetic Resonance Imaging for Assessment of Human Brain Function. Front. Syst. Neurosci. 2022, 16, 934266. [Google Scholar] [CrossRef]
- Signal Generation, Acquisition, and Processing in Brain Machine Interfaces: A Unified Review. Front Neurosci. 2021, 15, 728178. [CrossRef]
- Hiwaki, O. Novel Technique for Noninvasive Detection of Localized Dynamic Brain Signals by Using Transcranial Static Magnetic Fields. IEEE J. Transl. Eng. Health Med. 2021, 9, 4900106. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, H.; Hallett, M. What Is the Bereitschaftspotential? Clin. Neurophysiol. 2006, 117, 2341–2356. [Google Scholar] [CrossRef] [PubMed]
- Hallett, M. Movement-Related Cortical Potentials. Electromyogr. Clin. Neurophysiol. 1994, 34, 5–13. [Google Scholar]
- Deecke, L.; Grözinger, B.; Kornhuber, H.H. Voluntary Finger Movement in Man: Cerebral Potentials and Theory. Biol. Cybern. 1976, 23, 99–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, R.; Yao, D.; Shi, L.; Gao, J.; Hu, Y. Differences in Intersubject Early Readiness Potentials Between Voluntary and Instructed Actions. Front. Psychol. 2020, 11, 529821. [Google Scholar] [CrossRef]
- Yousry, T.A.; Schmid, U.D.; Alkadhi, H.; Schmidt, D.; Peraud, A.; Buettner, A.; Winkler, P. Localization of the Motor Hand Area to a Knob on the Precentral Gyrus. A New Landmark. Brain 1997, 120 Pt 1, 141–157. [Google Scholar] [CrossRef]
- Silva, L.M.; Silva, K.M.S.; Lira-Bandeira, W.G.; Costa-Ribeiro, A.C.; Araújo-Neto, S.A. Localizing the Primary Motor Cortex of the Hand by the 10-5 and 10-20 Systems for Neurostimulation: An MRI Study. Clin. EEG Neurosci. 2021, 52, 427–435. [Google Scholar] [CrossRef]
- Cunnington, R.; Windischberger, C.; Deecke, L.; Moser, E. The Preparation and Readiness for Voluntary Movement: A High-Field Event-Related fMRI Study of the Bereitschafts-BOLD Response. NeuroImage 2003, 20, 404–412. [Google Scholar] [CrossRef]
- Indovina, I.; Sanes, J.N. On Somatotopic Representation Centers for Finger Movements in Human Primary Motor Cortex and Supplementary Motor Area. NeuroImage 2001, 13, 1027–1034. [Google Scholar] [CrossRef]
- Seiss, E.; Hesse, C.W.; Drane, S.; Oostenveld, R.; Wing, A.M.; Praamstra, P. Proprioception-Related Evoked Potentials: Origin and Sensitivity to Movement Parameters. NeuroImage 2002, 17, 461–468. [Google Scholar] [CrossRef]
- Maiseli, B.; Abdalla, A.T.; Massawe, L.V.; Mbise, M.; Mkocha, K.; Nassor, N.A.; Ismail, M.; Michael, J.; Kimambo, S. Brain–Computer Interface: Trend, Challenges, and Threats. Brain Inform. 2023, 10, 20. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiwaki, O. Whole-Head Noninvasive Brain Signal Measurement System with High Temporal and Spatial Resolution Using Static Magnetic Field Bias to the Brain. Bioengineering 2024, 11, 917. https://doi.org/10.3390/bioengineering11090917
Hiwaki O. Whole-Head Noninvasive Brain Signal Measurement System with High Temporal and Spatial Resolution Using Static Magnetic Field Bias to the Brain. Bioengineering. 2024; 11(9):917. https://doi.org/10.3390/bioengineering11090917
Chicago/Turabian StyleHiwaki, Osamu. 2024. "Whole-Head Noninvasive Brain Signal Measurement System with High Temporal and Spatial Resolution Using Static Magnetic Field Bias to the Brain" Bioengineering 11, no. 9: 917. https://doi.org/10.3390/bioengineering11090917
APA StyleHiwaki, O. (2024). Whole-Head Noninvasive Brain Signal Measurement System with High Temporal and Spatial Resolution Using Static Magnetic Field Bias to the Brain. Bioengineering, 11(9), 917. https://doi.org/10.3390/bioengineering11090917