Whole-Head Noninvasive Brain Signal Measurement System with High Temporal and Spatial Resolution Using Static Magnetic Field Bias to the Brain
Abstract
1. Introduction
2. Materials and Methods
2.1. Noninvasive Brain Signal Measurement System Using Static Magnetic Field Bias to the Brain
2.2. Verification of the System by Measurement of Movement-Related Signal
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babiloni, C.; Pizzella, V.; Gratta, C.D.; Ferretti, A.; Romani, G.L. Fundamentals of Electroencefalography, Magnetoencefalography, and Functional Magnetic Resonance Imaging. Int. Rev. Neurobiol. 2009, 86, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Biasiucci, A.; Franceschiello, B.; Murray, M.M. Electroencephalography. Curr. Biol. 2019, 29, R80–R85. [Google Scholar] [CrossRef] [PubMed]
- Chorlian, D.B.; Porjesz, B.; Cohen, H.L. Measuring Electrical Activity of the Brain. Alcohol Health Res. World 1995, 19, 315–320. [Google Scholar] [PubMed]
- Bomela, W.; Wang, S.; Chou, C.-A.; Li, J.-S. Real-Time Inference and Detection of Disruptive EEG Networks for Epileptic Seizures. Sci. Rep. 2020, 10, 8653. [Google Scholar] [CrossRef]
- Burle, B.; Spieser, L.; Roger, C.; Casini, L.; Hasbroucq, T.; Vidal, F. Spatial and Temporal Resolutions of EEG: Is It Really Black and White? A Scalp Current Density View. Int. J. Psychophysiol. 2015, 97, 210–220. [Google Scholar] [CrossRef]
- Michel, C.M.; Brunet, D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front. Neurol. 2019, 10, 325. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Hari, R.; Ilmoniemi, R.J.; Knuutila, J.; Lounasmaa, O.V. Magnetoencephalography—Theory, Instrumentation, and Applications to Noninvasive Studies of the Working Human Brain. Rev. Mod. Phys. 1993, 65, 413–497. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Huang, M.; Bowyer, S.M. Magnetoencephalography Signal Processing, Forward Modeling, Magnetoencephalography Inverse Source Imaging, and Coherence Analysis. Neuroimaging Clin. N. Am. 2020, 30, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Hari, R.; Salmelin, R. Magnetoencephalography: From SQUIDs to Neuroscience: Neuroimage 20th Anniversary Special Edition. NeuroImage 2012, 61, 386–396. [Google Scholar] [CrossRef]
- Barnes, G.R.; Furlong, P.L.; Singh, K.D.; Hillebrand, A. A Verifiable Solution to the MEG Inverse Problem. NeuroImage 2006, 31, 623–626. [Google Scholar] [CrossRef]
- Wens, V. Exploring the Limits of MEG Spatial Resolution with Multipolar Expansions. NeuroImage 2023, 270, 119953. [Google Scholar] [CrossRef]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef] [PubMed]
- Logothetis, N.K. What We Can Do and What We Cannot Do with fMRI. Nature 2008, 453, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Specht, K. Current Challenges in Translational and Clinical fMRI and Future Directions. Front. Psychiatry 2019, 10, 924. [Google Scholar] [CrossRef] [PubMed]
- Villringer, A.; Planck, J.; Hock, C.; Schleinkofer, L.; Dirnagl, U. Near Infrared Spectroscopy (NIRS): A New Tool to Study Hemodynamic Changes during Activation of Brain Function in Human Adults. Neurosci. Lett. 1993, 154, 101–104. [Google Scholar] [CrossRef]
- Chen, W.-L.; Wagner, J.; Heugel, N.; Sugar, J.; Lee, Y.-W.; Conant, L.; Malloy, M.; Heffernan, J.; Quirk, B.; Zinos, A.; et al. Functional Near-Infrared Spectroscopy and Its Clinical Application in the Field of Neuroscience: Advances and Future Directions. Front. Neurosci. 2020, 14, 724. [Google Scholar] [CrossRef]
- Herold, F.; Wiegel, P.; Scholkmann, F.; Müller, N.G. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise–Cognition Science: A Systematic, Methodology-Focused Review. J. Clin. Med. 2018, 7, 466. [Google Scholar] [CrossRef]
- Gomez, A.; Sainbhi, A.S.; Froese, L.; Batson, C.; Alizadeh, A.; Mendelson, A.A.; Zeiler, F.A. Near Infrared Spectroscopy for High-Temporal Resolution Cerebral Physiome Characterization in TBI: A Narrative Review of Techniques, Applications, and Future Directions. Front. Pharmacol. 2021, 12, 719501. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, E.; Saharkhiz, S.; Rajabion, L.; Oskouei, H.B.; Seraji, M.; Fayaz, F.; Saliminia, S.; Sadjadi, S.M.; Soltanian-Zadeh, H. Simultaneous Electroencephalography-Functional Magnetic Resonance Imaging for Assessment of Human Brain Function. Front. Syst. Neurosci. 2022, 16, 934266. [Google Scholar] [CrossRef]
- Signal Generation, Acquisition, and Processing in Brain Machine Interfaces: A Unified Review. Front Neurosci. 2021, 15, 728178. [CrossRef]
- Hiwaki, O. Novel Technique for Noninvasive Detection of Localized Dynamic Brain Signals by Using Transcranial Static Magnetic Fields. IEEE J. Transl. Eng. Health Med. 2021, 9, 4900106. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, H.; Hallett, M. What Is the Bereitschaftspotential? Clin. Neurophysiol. 2006, 117, 2341–2356. [Google Scholar] [CrossRef] [PubMed]
- Hallett, M. Movement-Related Cortical Potentials. Electromyogr. Clin. Neurophysiol. 1994, 34, 5–13. [Google Scholar]
- Deecke, L.; Grözinger, B.; Kornhuber, H.H. Voluntary Finger Movement in Man: Cerebral Potentials and Theory. Biol. Cybern. 1976, 23, 99–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, R.; Yao, D.; Shi, L.; Gao, J.; Hu, Y. Differences in Intersubject Early Readiness Potentials Between Voluntary and Instructed Actions. Front. Psychol. 2020, 11, 529821. [Google Scholar] [CrossRef]
- Yousry, T.A.; Schmid, U.D.; Alkadhi, H.; Schmidt, D.; Peraud, A.; Buettner, A.; Winkler, P. Localization of the Motor Hand Area to a Knob on the Precentral Gyrus. A New Landmark. Brain 1997, 120 Pt 1, 141–157. [Google Scholar] [CrossRef]
- Silva, L.M.; Silva, K.M.S.; Lira-Bandeira, W.G.; Costa-Ribeiro, A.C.; Araújo-Neto, S.A. Localizing the Primary Motor Cortex of the Hand by the 10-5 and 10-20 Systems for Neurostimulation: An MRI Study. Clin. EEG Neurosci. 2021, 52, 427–435. [Google Scholar] [CrossRef]
- Cunnington, R.; Windischberger, C.; Deecke, L.; Moser, E. The Preparation and Readiness for Voluntary Movement: A High-Field Event-Related fMRI Study of the Bereitschafts-BOLD Response. NeuroImage 2003, 20, 404–412. [Google Scholar] [CrossRef]
- Indovina, I.; Sanes, J.N. On Somatotopic Representation Centers for Finger Movements in Human Primary Motor Cortex and Supplementary Motor Area. NeuroImage 2001, 13, 1027–1034. [Google Scholar] [CrossRef]
- Seiss, E.; Hesse, C.W.; Drane, S.; Oostenveld, R.; Wing, A.M.; Praamstra, P. Proprioception-Related Evoked Potentials: Origin and Sensitivity to Movement Parameters. NeuroImage 2002, 17, 461–468. [Google Scholar] [CrossRef]
- Maiseli, B.; Abdalla, A.T.; Massawe, L.V.; Mbise, M.; Mkocha, K.; Nassor, N.A.; Ismail, M.; Michael, J.; Kimambo, S. Brain–Computer Interface: Trend, Challenges, and Threats. Brain Inform. 2023, 10, 20. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiwaki, O. Whole-Head Noninvasive Brain Signal Measurement System with High Temporal and Spatial Resolution Using Static Magnetic Field Bias to the Brain. Bioengineering 2024, 11, 917. https://doi.org/10.3390/bioengineering11090917
Hiwaki O. Whole-Head Noninvasive Brain Signal Measurement System with High Temporal and Spatial Resolution Using Static Magnetic Field Bias to the Brain. Bioengineering. 2024; 11(9):917. https://doi.org/10.3390/bioengineering11090917
Chicago/Turabian StyleHiwaki, Osamu. 2024. "Whole-Head Noninvasive Brain Signal Measurement System with High Temporal and Spatial Resolution Using Static Magnetic Field Bias to the Brain" Bioengineering 11, no. 9: 917. https://doi.org/10.3390/bioengineering11090917
APA StyleHiwaki, O. (2024). Whole-Head Noninvasive Brain Signal Measurement System with High Temporal and Spatial Resolution Using Static Magnetic Field Bias to the Brain. Bioengineering, 11(9), 917. https://doi.org/10.3390/bioengineering11090917