Identification of Pain through Actigraphy-Recorded Patient Movement: A Comprehensive Review
Abstract
:1. Introduction
2. Clinical Use of Actigraphy
3. Pain Assessment
3.1. Overview of Pain Assessment Tools
3.2. Overview of Pain Monitoring Wearables
4. Validation of Actigraphy Monitoring for Pain Monitoring Detection
4.1. Pain Monitoring
4.2. Physical Activity and Prediction of Pain
4.3. Pain Intensity and Prediction of Pain
4.4. Miscellaneous Factors That Affect Pain Prediction
5. Efficacy and Drawbacks of Actigraphy for Pain Monitoring
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahlhamer, J.; Lucas, J.; Zelaya, C.; Nahin, R.; Mackey, S.; DeBar, L.; Kerns, R.; Von Korff, M.; Porter, L.; Helmick, C. Prevalence of Chronic Pain and High-Impact Chronic Pain Among Adults—United States, 2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Johannes, C.B.; Le, T.K.; Zhou, X.; Johnston, J.A.; Dworkin, R.H. The prevalence of chronic pain in United States adults: Results of an Internet-based survey. J. Pain 2010, 11, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Tumin, D.; Drees, D.; Miller, R.; Wrona, S.; Hayes, D., Jr.; Tobias, J.D.; Bhalla, T. Health Care Utilization and Costs Associated With Pediatric Chronic Pain. J. Pain 2018, 19, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.T.; McCrae, C.S.; Cheung, J.; Martin, J.L.; Harrod, C.G.; Heald, J.L.; Carden, K.A. Use of Actigraphy for the Evaluation of Sleep Disorders and Circadian Rhythm Sleep-Wake Disorders: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2018, 14, 1231–1237. [Google Scholar] [CrossRef]
- Martin, J.L.; Hakim, A.D. Wrist actigraphy. Chest 2011, 139, 1514–1527. [Google Scholar] [CrossRef]
- Ahlers, S.J.; van Gulik, L.; van der Veen, A.M.; van Dongen, H.P.; Bruins, P.; Belitser, S.V.; de Boer, A.; Tibboel, D.; Knibbe, C.A. Comparison of different pain scoring systems in critically ill patients in a general ICU. Crit. Care 2008, 12, R15. [Google Scholar] [CrossRef]
- Sari, O.; Temiz, C.; Golcur, M.; Aydogan, U.; Tanoglu, A.; Ezgu, M.C.; Tehli, O. Pain perception differences between patients and physicians: A pain severity study in patients with low back pain. Turk. Neurosurg. 2015, 25, 461–468. [Google Scholar] [CrossRef]
- Suarez-Almazor, M.E.; Conner-Spady, B.; Kendall, C.J.; Russell, A.S.; Skeith, K. Lack of congruence in the ratings of patients’ health status by patients and their physicians. Med. Decis. Mak. 2001, 21, 113–121. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Yadav, R.K. Measuring pain in clinical trials: Pain scales, endpoints, and challenges. Int. J. Clin. Exp. Physiol. 2015, 2, 151–156. [Google Scholar] [CrossRef]
- Melzack, R. The McGill Pain Questionnaire: Major properties and scoring methods. Pain 1975, 1, 277–299. [Google Scholar] [CrossRef]
- Taenzer, P.; Melzack, R.; Jeans, M.E. Influence of psychological factors on postoperative pain, mood and analgesic requirements. Pain 1986, 24, 331–342. [Google Scholar] [CrossRef]
- Katz, J.; Melzack, R. Measurement of pain. Surg. Clin. N. Am. 1999, 79, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.K.Y.; Salkovskis, P.M.; Hodges, A.; Wright, K.J.; Hanna, M.; Hester, J. Effects of mood on pain responses and pain tolerance: An experimental study in chronic back pain patients. Pain 2008, 138, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Erskine, A.; Morley, S.; Pearce, S. Memory for pain: A review. Pain 1990, 41, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Rollman, G.B.; Abdel-Shaheed, J.; Gillespie, J.M.; Jones, K.S. Does past pain influence current pain: Biological and psychosocial models of sex differences. Eur. J. Pain 2004, 8, 427–433. [Google Scholar] [CrossRef]
- Lundeberg, T.; Lund, I.; Dahlin, L.; Borg, E.; Gustafsson, C.; Sandin, L.; Rosén, A.; Kowalski, J.; Eriksson, S.V. Reliability and responsiveness of three different pain assessments. J. Rehabil. Med. 2001, 33, 279–283. [Google Scholar] [CrossRef]
- Leroux, A.; Rzasa-Lynn, R.; Crainiceanu, C.; Sharma, T. Wearable Devices: Current Status and Opportunities in Pain Assessment and Management. Digit. Biomark. 2021, 5, 89–102. [Google Scholar] [CrossRef]
- Chen, J.; Abbod, M.; Shieh, J.S. Pain and Stress Detection Using Wearable Sensors and Devices—A Review. Sensors 2021, 21, 1030. [Google Scholar] [CrossRef]
- Davergne, T.; Pallot, A.; Dechartres, A.; Fautrel, B.; Gossec, L. Use of Wearable Activity Trackers to Improve Physical Activity Behavior in Patients With Rheumatic and Musculoskeletal Diseases: A Systematic Review and Meta-Analysis. Arthritis Care Res. 2019, 71, 758–767. [Google Scholar] [CrossRef]
- Li, L.C.; Sayre, E.C.; Xie, H.; Falck, R.S.; Best, J.R.; Liu-Ambrose, T.; Grewal, N.; Hoens, A.M.; Noonan, G.; Feehan, L.M. Efficacy of a Community-Based Technology-Enabled Physical Activity Counseling Program for People With Knee Osteoarthritis: Proof-of-Concept Study. J. Med. Internet Res. 2018, 20, e159. [Google Scholar] [CrossRef]
- Li, L.C.; Feehan, L.M.; Xie, H.; Lu, N.; Shaw, C.; Gromala, D.; Aviña-Zubieta, J.A.; Koehn, C.; Hoens, A.M.; English, K.; et al. Efficacy of a Physical Activity Counseling Program with Use of a Wearable Tracker in People With Inflammatory Arthritis: A Randomized Controlled Trial. Arthritis Care Res. 2020, 72, 1755–1765. [Google Scholar] [CrossRef] [PubMed]
- Katz, P.; Margaretten, M.; Gregorich, S.; Trupin, L. Physical Activity to Reduce Fatigue in Rheumatoid Arthritis: A Randomized Controlled Trial. Arthritis Care Res. 2018, 70, 1–10. [Google Scholar] [CrossRef]
- McGovney, K.D.; Curtis, A.F.; McCrae, C.S. Actigraphic Physical Activity, Pain Intensity, and Polysomnographic Sleep in Fibromyalgia. Behav. Sleep Med. 2023, 21, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.L.; Schepens Niemiec, S.; Lyden, A.K.; Kratz, A.L. Pain, Fatigue, and Physical Activity in Osteoarthritis: The Moderating Effects of Pain- and Fatigue-Related Activity Interference. Arch. Phys. Med. Rehabil. 2016, 97, S201–S209. [Google Scholar] [CrossRef]
- Nørgaard, M.; Lomholt, J.J.; Thastum, M.; Herlin, M.; Twilt, M.; Herlin, T. Accelerometer-assessed daily physical activity in relation to pain cognition in juvenile idiopathic arthritis. Scand. J. Rheumatol. 2017, 46, 22–26. [Google Scholar] [CrossRef]
- Perraudin, C.G.M.; Illiano, V.P.; Calvo, F.; O’Hare, E.; Donnelly, S.C.; Mullan, R.H.; Sander, O.; Caulfield, B.; Dorn, J.F. Observational Study of a Wearable Sensor and Smartphone Application Supporting Unsupervised Exercises to Assess Pain and Stiffness. Digit. Biomark. 2018, 2, 106–125. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.T.; Wu, H.H.; Chung, C.C.; Bendich, I.; Barry, J.J.; Bini, S.A. Wearable activity sensors and early pain after total joint arthroplasty. Arthroplast. Today 2020, 6, 68–70. [Google Scholar] [CrossRef]
- Puyau, M.R.; Adolph, A.L.; Vohra, F.A.; Butte, N.F. Validation and calibration of physical activity monitors in children. Obes. Res. 2002, 10, 150–157. [Google Scholar] [CrossRef]
- Kashikar-Zuck, S.; Flowers, S.R.; Verkamp, E.; Ting, T.V.; Lynch-Jordan, A.M.; Graham, T.B.; Passo, M.; Schikler, K.N.; Hashkes, P.J.; Spalding, S.; et al. Actigraphy-based physical activity monitoring in adolescents with juvenile primary fibromyalgia syndrome. J. Pain 2010, 11, 885–893. [Google Scholar] [CrossRef]
- Sabiston, C.M.; Brunet, J.; Burke, S. Pain, movement, and mind: Does physical activity mediate the relationship between pain and mental health among survivors of breast cancer? Clin. J. Pain 2012, 28, 489–495. [Google Scholar] [CrossRef]
- Naugle, K.M.; Ohlman, T.; Naugle, K.E.; Riley, Z.A.; Keith, N.R. Physical activity behavior predicts endogenous pain modulation in older adults. Pain 2017, 158, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Rabbitts, J.A.; Holley, A.L.; Karlson, C.W.; Palermo, T.M. Bidirectional associations between pain and physical activity in adolescents. Clin. J. Pain 2014, 30, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Kichline, T.; Cushing, C.C.; Ortega, A.; Friesen, C.; Schurman, J.V. Associations Between Physical Activity and Chronic Pain Severity in Youth with Chronic Abdominal Pain. Clin. J. Pain 2019, 35, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Zhaoyang, R.; Martire, L.M. Daily Sedentary Behavior Predicts Pain and Affect in Knee Arthritis. Ann. Behav. Med. 2019, 53, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Gavilán-Carrera, B.; Delgado-Fernández, M.; Álvarez-Gallardo, I.C.; Acosta-Manzano, P.; Borges-Cosic, M.; Estévez-López, F.; Soriano-Maldonado, A.; Carbonell-Baeza, A.; Aparicio, V.A.; Segura-Jiménez, V. Longitudinal association of sedentary time and physical activity with pain and quality of life in fibromyalgia. Scand. J. Med. Sci. Sports 2022, 33, 292–306. [Google Scholar] [CrossRef]
- Abeler, K.; Bergvik, S.; Sand, T.; Friborg, O. Daily associations between sleep and pain in patients with chronic musculoskeletal pain. J. Sleep Res. 2021, 30, e13237. [Google Scholar] [CrossRef]
- Merkus, S.L.; Mathiassen, S.E.; Lunde, L.K.; Koch, M.; Wærsted, M.; Forsman, M.; Knardahl, S.; Veiersted, K.B. Can a metric combining arm elevation and trapezius muscle activity predict neck/shoulder pain? A prospective cohort study in construction and healthcare. Int. Arch. Occup. Environ. Health 2021, 94, 647–658. [Google Scholar] [CrossRef]
- Sarwar, A.; Agu, E.O.; Polcari, J.; Ciroli, J.; Nephew, B.; King, J. PainRhythms: Machine learning prediction of chronic pain from circadian dysregulation using actigraph data—A preliminary study. Smart Health 2022, 26, 100344. [Google Scholar] [CrossRef]
- Kiernan, D.; Hawkins, D.A.; Manoukian, M.A.C.; McKallip, M.; Oelsner, L.; Caskey, C.F.; Coolbaugh, C.L. Accelerometer-based prediction of running injury in National Collegiate Athletic Association track athletes. J. Biomech. 2018, 73, 201–209. [Google Scholar] [CrossRef]
- Long, A.C.; Palermo, T.M.; Manees, A.M. Brief report: Using actigraphy to compare physical activity levels in adolescents with chronic pain and healthy adolescents. J. Pediatr. Psychol. 2008, 33, 660–665. [Google Scholar] [CrossRef]
- Roberts, D.M.; Schade, M.M.; Master, L.; Honavar, V.G.; Nahmod, N.G.; Chang, A.M.; Gartenberg, D.; Buxton, O.M. Performance of an open machine learning model to classify sleep/wake from actigraphy across ∼24-h intervals without knowledge of rest timing. Sleep Health 2023, 9, 596–610. [Google Scholar] [CrossRef] [PubMed]
- Kusmakar, S.; Karmakar, C.; Zhu, Y.; Shelyag, S.; Drummond, S.P.A.; Ellis, J.G.; Angelova, M. A machine learning model for multi-night actigraphic detection of chronic insomnia: Development and validation of a pre-screening tool. R. Soc. Open Sci. 2021, 8, 202264. [Google Scholar] [CrossRef] [PubMed]
Ref. | Total Sample Size | Sex | Age (Years) | Study Population | Type of Pain | Device | Location of Actigraph | Comparison Methods | Main Findings |
---|---|---|---|---|---|---|---|---|---|
[29] | 104 | 84% female | 11 and 18 | Juvenile primary fibromyalgia syndrome | Musculoskeletal | Not reported | Hip | VAS and FDI |
|
[30] | 145 | 100% female | 28 to 79 (mean = 54.86, SD 10.83) | Survivors of breast cancer | Stomach pain, back pain, joint pain, pain during sexual intercourse, headaches, and chest pain | GT3M accelerometer (Actigraph, Pensacola, FL, USA) | Waist | Primary Care Evaluation of Mental Disorders screening questionnaire |
|
[32] | 119 | 71% female | 12 to 18 | (59 with chronic pain and 60 healthy) | Chronic pain | Actiwatch (Actiwatch 64; Phillips Respironics, Bend, OR, USA) | Wrist | 11-point numerical rating scale (NRS) |
|
[31] | 51 | Not reported | 60 to 77 | Healthy individuals | Not reported | Actigraph GT3X1 | Hip | Pain Catastrophizing Scale |
|
[39] | 9 | Not reported | Not reported | Injured runners | Musculoskeletal | Not reported | Hip | Pain/fatigue scale |
|
[33] | 71 | 74.6% female | 8 and 17 (mean = 13.34, SD 2.67) | Chronic abdominal pain | Chronic abdominal pain | ActiGraph wGT3X-BT accel- erometer (Actigraph LLC, Pensacola, FL, USA) | wrist | 5-point scale with the stem, “Do you have abdominal pain right now?” Participants responded using the following anchors: (1) no, none; (2) yes, minimal; (3) yes, mild; (4) yes, moderate; or (5) yes, severe. |
|
[34] | 143 | 58% female | Mean = 65.39, SD 9.53 | Knee OA | Knee pain | GT1M or GT3X model of the CSA/MTI triaxial ActiGraph | Hip | RADAR questionnaire + separate ratings were made for multiple joints or joint groups (i.e., knees, shoulders, hips, ankles, ball of foot, toe knuckles, elbows, wrists, hand knuckles, finger knuckles) on a scale from 0 to 3 (0 = no pain/ten- derness; 3 = severe pain/tenderness). Items were averaged to create a mean score for patients’ pain |
|
[36] | 56 | 72% female | 18 to 65 | Chronic primary musculoskeletal pain | Chronic primary musculoskeletal pain | Actiwatch Spectrum Plus device | Wrist | BPI |
|
[37] | 121 | 60% female | Mean = 42.0, SD 12.0 | Neck and shoulder pain | Neck and shoulder pain | Actigraph GT3X+, Actigraph, Florida, USA | Shoulder | NSPi during the past four weeks was reported by the workers on a 4-point scale from 0 ‘no pain’ to 3 ‘severe pain’. One question considered pain in the neck and another considered pain in the dominant shoulder. The anatomical areas were illustrated by a mannequin. NSPi, defined as the higher of the two scores, was recorded at base- line and every 6 months during the 2-year follow-up. |
|
[35] | 427 | Only females | 51.4 ± 7.6 years | Fibromialgia | Global pain | GT3X+ Actigraph | Hip | FIQR-pain |
|
[38] | 52 | Not reported | Not reported | Chronic pain | Chronic pain | ActiGraphy GT3X+ device | Wrist | PROMIS-29 v2.0 |
|
[23] | 134 | 94% female (126 females, 8 males) | Mean age = 52 years, SD = 12 years, range = 18–77 years | Fibromyalgia and insomnia complaints | Chronic pain | Actiwatch-2 and AURA Portable Recording System for polysomnography | Wrist | 0 to 100 Numerical Rating Scale |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Guzman, R.A.; Ho, O.A.; Borna, S.; Gomez-Cabello, C.A.; Haider, S.A.; Forte, A.J. Identification of Pain through Actigraphy-Recorded Patient Movement: A Comprehensive Review. Bioengineering 2024, 11, 905. https://doi.org/10.3390/bioengineering11090905
Torres-Guzman RA, Ho OA, Borna S, Gomez-Cabello CA, Haider SA, Forte AJ. Identification of Pain through Actigraphy-Recorded Patient Movement: A Comprehensive Review. Bioengineering. 2024; 11(9):905. https://doi.org/10.3390/bioengineering11090905
Chicago/Turabian StyleTorres-Guzman, Ricardo A., Olivia A. Ho, Sahar Borna, Cesar A. Gomez-Cabello, Syed Ali Haider, and Antonio Jorge Forte. 2024. "Identification of Pain through Actigraphy-Recorded Patient Movement: A Comprehensive Review" Bioengineering 11, no. 9: 905. https://doi.org/10.3390/bioengineering11090905
APA StyleTorres-Guzman, R. A., Ho, O. A., Borna, S., Gomez-Cabello, C. A., Haider, S. A., & Forte, A. J. (2024). Identification of Pain through Actigraphy-Recorded Patient Movement: A Comprehensive Review. Bioengineering, 11(9), 905. https://doi.org/10.3390/bioengineering11090905