Research on Dual-Phase Composite Forming Process and Platform Construction of Radial Gradient Long Bone Scaffold
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of Radial Gradient Long Bone Scaffold Model
2.3. Construction of a Radial Gradient Long Bone Scaffold Forming Platform
2.4. Preparation of Radial Gradient Long Bone Scaffold Biomaterial Inks
2.5. Rheological Testing
2.6. Preparation of Radial Gradient Long Bone Scaffolds
- a. Write G code to control the movement of the 3D-printed receiving platform for each layer of the long bone scaffold, based on the pre-designed radial gradient. Import the printing path G code into the motion controller, and initiate the temperature control module simultaneously, awaiting the receiving platform temperature to decline to the designated value of 8 °C.
- b. Initiate the receiving platform, and, concurrently, micropump A initiates the material in the feed pipe A at a velocity of 0.08 mm/s. The external structure of the radial gradient long bone scaffold is to be formed along the preset path. In order to ensure that the feeding situation matches the movement of the receiving platform, it is necessary to allow for a certain delay in the time for the receiving platform to start moving when printing the first layer.
- c. At the conclusion of the printing of the external structure of the radial gradient long bone scaffold, micropump A ceases to feed, and micropump B commences operation at a speed of 0.08 mm/s. Following the compression of the material within feed tube B into the closed mixing chamber, it is mixed with the remaining material within the closed mixing chamber. Upon completion of the internal structure of the radial gradient long bone scaffold in accordance with the preset path, the gradient ratio of the biomaterial ink composition in the radial direction is achieved, with the innermost circle of the internal structure comprising the material in pure feed pipe B. The nozzle is elevated by 0.27 mm in preparation for the subsequent layer.
- d. To ensure the continuity of the forming path during the forming process, the odd-numbered layer forming path of the radial gradient long bone scaffold commences at the outermost circle of the external structure and terminates at the innermost circle of the internal structure, while the even-numbered layer-forming path is the inverse (Figure 5). Micropump B continues to operate at a speed of 0.08 mm/s to form the internal structure.
- e. Once the internal structure of the radial gradient long bone scaffold has been formed, micropump B is deactivated, and the extrusion process is initiated. The extrusion speed of micropump A is increased to 0.08 mm/s to ensure that when printing the outermost circle of the external structure of the radial gradient long bone scaffold, the material in pure feed pipe A is utilized. Subsequently, the nozzle is elevated by 0.27 mm in preparation for the subsequent layer of printing.
- f. Then, the forming process of the odd-numbered and even-numbered layers of the radial gradient long bone scaffold is repeated in accordance with the aforementioned steps b–e, resulting in a total of eight layers for the radial gradient long bone scaffold.
- g. The radial gradient long bone scaffolds are immersed in a 10% (w/v) CaCl2 solution for 15 min to be cross-linked.
2.7. Morphology Characterization
2.8. X-ray Powder Diffraction Analysis
2.9. Mechanical Properties Testing
2.10. Cell Culture
2.11. Cell Proliferation Assay
2.12. Cell Adhesion Assay
2.13. Subcutaneous Embedding Test
2.14. Statistical Analysis
3. Results
3.1. Printing Performance Verification of Radial Gradient Long Bone Scaffolds
3.2. Analysis of Rheological Properties
3.3. XRD Analysis
3.4. Morphology Characterization
3.5. Mechanical Properties Test Analysis
3.6. Analysis of Cell Proliferation Assay
3.7. Analysis of Cell Adhesion Assay
3.8. In Vivo Bioassay Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Q.; Saiz, E.; Rahaman, M.N.; Tomsia, A.P. Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives. Mater. Sci. Eng. C 2011, 31, 1245–1256. [Google Scholar] [CrossRef]
- Roddy, E.; DeBaun, M.R.; Daoud-Gray, A.; Yang, Y.P.; Gardner, M.J. Treatment of critical-sized bone defects: Clinical and tissue engineering perspectives. Eur. J. Orthop. Surg. Traumatol. 2018, 28, 351–362. [Google Scholar] [CrossRef]
- Chen, W.; Nichols, L.; Brinkley, F.; Bohna, K.; Tian, W.; Priddy, M.W.; Priddy, L.B. Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds. Mater. Sci. Eng. C 2021, 120, 111686. [Google Scholar] [CrossRef]
- Song, Y.; Hu, Q.; Liu, Q.; Liu, S.; Wang, Y.; Zhang, H. Design and fabrication of drug-loaded alginate/hydroxyapatite/collagen composite scaffolds for repairing infected bone defects. J. Mater. Sci. 2023, 58, 911–926. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Zeng, L.; Zhang, J.; Zuo, J.; Zou, J.; Ding, J.; Chen, X. Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering. Adv. Funct. Mater. 2019, 29, 1903279. [Google Scholar] [CrossRef]
- Song, Y.; Hu, Q.; Liu, S.; Wang, Y.; Jia, L.; Hu, X.; Huang, C.; Zhang, H. 3D printed biomimetic composite scaffolds with sequential releasing of copper ions and dexamethasone for cascade regulation of angiogenesis and osteogenesis. Chem. Eng. J. 2024, 496, 153662. [Google Scholar] [CrossRef]
- Fernandez-Yague, M.A.; Abbah, S.A.; McNamara, L.; Zeugolis, D.I.; Pandit, A.; Biggs, M.J. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv. Drug Deliv. Rev. 2015, 84, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gong, H. Fatigue behavior of cortical bone: A review. Acta Mech. Sin. 2020, 37, 516–526. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, B.; Liu, Y.; Liao, Y.; Zhou, Y.; Li, W. Influence of structural parameters of 3D-printed triply periodic minimal surface gyroid porous scaffolds on compression performance, cell response, and bone regeneration. J. Biomed. Mater. Res. Part B Appl. Biomater. 2024, 112, e35337. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.F.; Keaveny, T.M. Dependence of yield strain of human trabecular bone on anatomic site. J. Biomech. 2001, 34, 569–577. [Google Scholar] [CrossRef]
- Ryan, E.; Yin, S. Compressive strength of β-TCP scaffolds fabricated via lithography-based manufacturing for bone tissue engineering. Ceram. Int. 2022, 48, 15516–15524. [Google Scholar] [CrossRef]
- Sikavitsas, V.I.; Temenoff, J.S.; Mikos, A.G. Biomaterials and bone mechanotransduction. Biomaterials 2001, 22, 2581–2593. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, M.; Chameettachal, S.; Pahwa, S.; Ray, A.R.; Ghosh, S. Strategies for replicating anatomical cartilaginous tissue gradient in engineered intervertebral disc. ACS Appl. Mater. Interfaces 2014, 6, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Wang, Y.; Huang, Z.; Wu, T.; Xu, W.; Wu, W.; Xu, Z. Advances in Filament Structure of 3D Bioprinted Biodegradable Bone Repair Scaffolds. Int. J. Bioprint 2021, 7, 426. [Google Scholar] [CrossRef]
- Shi, D.; Shen, J.; Zhang, Z.; Shi, C.; Chen, M.; Gu, Y.; Liu, Y. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. J. Biomed. Mater. Res. A 2019, 107, 1615–1627. [Google Scholar] [CrossRef]
- Xue, J.; Feng, C.; Xia, L.; Zhai, D.; Ma, B.; Wang, X.; Fang, B.; Chang, J.; Wu, C. Assembly Preparation of Multilayered Biomaterials with High Mechanical Strength and Bone-Forming Bioactivity. Chem. Mater. 2018, 30, 4646–4657. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Chu, M.; Sun, H.; Jin, J.; Yu, K.; Wang, Q.; Zhou, Q.; Chen, Y. Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability. Sci. Adv. 2019, 5, eaau9490. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Lee, D.W.; Rowshan, R.; Abu Al-Rub, R.K. Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties. J. Mech. Behav. Biomed. Mater. 2020, 102, 103520. [Google Scholar] [CrossRef]
- Yang, L.; Mertens, R.; Ferrucci, M.; Yan, C.; Shi, Y.; Yang, S. Continuous graded Gyroid cellular structures fabricated by selective laser melting: Design, manufacturing and mechanical properties. Mater. Des. 2019, 162, 394–404. [Google Scholar] [CrossRef]
- Pramanik, S.; Pingguan-Murphy, B.; Cho, J.; Abu Osman, N.A. Design and development of potential tissue engineering scaffolds from structurally different longitudinal parts of a bovine-femur. Sci. Rep. 2014, 4, 5843. [Google Scholar] [CrossRef]
- Han, Y.; Lu, W. Evolutionary design of nonuniform cellular structures with optimized Poisson’s ratio distribution. Mater. Des. 2018, 141, 384–394. [Google Scholar] [CrossRef]
- Vijayavenkataraman, S.; Zhang, L.; Zhang, S.; Hsi Fuh, J.Y.; Lu, W.F. Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach toward Biomimetic Scaffold Design. ACS Appl. Bio Mater. 2018, 1, 259–269. [Google Scholar] [CrossRef]
- Boccaccio, A.; Uva, A.E.; Fiorentino, M.; Mori, G.; Monno, G. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach. PLoS ONE 2016, 11, e0146935. [Google Scholar] [CrossRef]
- Prot, M.; Saletti, D.; Pattofatto, S.; Bousson, V.; Laporte, S. Links between microstructural properties of cancellous bone and its mechanical response to different strain rates. Comput. Methods Biomech. Biomed. Eng. 2012, 15 (Suppl. S1), 291–292. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Hu, Q.; Liu, Q. Morphological Integrated Preparation Method and Implementation of Inorganic/Organic Dual-Phase Composite Gradient Bionic Bone Scaffold. 3D Print. Addit. Manuf. 2024, 11, e607–e618. [Google Scholar] [CrossRef] [PubMed]
- Montazerian, H.; Mohamed, M.G.A.; Montazeri, M.M.; Kheiri, S.; Milani, A.S.; Kim, K.; Hoorfar, M. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. Acta Biomater. 2019, 96, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Di Luca, A.; Ostrowska, B.; Lorenzo-Moldero, I.; Lepedda, A.; Swieszkowski, W.; Van Blitterswijk, C.; Moroni, L. Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Sci. Rep. 2016, 6, 22898. [Google Scholar] [CrossRef]
- Croker, S.L.; Reed, W.; Donlon, D. Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa. Forensic Sci. Int. 2016, 260, 104.e1–104.e17. [Google Scholar] [CrossRef]
- Kadir Hussein, N.A.; Noordin, M.A.; Md Saad, A.P. Influence of conical graded porous architecture on the mechanical, failure behavior and fluid-flow properties for bone scaffold application. Eng. Fail. Anal. 2024, 157, 107893. [Google Scholar] [CrossRef]
- Hildner, M.; Lorenz, J.; Zhu, B.; Shih, A. Pressure drop reduction of the impeller spiral static mixer design enabled by additive manufacturing. Chem. Eng. Process. Process Intensif. 2023, 191, 109486. [Google Scholar] [CrossRef]
- Park, K.-S.; Kim, C.; Nam, J.-O.; Kang, S.-M.; Lee, C.-S. Synthesis and characterization of thermosensitive gelatin hydrogel microspheres in a microfluidic system. Macromol. Res. 2016, 24, 529–536. [Google Scholar] [CrossRef]
- Chen, H.; Gonnella, G.; Huang, J.; Di-Silvio, L. Fabrication of 3D Bioprinted Bi-Phasic Scaffold for Bone-Cartilage Interface Regeneration. Biomimetics 2023, 8, 87. [Google Scholar] [CrossRef]
- Yang, L.; Yang, J.; Qin, X.; Kan, J.; Zeng, F.; Zhong, J. Ternary composite films with simultaneously enhanced strength and ductility: Effects of sodium alginate-gelatin weight ratio and graphene oxide content. Int. J. Biol. Macromol. 2020, 156, 494–503. [Google Scholar] [CrossRef]
- Fahma, F.; Febiyanti, I.; Lisdayana, N.; Sari, Y.W.; Noviana, D.; Yunus, M.; Kadja, G.T.M.; Kusumaatmaja, A. Production of Polyvinyl Alcohol–Alginate–Nanocellulose Fibers. Starch Stärke 2022, 74, 2100032. [Google Scholar] [CrossRef]
- Deb, P.; Barua, E.; Deoghare, A.B.; Lala, S.D. Development of bone scaffold using Puntius conchonius fish scale derived hydroxyapatite: Physico-mechanical and bioactivity evaluations. Ceram. Int. 2019, 45, 10004–10012. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Stehle, Y.; Lin, M.; Wang, C.; Zhang, R.; Huang, M.; Li, Y.; Zou, Q. Extrusion-based 3D-printed “rolled-up” composite scaffolds with hierarchical pore structure for bone growth and repair. J. Mater. Sci. Technol. 2024, 171, 222–234. [Google Scholar] [CrossRef]
- Han, J.; Wu, J.; Xiang, X.; Xie, L.; Chen, R.; Li, L.; Ma, K.; Sun, Q.; Yang, R.; Huang, T.; et al. Biodegradable BBG/PCL composite scaffolds fabricated by selective laser sintering for directed regeneration of critical-sized bone defects. Mater. Des. 2023, 225, 111543. [Google Scholar] [CrossRef]
- Kim, J.; Kim, W.; Lee, W.; Mertamani, R.N.; Yun, K.; Kim, S.; Kim, S.-J. 3D printed OCP bone scaffold with alginate enhancing osteogenic differentiation in MG-63 cells. MRS Commun. 2023, 13, 1433–1440. [Google Scholar] [CrossRef]
- Qu, H.; Han, Z.; Chen, Z.; Tang, L.; Gao, C.; Liu, K.; Pan, H.; Fu, H.; Ruan, C. Fractal Design Boosts Extrusion-Based 3D Printing of Bone-Mimicking Radial-Gradient Scaffolds. Research 2021, 1, 301–313. [Google Scholar] [CrossRef]
- Diaz-Gomez, L.; Kontoyiannis, P.D.; Melchiorri, A.J.; Mikos, A.G. Three-Dimensional Printing of Tissue Engineering Scaffolds with Horizontal Pore and Composition Gradients. Tissue Eng. Part. C Methods 2019, 25, 411–420. [Google Scholar] [CrossRef]
- Tariq, S.; Shah, S.A.; Hameed, F.; Mutahir, Z.; Khalid, H.; Tufail, A.; Akhtar, H.; Chaudhry, A.A.; Khan, A.F. Tissue engineered periosteum: Fabrication of a gelatin basedtrilayer composite scaffold with biomimetic properties for enhanced bone healing. Int. J. Biol. Macromol. 2024, 263, 130371. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Hu, C.; Huang, X.; Qin, K.; Wang, L.; Wang, Z.; Liang, J.; Xie, F.; Fan, Z. 3D printing nacre powder/sodium alginate scaffold loaded with PRF promotes bone tissue repair and regeneration. Biomater. Sci. 2024, 12, 2418–2433. [Google Scholar] [CrossRef]
- Kubasiewicz-Ross, P.; Hadzik, J.; Seeliger, J.; Kozak, K.; Jurczyszyn, K.; Gerber, H.; Dominiak, M.; Kunert-Keil, C. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats. Ann. Anat. Anat. Anz. 2017, 213, 83–90. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lin, S.; Ao, Q.; He, X. The co-culture of ASCs and EPCs promotes vascularized bone regeneration in critical-sized bone defects of cranial bone in rats. Stem Cell Res. Ther. 2020, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Wang, K.; Li, M.; Zhang, Y.; Dong, K.; Heise, S.; Boccaccini, A.R.; Lu, T. Co-culture of BMSCs and HUVECs with simvastatin-loaded gelatin nanosphere/chitosan coating on Mg alloy for osteogenic differentiation and vasculogenesis. Int. J. Biol. Macromol. 2021, 193, 2021–2028. [Google Scholar] [CrossRef]
- Bai, X.; Gao, M.; Syed, S.; Zhuang, J.; Xu, X.; Zhang, X.Q. Bioactive hydrogels for bone regeneration. Bioact. Mater. 2018, 3, 401–417. [Google Scholar] [CrossRef]
- Peng, W.; Peng, Z.; Tang, P.; Sun, H.; Lei, H.; Li, Z.; Hui, D.; Du, C.; Zhou, C.; Wang, Y. Review of Plastic Surgery Biomaterials and Current Progress in Their 3D Manufacturing Technology. Materials 2020, 13, 4108. [Google Scholar] [CrossRef]
- Rottensteiner, U.; Sarker, B.; Heusinger, D.; Dafinova, D.; Rath, S.N.; Beier, J.P.; Kneser, U.; Horch, R.E.; Detsch, R.; Boccaccini, A.R.; et al. In vitro and in vivo Biocompatibility of Alginate Dialdehyde/Gelatin Hydrogels with and without Nanoscaled Bioactive Glass for Bone Tissue Engineering Applications. Materials 2014, 7, 1957–1974. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sun, Y.; Shi, X.; Shen, H.; Ning, H.; Liu, H. 3D printing of tissue engineering scaffolds: A focus on vascular regeneration. Biodes Manuf. 2021, 4, 344–378. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, W.; Chen, S.; Chen, Y.; Cheng, P.; Lu, X.; Ma, Y. Towards a New 3Rs Era in the construction of 3D cell culture models simulating tumor microenvironment. Front. Oncol. 2023, 13, 1146477. [Google Scholar] [CrossRef]
Biomaterial Inks | Gel (w/v) | SA (w/v) | nHA (w/v) | Deionized Water (mL) |
---|---|---|---|---|
Gel/SA-0 | 7.5% | 4% | 0% | 10 |
Gel/SA-1.5 | 7.5% | 4% | 1.5% | 10 |
Gel/SA-3 | 7.5% | 4% | 3% | 10 |
Bone Scaffold | Biomaterial Ink (Feed Pipe A, Feed Pipe B) | Material Temperature (°C) | Receiving Platform Temperature (°C) | Feeding Speed (mm/s) | Printing Speed (mm/min) |
---|---|---|---|---|---|
BS-0 | Gel/SA-0 Gel/SA-0 | 25 | 8 | 0.08 | 400 |
BS-1.5 | Gel/SA-1.5 Gel/SA-1.5 | 25 | 8 | 0.08 | 400 |
BS-3 | Gel/SA-3 Gel/SA-3 | 25 | 8 | 0.08 | 400 |
BS-G | Gel/SA-3 Gel/SA-0 | 25 | 8 | 0.08 | 400 |
Scaffold | Stress (MPa) |
---|---|
BS-1.5 | 1.38 ± 0.49 |
BS-T | 0.96 ± 0.38 |
BS-G | 1.00 ± 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, R.; Song, Y.; Wang, Y.; Hu, Q. Research on Dual-Phase Composite Forming Process and Platform Construction of Radial Gradient Long Bone Scaffold. Bioengineering 2024, 11, 869. https://doi.org/10.3390/bioengineering11090869
Zhang H, Wang R, Song Y, Wang Y, Hu Q. Research on Dual-Phase Composite Forming Process and Platform Construction of Radial Gradient Long Bone Scaffold. Bioengineering. 2024; 11(9):869. https://doi.org/10.3390/bioengineering11090869
Chicago/Turabian StyleZhang, Haiguang, Rui Wang, Yongteng Song, Yahao Wang, and Qingxi Hu. 2024. "Research on Dual-Phase Composite Forming Process and Platform Construction of Radial Gradient Long Bone Scaffold" Bioengineering 11, no. 9: 869. https://doi.org/10.3390/bioengineering11090869
APA StyleZhang, H., Wang, R., Song, Y., Wang, Y., & Hu, Q. (2024). Research on Dual-Phase Composite Forming Process and Platform Construction of Radial Gradient Long Bone Scaffold. Bioengineering, 11(9), 869. https://doi.org/10.3390/bioengineering11090869