Driving Deployment of Bioengineered Products—An Arduous, Sometimes Tedious, Challenging, Rewarding, Most Exciting Journey That Has to Be Made! †
Abstract
:1. Introduction
2. Case Studies in Bioengineering Translation
2.1. Neural Regeneration
2.2. Cartilage Regeneration
2.3. Skin Regeneration
2.4. The Bioengineered Cornea
3. Challenges and Opportunities
3.1. Sourcing of Materials
3.2. Lost in Translation
3.2.1. Contactless Characterisation
3.2.2. Predictive Analytics
3.2.3. Regulatory Frameworks
3.2.4. Health Economics/Policy Making
3.3. A Translational Project Frameworks
3.4. Facilitating Networks: e.g., Beyond Science
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Intelligent Polymer Research Institute (IPRI). Available online: https://www.uow.edu.au/research-and-innovation/our-research/research-institutes-and-facilities/australian-institute-for-innovative-materials/ipri/ (accessed on 1 July 2024).
- The ARC Centre for Electromaterials Science (ACES). Available online: https://electromaterials.edu.au/.
- Prof Gordon Wallace Publication List. Available online: https://scholars.uow.edu.au/gordon-wallace/publications (accessed on 1 July 2024).
- Wallace, G.G.; Moulton, S.E.; Higgins, M.J.; Kapsa, R.M.I. Organic Bionics; Wiley-VCH Verlag & Co. KGaA: Weinheim, Germany, 2012; Volume 12, p. 69469. [Google Scholar]
- Gordon, G.-E.; Wallace, G.; Matsue, T. Chapter 34 Chemical and Biological Sensors Based on Electrically Conducting Polymers Anthony. In The Handbook of Conducting Polymers; Terje, A., Ronald, S., Elsenbaumer, L., Reynolds, J.R., Eds.; Marcel Dekker: New York, NY, USA, 1998; p. 1112. ISBN 0-8247-0050-3. [Google Scholar]
- Sadik, O.A.; John, M.J.; Wallace, G.G.; Barnett, D.; Clarke, C.; Laing, D.G. Pulsed Amperometric Detection of Thaumatin Using Antibody-Containing Poly(pyrrole) Electrodes. Analyst 1994, 119, 1997–2000. [Google Scholar] [CrossRef]
- Campbell, T.E.; Hodgson, A.J.; Wallace, G.G. Incorporation of Erythrocytes into Polypyrrole to Form the Basis of a Biosensor to Screen for Rhesus (D) Blood Groups and Rhesus (D) Antibodies. Electroanalysis 1999, 11, 215–222. [Google Scholar] [CrossRef]
- Thompson, B.C.; Richardson, R.T.; Moulton, S.E.; Evans, A.J.; O’Leary, S.; Clark, G.M.; Wallace, G.G. Conducting polymers, dual neurotrophins and pulsed electrical stimulation—Dramatic effects on neurite outgrowth. J. Control. Release 2010, 141, 161–167. [Google Scholar] [CrossRef]
- Quigley, A.F.; Razal, J.M.; Thompson, B.C.; Moulton, S.E.; Kita, M.; Kennedy, E.L.; Clark, G.M.; Wallace, G.G.; Kapsa, R.M.I. A Conducting-Polymer Platform with Biodegradable Fibers for Stimulation and Guidance of Axonal Growth. Adv. Mater. 2009, 21, 4393–4397. [Google Scholar] [CrossRef] [PubMed]
- Razal, J.M.; Kita, M.; Quigley, A.F.; Kennedy, E.; Moulton, S.E.; Kapsa, R.M.I.; Clark, G.M.; Wallace, G.G. Wet-Spun Biodegradable Fibers on Conducting Platforms: Novel Architectures for Muscle Regeneration. Adv. Funct. Mater. 2009, 19, 3381–3388. [Google Scholar] [CrossRef]
- Quigley, A.F.; Razal, J.M.; Kita, M.; Jalili, R.; Gelmi, A.; Penington, A.; Ovalle-Robles, R.; Baughman, R.H.; Clark, G.M.; Wallace, G.G.; et al. Electrical Stimulation of Myoblast Proliferation and Differentiation on Aligned Nanostructured Conductive Polymer Platforms. Adv. Healthc. Mater. 2012, 1, 801–808. [Google Scholar] [CrossRef]
- Stewart, E.M.; Wu, Z.; Huang, X.F.; Kapsa, R.M.I.; Wallace, G.G. Use of conducting polymers to facilitate neurite branching in schizophrenia-related neuronal development. Biomater. Sci. 2016, 4, 1244–1251. [Google Scholar] [CrossRef]
- Zhang, Q.; Beirne, S.; Shu, K.; Esrafilzadeh, D.; Huang, X.-F.; Wallace, G.G. Electrical Stimulation with a Conductive Polymer Promotes Neurite Outgrowth and Synaptogenesis in Primary Cortical Neurons in 3D. Sci. Rep. 2018, 8, 9855. [Google Scholar] [CrossRef]
- Muller, R.; Yue, Z.; Ahmadi, S.; Ng, W.; Grosse, W.M.; Cook, M.J.; Wallace, G.G.; Moulton, S.E. Development and validation of a seizure initiated drug delivery system for the treatment of epilepsy. Sens. Actuators B Chem. 2016, 236, 732–740. [Google Scholar] [CrossRef]
- Qin, C.; Yue, Z.; Chao, Y.; Forster, R.J.; Maolmhuaidh, F.O.; Huang, X.-F.; Beirne, S.; Wallace, G.G.; Chen, J. Bipolar electroactive conducting polymers for wireless cell stimulation. Appl. Mater. Today 2020, 21, 100804. [Google Scholar] [CrossRef]
- Qin, C.; Yue, Z.; Huang, X.F.; Forster, R.J.; Wallace, G.G.; Chen, J. Enhanced wireless cell stimulation using soft and improved bipolar electroactive conducting polymer templates. Appl. Mater. Today 2022, 27, 101481. [Google Scholar] [CrossRef]
- Qin, C.; Yue, Z.; Forster, R.J.; Chen, J.; Wallace, G.G. On demand, wireless electrochemical release of brain derived neurotrophic factor. Electrochem. Commun. 2023, 157, 107626. [Google Scholar] [CrossRef]
- Weng, B.; Liu, X.; Higgins, M.J.; Shepherd, R.; Wallace, G. Fabrication and Characterization of Cytocompatible Polypyrrole Films Inkjet Printed from Nanoformulations Cytocompatible, Inkjet-Printed Polypyrrole Films. Small 2011, 7, 3434–3438. [Google Scholar] [CrossRef]
- Ferris, C.J.; Gilmore, K.J.; Beirne, S.; McCallum, D.; Wallace, G.G.; in het Panhuis, M. Bio-ink for on-demand printing of living cells. Biomater. Sci. 2013, 1, 224–230. [Google Scholar] [CrossRef]
- Chung, J.H.Y.; Naficy, S.; Yue, Z.; Kapsa, R.; Quigley, A.; Moulton, S.E.; Wallace, G.G. Bio-ink properties and printability for extrusion printing living cells. Biomater. Sci. 2013, 1, 763–773. [Google Scholar] [CrossRef]
- Gonzalez-Gonzalez, M.A.; Bendale, G.S.; Wang, K.; Wallace, G.G.; Romero-Ortega, M. Platinized graphene fiber electrodes uncover direct spleen-vagus communication. Commun. Biol. 2021, 4, 1097. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Crook, J.M.; Wallace, G.G. Development of porous 3D graphene-PDMS scaffold for improved osseointegration. Colloids Surf. B Biointerfaces 2017, 159, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, X.; Crook, J.M.; Wallace, G.G. Electrical stimulation-induced osteogenesis of human adipose derived stem cells using a conductive graphene-cellulose scaffold. Mater. Sci. Eng. C 2020, 107, 110312. [Google Scholar] [CrossRef]
- Foroughi, J.; Spinks, G.M.; Wallace, G.G. High strain electromechanical actuators based on electrodeposited polypyrrole doped with di-(2-ethylhexyl)sulfosuccinate. Sens. Actuators B Chem. 2011, 155, 278–284. [Google Scholar]
- Zhang, B.G.X.; Spinks, G.M.; Gorkin, R.; Sangian, D.; Di Bella, C.; Quigley, A.F.; Kapsa, R.M.I.; Wallace, G.G.; Choong, P.F.M. In vivo biocompatibility of porous and non-porous polypyrrole based trilayered actuators. J. Mater. Sci. Mater. Med. 2017, 28, 172. [Google Scholar] [CrossRef]
- Ye, K.; Felimban, R.; Traianedes, K.; Moulton, S.E.; Wallace, G.G.; Chung, J.; Quigley, A.; Choong, P.F.M.; Myers, D.E. Chondrogenesis of Infrapatellar Fat Pad Derived Adipose Stem Cells in 3D Printed Chitosan Scaffold. PLoS ONE 2014, 9, e99410. [Google Scholar] [CrossRef]
- Duchi, S.; Onofrillo, C.; O’Connell, C.D.; Blanchard, R.; Augustine, C.; Quigley, A.F.; Kapsa, R.M.I.; Pivonka, P.; Wallace, G.; Di Bella, C.; et al. Handheld Co-Axial Bioprinting: Application to in situ surgical cartilage repair. Sci. Rep. 2017, 7, 5837. [Google Scholar] [CrossRef]
- O’Connell, C.D.; Di Bella, C.; Thompson, F.; Augustine, C.; Beirne, S.; Cornock, R.; Richards, C.J.; Chung, J.; Gambhir, S.; Yue, Z.; et al. Development of the Biopen: A handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication 2016, 8, 015019. [Google Scholar] [CrossRef] [PubMed]
- Onofrillo, C.; Duchi, S.; O’Connell, C.D.; Blanchard, R.; O’Connor, A.J.; Scott, M.; Wallace, G.G.; Choong, P.F.M.; Di Bella, C. Biofabrication of human articular cartilage: A path towards the development of a clinical treatment. Biofabrication 2018, 10, 045006. [Google Scholar] [CrossRef]
- Chung, J.H.Y.; Kade, J.C.; Jeiranikhameneh, A.; Ruberu, K.; Mukherjee, P.; Yue, Z.; Wallace, G.G. 3D hybrid printing platform for auricular cartilage reconstruction. Biomed. Phys. Eng. Express 2020, 6, 035003. [Google Scholar] [CrossRef] [PubMed]
- Posniak, S.; Chung, J.H.Y.; Liu, X.; Mukherjee, P.; Gambhir, S.; Khansari, A.; Wallace, G.G. Bioprinting of Chondrocyte Stem Cell Co-Cultures for Auricular Cartilage Regeneration. ACS Omega 2022, 7, 5908–5920. [Google Scholar] [CrossRef]
- Fay, C.D.; Jeiranikhameneh, A.; Sayyar, S.; Talebian, S.; Nagle, A.; Cheng, K.; Fleming, S.; Mukherjee, P.; Wallace, G.G. Development of a customised 3D printer as a potential tool for direct printing of patient-specific facial prosthesis. Int. J. Adv. Manuf. Technol. 2022, 120, 7143–7155. [Google Scholar] [CrossRef]
- Kaul, R.D.; Duong, C.; Ma, J.; Sayyar, S.; Wallace, G.; Dunn, M.; Cheng, K.; Fleming, S.; Whereat, S.; Clark, J.; et al. A comparison of the accuracy of a low cost mobile application versus higher cost handheld 3D scanner for digital ear prosthetics. Ann. Biomed. Eng. 2024, Submitted. [Google Scholar]
- Zhou, Y.; Fan, Y.; Chen, Z.; Yue, Z.; Wallace, G. Catechol functionalized ink system and thrombin-free fibrin gel for fabricating cellular constructs with mechanical support and inner micro channels. Biofabrication 2022, 14, 015004. [Google Scholar] [CrossRef]
- Chen, X.; Yue, Z.; Winberg, P.C.; Lou, Y.-R.; Beirne, S.; Wallace, G.G. 3D bioprinting dermal-like structures using species-specific ulvan. Biomater. Sci. 2021, 9, 2424–2438. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.; Chen, Z.; Zhou, Y.; You, J.J.; Sutton, G.; Wallace, G.G. Innervation in Corneal Bioengineering. Biomaterials 2024. submitted. [Google Scholar]
- Yan, L.; Kageyama, T.; Zhang, B.; Yamashita, S.; Molino, P.J.; Wallace, G.G.; Fukuda, J. Electrical stimulation to human dermal papilla cells for hair regenerative medicine. J. Biosci. Bioeng. 2022, 133, 281–290. [Google Scholar] [CrossRef]
- Wallace, E.R.; Yue, Z.; Dottori, M.; Wood, F.M.; Fear, M.; Wallace, G.G.; Beirne, S. Point of care approaches to 3D bioprinting for wound healing applications. Prog. Biomed. Eng. 2023, 5, 023002. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; You, J.; Song, Y.; Tomaskovic-Crook, E.; Sutton, G.; Crook, J.M.; Wallace, G.G. Biomimetic corneal stroma Using electro-compacted collagen. Acta Biomater. 2020, 113, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, X.; You, J.; Tomaskovic-Crook, E.; Yue, Z.; Talaei, A.; Sutton, G.; Crook, J.; Wallace, G. Electro-compacted collagen for corneal epithelial tissue engineering. J. Biomed. Mater. Res. Part A 2023, 111, 1151–1160. [Google Scholar] [CrossRef]
- $35M for Life-Changing Corneal Blindness Research. 6 February 2024. Available online: https://www.sydney.edu.au/news-opinion/news/2024/02/06/35m-for-life-changing-corneal-blindness-research.html (accessed on 1 July 2024).
- Kang, L.; Liu, X.; Yue, Z.; Chen, Z.; Baker, C.; Winberg, P.C.; Wallace, G.G. Fabrication and In Vitro Characterization of Electrochemically Compacted Collagen/Sulfated Xylorhamnoglycuronan Matrix for Wound Healing Applications. Polymers 2018, 10, 415. [Google Scholar] [CrossRef]
- Sanz, B.; Sanchez, A.A.; Tangey, B.; Gilmore, K.; Yue, Z.; Liu, X.; Wallace, G. Light Cross-Linkable Marine Collagen for Coaxial Printing of a 3D Model of Neuromuscular Junction Formation. Biomedicines 2021, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Maher, M.; Glattauer, V.; Onofrillo, C.; Duchi, S.; Yue, Z.; Hughes, T.C.; Ramshaw, J.A.M.; Wallace, G.G. Suitability of Marine- and Porcine-Derived Collagen Type I Hydrogels for Bioprinting and Tissue Engineering Scaffolds. Mar. Drugs 2022, 20, 366. [Google Scholar] [CrossRef]
- Ruland, A.; Jalili, R.; Mozer, A.J.; Wallace, G.G. Quantitative characterisation of conductive fibers by capacitive coupling. Analyst 2018, 143, 215–223. [Google Scholar] [CrossRef]
- Ruland, A.; Onofrillo, C.; Duchi, S.; Di Bella, C.; Wallace, G.G. Standardised quantitative ultrasound imaging approach for the contact-less three-dimensional analysis of neocartilage formation in hydrogel-based bioscaffolds. Acta Biomater. 2022, 147, 129–146. [Google Scholar] [CrossRef]
- Ruland, A.; Hill, J.M.; Wallace, G.G. Reference Phantom Method for Ultrasonic Imaging of Thin Dynamic Constructs. Ultrasound Med. Biol. 2021, 47, 2388–2403. [Google Scholar] [CrossRef] [PubMed]
- Ruland, A.; Gilmore, K.J.; Daikuara, L.Y.; Fay, C.D.; Yue, Z.; Wallace, G.G. Quantitative ultrasound imaging of cell-laden hydrogels and printed constructs. Acta Biomater. 2019, 91, 173–185. [Google Scholar] [CrossRef]
- Ruberu, K.; Senadeera, M.; Rana, S.; Gupta, S.; Chung, J.; Yue, Z.; Venkatesh, S.; Wallace, G. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. Appl. Mater. Today 2021, 22, 100914. [Google Scholar] [CrossRef]
- Kemp, S.; Coles-Black, J.; Walker, M.J.; Wallace, G.; Chuen, J.; Mukherjee, P. Ethical and regulatory considerations for surgeons as consumers and creators of three-dimensional printed medical devices. ANZ J. Surg. 2020, 90, 1477–1481. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.; Clark, J.; Wallace, G.; Cheng, K.; Solomon, M.; Richardson, A.; Maddern, G. Discussion paper on proposed new regulatory changes on 3D technology: A surgical perspective. ANZ J. Surg. 2019, 89, 117–121. [Google Scholar] [CrossRef]
- Augustin, D.A.; Yock, C.A.; Wall, J.; Lucian, L.; Krummel, T.; Pietzsch, J.B.; Azagury, D.E. Stanford Biodesign Innovation Program: Teaching Opportunities for Value-Driven Innovation in Surgery. Surgery 2020, 167, 535–539. [Google Scholar] [CrossRef]
- Beyond Science. Available online: https://www.surgeons.org/about-racs/racs-offices/new-south-wales/Beyond-Science (accessed on 1 July 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wallace, G.G. Driving Deployment of Bioengineered Products—An Arduous, Sometimes Tedious, Challenging, Rewarding, Most Exciting Journey That Has to Be Made! Bioengineering 2024, 11, 856. https://doi.org/10.3390/bioengineering11080856
Wallace GG. Driving Deployment of Bioengineered Products—An Arduous, Sometimes Tedious, Challenging, Rewarding, Most Exciting Journey That Has to Be Made! Bioengineering. 2024; 11(8):856. https://doi.org/10.3390/bioengineering11080856
Chicago/Turabian StyleWallace, Gordon George. 2024. "Driving Deployment of Bioengineered Products—An Arduous, Sometimes Tedious, Challenging, Rewarding, Most Exciting Journey That Has to Be Made!" Bioengineering 11, no. 8: 856. https://doi.org/10.3390/bioengineering11080856
APA StyleWallace, G. G. (2024). Driving Deployment of Bioengineered Products—An Arduous, Sometimes Tedious, Challenging, Rewarding, Most Exciting Journey That Has to Be Made! Bioengineering, 11(8), 856. https://doi.org/10.3390/bioengineering11080856