Wearable Near-Eye Tracking Technologies for Health: A Review
Abstract
:1. Introduction
Cost | Portability/Wearability | Invasiveness | Accuracy | |
---|---|---|---|---|
Stick pointer | Low-cost | Portable | Invasive | Lower |
SSC | Expensive | Benchtop | Invasive | High |
EOG | Moderate cost | Portable | Non-invasive | High |
IOG | Moderate to high-cost | Portable | Non-invasive | High |
VOG | Moderate cost | Wearable | Non-invasive | High |
2. State of the Art in Wearable NET Technologies
2.1. Video Oculography
2.1.1. Feature-Based Eye Tracking
- Geometric-based method
- Others (non-geometric based method)
2.1.2. Appearance-Based Eye Tracking
2.2. Infrared Oculography
2.3. Electrooculography
- Preprocessing: This initial stage includes baseline offset removal to adjust the starting point of the EOG signal to a standard reference, followed by filtering and noise removal to clean the data for accurate analysis;
- Calibration and peak detection: The signal is then calibrated to convert the raw EOG data into meaningful measurements that correspond to eye movements. This involves creating a calibration conversion factor that aligns the electrical signals with actual eye movement degrees. Following this, the system detects peaks corresponding to left or right eye movements that exceed 5 degrees;
- Eye movement detection: establishes velocity and acceleration thresholds to categorize different types of eye movements. This includes detecting saccades (rapid movements) with specific velocity and acceleration criteria, fixations (steady gaze) with lower velocity and longer duration thresholds and blinks characterized by very high velocity and acceleration;
- Quantification of eye movement events: Finally, the processed data are classified into specific events based on velocity, acceleration, and duration parameters: for saccades, the system measures the number, frequency, distance, duration, direction, and timing; for fixations, it records the number, duration, and timing.
3. Applications of NET for Health
3.1. NET in Endoscopy
3.2. NET in Mental Health Monitoring
3.3. NET + X for Health
3.3.1. NET + VR
3.3.2. NET + Other
4. Discussion and Conclusions
4.1. Summary of NET in Health
4.2. Future Trend of NET in Health
4.2.1. Sensor Design
4.2.2. Standardization
4.2.3. NET + X
4.3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharma, C.; Dubey, S.K. Analysis of Eye Tracking Techniques in Usability and HCI Perspective. In Proceedings of the 2014 International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 5–7 March 2014; pp. 607–612. [Google Scholar]
- Ferhat, O.; Vilarino, F. Low Cost Eye Tracking: The Current Panorama. Comput. Intell. Neurosci. 2016, 2016, 8680541. [Google Scholar] [CrossRef] [PubMed]
- Orlosky, J.; Itoh, Y.; Ranchet, M.; Kiyokawa, K.; Morgan, J.; Devos, H. Emulation of Physician Tasks in Eye-Tracked Virtual Reality for Remote Diagnosis of Neurodegenerative Disease. IEEE Trans. Vis. Comput. Graph. 2017, 23, 1302–1311. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Min, J.; Hu, J. Real-time Eye Tracking for the Assessment of Driver Fatigue. Healthc. Technol. Lett. 2018, 5, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q. Real-Time Eye, Gaze, and Face Pose Tracking for Monitoring Driver Vigilance. Real-Time Imaging 2002, 8, 357–377. [Google Scholar] [CrossRef]
- Sipatchin, A.; Wahl, S.; Rifai, K. Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye’s Usability. Healthcare 2021, 9, 180. [Google Scholar] [CrossRef] [PubMed]
- Lauermann, J.L.; Treder, M.; Heiduschka, P.; Clemens, C.R.; Eter, N.; Alten, F. Impact of Eye-Tracking Technology on OCT-Angiography Imaging Quality in Age-Related Macular Degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Dahmani, M.; Chowdhury, M.E.H.; Khandakar, A.; Rahman, T.; Al-Jayyousi, K.; Hefny, A.; Kiranyaz, S. An Intelligent and Low-Cost Eye-Tracking System for Motorized Wheelchair Control. Sensors 2020, 20, 3936. [Google Scholar] [CrossRef] [PubMed]
- Gautam, G.; Sumanth, G.; Karthikeyan, K.C.; Sundar, S. Eye Movement Based Electronic Wheel Chair for Physically Challenged Persons. Int. J. Sci. Technol. Res. 2014, 3, 206–212. [Google Scholar]
- Hosp, B.; Eivazi, S.; Maurer, M.; Fuhl, W.; Geisler, D.; Kasneci, E. RemoteEye: An Open-Source High-Speed Remote Eye Tracker. Behav. Res. Methods 2020, 52, 1387–1401. [Google Scholar] [CrossRef]
- Geisler, D.; Fox, D.; Kasneci, E. Real-Time 3D Glint Detection in Remote Eye Tracking Based on Bayesian Inference. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 7119–7126. [Google Scholar]
- Punde, P.A.; Jadhav, M.E.; Manza, R.R. A Study of Eye Tracking Technology and Its Applications. In Proceedings of the 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM), Aurangabad, India, 5–6 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 86–90. [Google Scholar]
- Li, D.; Winfield, D.; Parkhurst, D.J. Starburst: A Hybrid Algorithm for Video-Based Eye Tracking Combining Feature-Based and Model-Based Approaches. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)—Workshops, San Diego, CA, USA, 20–26 June 2005; IEEE: Piscataway, NJ, USA; p. 79. [Google Scholar]
- Kumar, D.; Dutta, A.; Das, A.; Lahiri, U. SmartEye: Developing a Novel Eye Tracking System for Quantitative Assessment of Oculomotor Abnormalities. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1051–1059. [Google Scholar] [CrossRef]
- Bright, E.; Vine, S.J.; Dutton, T.; Wilson, M.R.; McGrath, J.S. Visual Control Strategies of Surgeons: A Novel Method of Establishing the Construct Validity of a Transurethral Resection of the Prostate Surgical Simulator. J. Surg. Educ. 2014, 71, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Koulieris, G.A.; Akşit, K.; Stengel, M.; Mantiuk, R.K.; Mania, K.; Richardt, C. Near-Eye Display and Tracking Technologies for Virtual and Augmented Reality. Comput. Graph. Forum 2019, 38, 493–519. [Google Scholar] [CrossRef]
- Buchner, E.F. Review of The Psychology and Pedagogy of Reading, with a Review of the History of Reading and Writing and of Methods, Texts, and Hygiene in Reading. Psychol. Bull. 1909, 6, 147–150. [Google Scholar] [CrossRef]
- Sprenger, A.; Neppert, B.; Köster, S.; Gais, S.; Kömpf, D.; Helmchen, C.; Kimmig, H. Long-Term Eye Movement Recordings with a Scleral Search Coil-Eyelid Protection Device Allows New Applications. J. Neurosci. Methods 2008, 170, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Stuart, S.; Hickey, A.; Vitorio, R.; Welman, K.; Foo, S.; Keen, D.; Godfrey, A. Eye-Tracker Algorithms to Detect Saccades during Static and Dynamic Tasks: A Structured Review. Physiol. Meas. 2019, 40, 02TR01. [Google Scholar] [CrossRef] [PubMed]
- Stuart, S.; Hickey, A.; Galna, B.; Lord, S.; Rochester, L.; Godfrey, A. ITrack: Instrumented Mobile Electrooculography (EOG) Eye-Tracking in Older Adults and Parkinson’s Disease. Physiol. Meas. 2017, 38, N16. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, K.U.; Muser, M.H.; Lanz, C.; Walz, F.; Schwarz, U. Comparing Eye Movements Recorded by Search Coil and Infrared Eye Tracking. J. Clin. Monit. Comput. 2007, 21, 49–53. [Google Scholar] [CrossRef]
- Choe, K.W.; Blake, R.; Lee, S.-H. Pupil Size Dynamics during Fixation Impact the Accuracy and Precision of Video-Based Gaze Estimation. Vision. Res. 2016, 118, 48–59. [Google Scholar] [CrossRef]
- Klaib, A.F.; Alsrehin, N.O.; Melhem, W.Y.; Bashtawi, H.O.; Magableh, A.A. Eye Tracking Algorithms, Techniques, Tools, and Applications with an Emphasis on Machine Learning and Internet of Things Technologies. Expert. Syst. Appl. 2021, 166, 114037. [Google Scholar] [CrossRef]
- Basel, D.; Hallel, H.; Dar, R.; Lazarov, A. Attention Allocation in OCD: A Systematic Review and Meta-Analysis of Eye-Tracking-Based Research. J. Affect. Disord. 2023, 324, 539–550. [Google Scholar] [CrossRef]
- Adhanom, I.B.; MacNeilage, P.; Folmer, E. Eye Tracking in Virtual Reality: A Broad Review of Applications and Challenges. Virtual Real. 2023, 27, 1481–1505. [Google Scholar] [CrossRef] [PubMed]
- Meng, M. Using Eye Tracking to Study Information Selection and Use in Procedures. IEEE Trans. Prof. Commun. 2023, 66, 7–25. [Google Scholar] [CrossRef]
- Kaushik, P.K.; Pandey, S.; Rauthan, S.S. Facial Emotion Recognition and Eye-Tracking Based Expressive Communication Framework: Review and Recommendations. Int. J. Comput. Appl. 2022, 184, 20–28. [Google Scholar] [CrossRef]
- Lim, J.Z.; Mountstephens, J.; Teo, J. Emotion Recognition Using Eye-Tracking: Taxonomy, Review and Current Challenges. Sensors 2020, 20, 2384. [Google Scholar] [CrossRef] [PubMed]
- Kar, A.; Corcoran, P. A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms. IEEE Access 2017, 5, 16495–16519. [Google Scholar] [CrossRef]
- Sivananthan, A.; Ahmed, J.; Kogkas, A.; Mylonas, G.; Darzi, A.; Patel, N. Eye Tracking Technology in Endoscopy: Looking to the Future. Dig. Endosc. 2023, 35, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Gil, A.M.; Birdi, S.; Kishibe, T.; Grantcharov, T.P. Eye Tracking Use in Surgical Research: A Systematic Review. J. Surg. Res. 2022, 279, 774–787. [Google Scholar] [CrossRef] [PubMed]
- Arthur, E.; Sun, Z. The Application of Eye-Tracking Technology in the Assessment of Radiology Practices: A Systematic Review. Appl. Sci. 2022, 12, 8267. [Google Scholar] [CrossRef]
- Lim, J.Z.; Mountstephens, J.; Teo, J. Eye-Tracking Feature Extraction for Biometric Machine Learning. Front. Neurorobot. 2022, 15, 796895. [Google Scholar] [CrossRef]
- Lee, A.; Chung, H.; Cho, Y.; Kim, J.L.; Choi, J.; Lee, E.; Kim, B.; Cho, S.J.; Kim, S.G. Identification of Gaze Pattern and Blind Spots by Upper Gastrointestinal Endoscopy Using an Eye-Tracking Technique. Surg. Endosc. 2022, 36, 2574–2581. [Google Scholar] [CrossRef]
- Edmondson, M.J.; Pucher, P.H.; Sriskandarajah, K.; Hoare, J.; Teare, J.; Yang, G.Z.; Darzi, A.; Sodergren, M.H. Looking towards Objective Quality Evaluation in Colonoscopy: Analysis of Visual Gaze Patterns. J. Gastroenterol. Hepatol. 2016, 31, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Neumann, D.; Spezio, M.L.; Piven, J.; Adolphs, R. Looking You in the Mouth: Abnormal Gaze in Autism Resulting from Impaired Top-down Modulation of Visual Attention. Soc. Cogn. Affect. Neurosci. 2006, 1, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Piccardi, L.; Noris, B.; Barbey, O.; Billard, A.; Schiavonet, G.; Kellert, F.; von Hofsten, C. WearCam: A Head Mounted Wireless Camera for Monitoring Gaze Attention and for the Diagnosis of Developmental Disorders in Young Children. In Proceedings of the RO-MAN 2007—The 16th IEEE International Symposium on Robot and Human Interactive Communication, Jeju, Republic of Korea, 26–29 August 2007. [Google Scholar]
- Jiang, J.; Zhou, X.; Chan, S.; Chen, S. Appearance-Based Gaze Tracking: A Brief Review. In Lecture Notes in Computer Science; Springer International Publishing: New York, NY, USA, 2019; pp. 629–640. [Google Scholar]
- Brousseau, B. Infrared Model-Based Eye-Tracking for Smartphones; University of Toronto: Toronto, ON, Canada, 2020. [Google Scholar]
- Larrazabal, A.J.; García Cena, C.E.; Martínez, C.E. Video-Oculography Eye Tracking towards Clinical Applications: A Review. Comput. Biol. Med. 2019, 108, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Calvo Córdoba, A.; García Cena, C.E.; Montoliu, C. Automatic Video-Oculography System for Detection of Minimal Hepatic Encephalopathy Using Machine Learning Tools. Sensors 2023, 23, 8073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sugano, Y.; Bulling, A. Evaluation of Appearance-Based Methods and Implications for Gaze-Based Applications. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 2 May 2019; ACM: New York, NY, USA, 2019; pp. 1–13. [Google Scholar]
- Wang, K.; Ji, Q. Hybrid Model and Appearance Based Eye Tracking with Kinect. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, Charleston, SC, USA, 14 March 2016; ACM: New York, NY, USA, 2016; pp. 331–332. [Google Scholar]
- Singh, H.; Singh, J. Human Eye Tracking and Related Issues: A Review. Int. J. Sci. Res. Publ. 2012, 2, 1–9. [Google Scholar]
- Anderson, C.; Chang, A.M.; Sullivan, J.P.; Ronda, J.M.; Czeisler, C.A. Assessment of Drowsiness Based on Ocular Parameters Detected by Infrared Reflectance Oculography. J. Clin. Sleep Med. 2013, 9, 907–920. [Google Scholar] [CrossRef]
- Terrin, M.G.; De Berardinis, M.; Boccuzzi, D.; Terrin, G.; Magli, A. Infrared Oculography as a Non Invasive Methods to Measure Visual Acuity before and after Surgery in Children with Congenital Nystagmus. Pediatr. Res. 2011, 70, 424. [Google Scholar] [CrossRef]
- Thinda, S.; Chen, Y.R.; Liao, Y.J. Cardinal Features of Superior Oblique Myokymia: An Infrared Oculography Study. Am. J. Ophthalmol. Case Rep. 2017, 7, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Asgharpour, M.; Tehrani-Doost, M.; Ahmadi, M. Visual Attention to Emotional Face in Schizophrenia: An Eye Tracking Study. Iran. J. Psychiatry 2015, 10, 13. [Google Scholar]
- Azri, M.; Young, S.; Lin, H.; Tan, C.; Yang, Z. Diagnosis of Ocular Myasthenia Gravis by Means of Tracking Eye Parameters. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; ISBN 9781424479290. [Google Scholar]
- Vidal, M.; Turner, J.; Bulling, A.; Gellersen, H. Wearable Eye Tracking for Mental Health Monitoring. Comput. Commun. 2012, 35, 1306–1311. [Google Scholar] [CrossRef]
- Donniacuo, A.; Viberti, F.; Carucci, M.; Biancalana, V.; Bellizzi, L.; Mandalà, M. Development of a Magnetoresistive-Based Wearable Eye-Tracking System for Oculomotor Assessment in Neurological and Otoneurological Research—Preliminary In Vivo Tests. Brain Sci. 2023, 13, 1439. [Google Scholar] [CrossRef]
- Ramkumar, S.; Sathesh Kumar, K.; Dhiliphan Rajkumar, T.; Ilayaraja, M.; Shankar, K. A Review-Classification of Electrooculogram Based Human Computer Interfaces. Biomed. Res. 2018, 29, 1078–1084. [Google Scholar] [CrossRef]
- Jia, Y.; Tyler, C.W. Measurement of Saccadic Eye Movements by Electrooculography for Simultaneous EEG Recording. Behav. Res. Methods 2019, 51, 2139–2151. [Google Scholar] [CrossRef]
- Kanowski, M.; Rieger, J.W.; Noesselt, T.; Tempelmann, C.; Hinrichs, H. Endoscopic Eye Tracking System for FMRI. J. Neurosci. Methods 2007, 160, 10–15. [Google Scholar] [CrossRef]
- Lev, A.; Braw, Y.; Elbaum, T.; Wagner, M.; Rassovsky, Y. Eye Tracking During a Continuous Performance Test: Utility for Assessing ADHD Patients. J. Atten. Disord. 2022, 26, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Maehata, T.; Fujimoto, A.; Uraoka, T.; Kato, M.; Horii, J.; Sasaki, M.; Kiguchi, Y.; Akimoto, T.; Nakayama, A.; Ochiai, Y.; et al. Efficacy of a New Image-Enhancement Technique for Achieving Hemostasis in Endoscopic Submucosal Dissection. Gastrointest. Endosc. 2020, 92, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, A.; Okuzono, T.; Nakamura, H.; Kuzuoka, H.; Rekimoto, J. A Surgical Scene Replay System for Learning Gastroenterological Endoscopic Surgery Skill by Multiple Synchronized-Video and Gaze Representation. Proc. ACM Hum. Comput. Interact. 2021, 5, 204. [Google Scholar] [CrossRef]
- Nagel, M.; Sprenger, A.; Nitschke, M.; Zapf, S.; Heide, W.; Binkofski, F.; Lencer, R. Different Extraretinal Neuronal Mechanisms of Smooth Pursuit Eye Movements in Schizophrenia: An FMRI Study. Neuroimage 2007, 34, 300–309. [Google Scholar] [CrossRef]
- Anders, S.; Weiskopf, N.; Lule, D.; Birbaumer, N. Infrared Oculography—Validation of a New Method to Monitor Startle Eyeblink Amplitudes during FMRI. Neuroimage 2004, 22, 767–770. [Google Scholar] [CrossRef]
- Boucart, M.; Bubbico, G.; Szaffarczyk, S.; Pasquier, F. Animal Spotting in Alzheimer’s Disease: An Eye Tracking Study of Object Categorization. J. Alzheimer’s Dis. 2014, 39, 181–189. [Google Scholar] [CrossRef]
- Fletcher-Watson, S.; Leekam, S.R.; Benson, V.; Frank, M.C.; Findlay, J.M. Eye-Movements Reveal Attention to Social Information in Autism Spectrum Disorder. Neuropsychologia 2009, 47, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Sterling, L.; Dawson, G.; Webb, S.; Murias, M.; Munson, J.; Panagiotides, H.; Aylward, E. The Role of Face Familiarity in Eye Tracking of Faces by Individuals with Autism Spectrum Disorders. J. Autism Dev. Disord. 2008, 38, 1666–1675. [Google Scholar] [CrossRef] [PubMed]
- Bernard, F.; Deuter, C.E.; Gemmar, P.; Schachinger, H. Eyelid Contour Detection and Tracking for Startle Research Related Eye-Blink Measurements from High-Speed Video Records. Comput. Methods Programs Biomed. 2013, 112, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Lee, S.; Lee, J.; Nam, Y. A Head-Mounted Goggle-Type Video-Oculography System for Vestibular Function Testing. EURASIP J. Image Video Process 2018, 2018, 28. [Google Scholar] [CrossRef]
- Gulati, S.; Patel, M.; Emmanuel, A.; Haji, A.; Hayee, B.; Neumann, H. The Future of Endoscopy: Advances in Endoscopic Image Innovations. Dig. Endosc. 2020, 32, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Crawford, T.J.; Higham, S.; Renvoize, T.; Patel, J.; Dale, M.; Suriya, A.; Tetley, S. Inhibitory Control of Saccadic Eye Movements and Cognitive Impairment in Alzheimer’s Disease. Biol. Psychiatry 2005, 57, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Noris, B.; Benmachiche, K.; Meynet, J.; Thiran, J.-P.; Billard, A.G. Analysis of Head-Mounted Wireless Camera Videos for Early Diagnosis of Autism. In Computer Recognition Systems 2; Springer: Berlin/Heidelberg, Germany, 2007; pp. 663–670. [Google Scholar]
- Bulling, A.; Gellersen, H. Toward Mobile Eye-Based Human-Computer Interaction. IEEE Pervasive Comput. 2010, 9, 8–12. [Google Scholar] [CrossRef]
- Cogan, D.G.; Chu, F.C.; Reingold, D.B. Ocular Signs of Cerebellar Disease. Arch. Ophthalmol. 1982, 100, 755–760. [Google Scholar] [CrossRef]
- Ramat, S.; Leigh, R.J.; Zee, D.S.; Optican, L.M. What Clinical Disorders Tell Us about the Neural Control of Saccadic Eye Movements. Brain 2006, 130, 10–35. [Google Scholar] [CrossRef]
- Holzman, P.S.; Proctor, L.R.; Hughes, D.W. Eye-Tracking Patterns in Schizophrenia. Science 1973, 181, 179–181. [Google Scholar] [CrossRef]
- Radant, A.D.; Hommer, D.W. A Quantitative Analysis of Saccades and Smooth Pursuit during Visual Pursuit Tracking. Schizophr. Res. 1992, 6, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Greene, B.R.; Meredith, S.; Reilly, R.B.; Donohoe, G. A Novel, Portable Eye Tracking System for Use in Schizophrenia Research. Ir. Signals Syst. Conf. 2004, 2004, 89–94. [Google Scholar]
- Holzman, P.S.; Levy, D.L. Smooth Pursuit Eye Movements and Functional Psychoses: A Review. Schizophr. Bull. 1977, 3, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Whitmire, E.; Trutoiu, L.; Cavin, R.; Perek, D.; Scally, B.; Phillips, J.; Patel, S. EyeContact: Scleral Coil Eye Tracking for Virtual Reality. In Proceedings of the 2016 ACM International Symposium on Wearable Computers, Heidelberg, Germany, 12–16 September 2016; ACM: New York, NY, USA, 2016; pp. 184–191. [Google Scholar]
- Clay, V.; König, P.; König, S.U. Eye Tracking in Virtual Reality. J. Eye Mov. Res. 2019, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Niederriter, B.; Rong, A.; Aqlan, F.; Yang, H. Sensor-Based Virtual Reality for Clinical Decision Support in the Assessment of Mental Disorders. In Proceedings of the 2020 IEEE Conference on Games (CoG), Osaka, Japan, 24–27 August 2020; IEEE: New York, NY, USA, 2020; pp. 666–669. [Google Scholar]
- Bell, I.H.; Nicholas, J.; Alvarez-Jimenez, M.; Thompson, A.; Valmaggia, L. Virtual Reality as a Clinical Tool in Mental Health Research and Practice. Dialogues Clin. Neurosci. 2020, 22, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.V.; Yamaguchi, F.; Buckley, T.A.; Caccese, J.B. Virtual Reality in Concussion Management: From Lab to Clinic. J. Clin. Transl. Res. 2020, 5, 148–154. [Google Scholar]
- Zhu, Z.; Ji, Q. Novel Eye Gaze Tracking Techniques Under Natural Head Movement. IEEE Trans. Biomed. Eng. 2007, 54, 2246–2260. [Google Scholar] [CrossRef]
Ref. | Year | Application | Method | Wearability | Transmission | Device | Sampling Frequency/Hz |
---|---|---|---|---|---|---|---|
[9] | 2014 | Control of electronic wheelchair | VOG | Glasses | Wired | - | - |
[14] | 2016 | Assessment of oculomotor abnormalities | VOG | Head-mounted | Wireless | EyeTribe | 30 |
[15] | 2014 | Surgical training | VOG | Glasses | Wired | ASL Eye tracker | 8.33 |
[20] | 2017 | Investigation of Parkinson’s disease | EOG + IOG +VOG | EOG: Head-mounted IOG: Head-mounted | EOG: WIFI IOG: Wired VOG: Wired | EOG: Zerowire IOG: Dikablis VOG: dual camera system | EOG: 1000 IOG: 50 VOG: 50 |
[35] | 2016 | Evaluation in colonoscopy | VOG | Glasses | Wired | Model 1.4 | 30 |
[36] | 2006 | Investigation of autism | VOG (infrared) | Head-mounted | Wired | EyeLink II | 500 |
[37] | 2007 | Diagnosis of Developmental Disorders | VOG | Headcoil | Radio receiver | WearCam | 30 |
[41] | 2023 | Detection of Hepatic Encephalopathy | VOG (infrared) | Head stabilization | Wired | Infrared Camera | 100 |
[46] | 2011 | Evaluation in surgery | IOG | - | - | - | - |
[47] | 2017 | Investigation of superior oblique myokymia | IOG | 3D: Glasses 2D: Head stabilization | Wired | 3D: 3-D VOG 2D: iView-X Hi-Speed | 3D: 60 2D: 500 |
[48] | 2015 | Investigation of schizophrenia | VOG | Head-mounted | Wired | EyeLink II | 250 |
[49] | 2014 | Diagnosis of Ocular Myasthenia Gravis | IOG | Glasses | Wired | Pupil Labs | 30 |
[51] | 2023 | Oculomotor Assessment in Neurological Research | EOG | - | - | Magnetoresistive-based eye tracker | 100 |
[53] | 2019 | EEG Recording | EOG | - | Wired | 128-channel EGI (Electrical Geodesics, Inc., Eugene, OR, USA) | 500 |
[54] | 2007 | Endoscopy | VOG | Headcoil | Wired | - | 50 |
[55] | 2022 | Assessment in attention deficit hyperactivity disorder | EOG | Desktop Mount | Wired | Eye Link 1000 | 250 |
[56] | 2020 | Hemostasis in Endoscopy | VOG | Glasses | - | Tobii Pro Glasses 2 | 50 |
[57] | 2021 | Surgical training | VOG | Glasses | Wireless | Pupil Invisible | 30 |
[58] | 2007 | Investigation of schizophrenia | EOG | Glasses | Wired | limbus tracker (Cambridge Research Systems, Cambridge, UK) | 500 |
[59] | 2004 | Monitoring of affective state | IOG | Head Stabilization | Wired | MR-Eyetracker (Cambridge Research Systems, UK) | 1000 |
[60] | 2014 | Investigation of Alzheimer’s disease | VOG | Glasses | Wired | Senso-Motoric | 350 |
[61] | 2009 | Investigation of autism spectrum disorder | VOG | Head-mounted | Wired | Dual Purkinje Image eye-tracker | 200 |
[62] | 2008 | Investigation of autism spectrum disorder | VOG | Head-mounted | Wired | ISCAN ETL-500 | 240 |
[63] | 2013 | Measurement of startle | VOG (infrared) | Head Stabilization | Wired | iView X Hi-Speed 500 | 500 |
[64] | 2018 | Vestibular Function Testing | VOG (infrared) | Head-mounted | Wired | Infrared Camera | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Chen, J.; Yang, H.; Zhou, X.; Gao, Q.; Loureiro, R.; Gao, S.; Zhao, H. Wearable Near-Eye Tracking Technologies for Health: A Review. Bioengineering 2024, 11, 738. https://doi.org/10.3390/bioengineering11070738
Zhu L, Chen J, Yang H, Zhou X, Gao Q, Loureiro R, Gao S, Zhao H. Wearable Near-Eye Tracking Technologies for Health: A Review. Bioengineering. 2024; 11(7):738. https://doi.org/10.3390/bioengineering11070738
Chicago/Turabian StyleZhu, Lisen, Jianan Chen, Huixin Yang, Xinkai Zhou, Qihang Gao, Rui Loureiro, Shuo Gao, and Hubin Zhao. 2024. "Wearable Near-Eye Tracking Technologies for Health: A Review" Bioengineering 11, no. 7: 738. https://doi.org/10.3390/bioengineering11070738
APA StyleZhu, L., Chen, J., Yang, H., Zhou, X., Gao, Q., Loureiro, R., Gao, S., & Zhao, H. (2024). Wearable Near-Eye Tracking Technologies for Health: A Review. Bioengineering, 11(7), 738. https://doi.org/10.3390/bioengineering11070738