Exploring the Practical Applications of Artificial Intelligence, Deep Learning, and Machine Learning in Maxillofacial Surgery: A Comprehensive Analysis of Published Works
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Framework, the Protocol, and Research Questions
- How many publications per year are focused on maxillofacial AI, DL, and ML utilization? Are they increasing? Identify the annual publication count (1992–2023).
- What is the focus of publications within the field of maxillofacial surgery, and what proportion of the focus has been devoted to specific specialized maxillofacial topics in the latest publications on AI, DL, ML, and planning in maxillofacial surgery from the first publication?
- If we include planning and computation in maxillofacial surgery as part of AI, DL, and ML, how many articles have been published, and when was the first article published?
- Quantitative assessment of maxillofacial AI, DL, and ML publications in the past three decades.
- Possibilities of using AI, DL, and ML within the field of maxillofacial surgery in contemporary literature from 1992 to the present.
- Number of publications that include maxillofacial planning and computed planning in online databases per year from 1965 onward.
2.2. Evaluating the Past Publications
3. Results
4. Discussion
4.1. Diagnosis and Treatment
4.2. Surgical Navigation
4.3. Predictive Analytics
4.4. Powered Virtual Assistance
4.5. Prosthetic Design and Manufacturing
4.6. Orthognathic Surgery, Analysis and Prediction
4.7. Maxillofacial Robotic Surgery
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Croskerry, P. The Importance of Cognitive Errors in Diagnosis and Strategies to Minimize Them. Acad. Med. 2003, 78, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Norman, G. Research in clinical reasoning: Past history and current trends. Med. Educ. 2005, 39, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Thurzo, A.; Kosnáčová, H.S.; Kurilová, V.; Kosmeľ, S.; Beňuš, R.; Moravanský, N.; Kováč, P.; Kuracinová, K.M.; Palkovič, M.; Varga, I. Use of Advanced Artificial Intelligence in Forensic Medicine, Forensic Anthropology and Clinical Anatomy. Healthcare 2021, 9, 1545. [Google Scholar] [CrossRef] [PubMed]
- Piraianu, A.-I.; Fulga, A.; Musat, C.L.; Ciobotaru, O.-R.; Poalelungi, D.G.; Stamate, E.; Ciobotaru, O.; Fulga, I. Enhancing the Evidence with Algorithms: How Artificial Intelligence Is Transforming Forensic Medicine. Diagnostics 2023, 13, 2992. [Google Scholar] [CrossRef] [PubMed]
- Galante, N.; Cotroneo, R.; Furci, D.; Lodetti, G.; Casali, M.B. Applications of artificial intelligence in forensic sciences: Current potential benefits, limitations and perspectives. Int. J. Leg. Med. 2023, 137, 445–458. [Google Scholar] [CrossRef]
- Thurzo, A.; Strunga, M.; Urban, R.; Surovková, J.; Afrashtehfar, K.I. Impact of Artificial Intelligence on Dental Education: A Review and Guide for Curriculum Update. Educ. Sci. 2023, 13, 150. [Google Scholar] [CrossRef]
- Thurzo, A.; Urbanová, W.; Novák, B.; Czako, L.; Siebert, T.; Stano, P.; Mareková, S.; Fountoulaki, G.; Kosnáčová, H.; Varga, I. Where Is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis. Healthcare 2022, 10, 1269. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.M.; Christensen, M.R.; Simeone, J.F.; Hall, D.A.; Silverstein, M.D. Chronic cholecystitis. An analysis of diagnostic strategies. Investig. Radiol. 1987, 22, 111–117. [Google Scholar] [CrossRef]
- Stoker, N.G.; Mankovich, N.J.; Valentino, D. Stereolithographic models for surgical planning: Preliminary report. J. Oral Maxillofac. Surg. 1992, 50, 466–471. [Google Scholar] [CrossRef]
- Glas, H.H.; Kraeima, J.; van Ooijen, P.M.A.; Spijkervet, F.K.L.; Yu, L.; Witjes, M.J.H. Augmented Reality Visualization for Image-Guided Surgery: A Validation Study Using a Three-Dimensional Printed Phantom. J. Oral Maxillofac. Surg. 2021, 79, 1943.e1–1943.e10. [Google Scholar] [CrossRef] [PubMed]
- Keskinbora, K.H. Medical ethics considerations on artificial intelligence. J. Clin. Neurosci. 2019, 64, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Joda, T.; Bornstein, M.M.; Jung, R.E.; Ferrari, M.; Waltimo, T.; Zitzmann, N.U. Recent Trends and Future Direction of Dental Research in the Digital Era. Int. J. Environ. Res. Public Health 2020, 17, 1987. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Samek, W.; Krois, J. Artificial Intelligence in Dentistry: Chances and Challenges. J. Dent. Res. 2020, 99, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sejdić, E. Radiological images and machine learning: Trends, perspectives, and prospects. Comput. Biol. Med. 2019, 108, 354–370. [Google Scholar] [CrossRef] [PubMed]
- Revilla-León, M.; Gómez-Polo, M.; Vyas, S.; Barmak, B.A.; Galluci, G.O.; Att, W.; Krishnamurthy, V.R. Artificial intelligence applications in implant dentistry: A systematic review. J. Prosthet. Dent. 2023, 129, 293–300. [Google Scholar] [CrossRef]
- Ngiam, K.Y.; Khor, I.W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019, 20, e262–e273. [Google Scholar] [CrossRef]
- Horsley, V.; Clarke, R.H. The Structure and Functions of the Cerebellum Examined by a New Method. Available online: https://academic.oup.com/brain/article/31/1/45/460098 (accessed on 1 July 2023).
- Leksell, L.; Jernberg, B. Stereotaxis and tomography a technical note. Acta Neurochir. 1980, 52, 1–7. [Google Scholar] [CrossRef]
- Novelli, G.; Tonellini, G.; Mazzoleni, F.; Bozzetti, A.; Sozzi, D. Virtual surgery simulation in orbital wall reconstruction: Integration of surgical navigation and stereolithographic models. J. Cranio-Maxillofac. Surg. 2014, 42, 2025–2034. [Google Scholar] [CrossRef]
- Azarmehr, I.; Stokbro, K.; Bell, R.B.; Thygesen, T. Surgical Navigation: A Systematic Review of Indications, Treatments, and Outcomes in Oral and Maxillofacial Surgery. J. Oral Maxillofac. Surg. 2017, 75, 1987–2005. [Google Scholar] [CrossRef]
- Sozzi, D.; Filippi, A.; Canzi, G.; De Ponti, E.; Bozzetti, A.; Novelli, G. Clinical Medicine Surgical Navigation in Mandibular Reconstruction: Accuracy Evaluation of an Innovative Protocol. J. Clin. Med. 2022, 11, 2060. [Google Scholar] [CrossRef]
- Novelli, G.; Moretti, M.; Meazzini, M.C.; Cassé, C.M.A.; Mazzoleni, F.; Sozzi, D. Introduction to Surgical Navigation in Oral Surgery: A Case-Series. Oral 2023, 3, 146–154. [Google Scholar] [CrossRef]
- Siemionow, K.B.; Katchko, K.M.; Lewicki, P.; Luciano, C.J. Augmented reality and artificial intelligence-assisted surgical navigation: Technique and cadaveric feasibility study. J. Craniovertebral Junction Spine 2020, 11, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.; Sim, T. Automated machine learning (AutoML)-based surface registration methodology for image-guided surgical navigation system. Med. Phys. 2022, 49, 4845–4860. [Google Scholar] [CrossRef]
- Wang, C.-W.; Hao, Y.; Di Gianfilippo, R.; Sugai, J.; Li, J.; Gong, W.; Kornman, K.S.; Wang, H.-L.; Kamada, N.; Xie, Y.; et al. Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes. Theranostics 2021, 11, 6703–6716. [Google Scholar] [CrossRef] [PubMed]
- Fernando, M.; Guerra, M. Artificial intelligence in maxillofacial surgery. Future or present? Rev. Esp. Cir. Oral Maxilofac. 2022, 44, 53–55. [Google Scholar] [CrossRef]
- Jha, N.; Lee, K.-S.; Kim, Y.-J. Diagnosis of temporomandibular disorders using artificial intelligence technologies: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0272715. [Google Scholar] [CrossRef]
- Dean, A.; Heredero-Jung, S.; Solivera, J.; Sanjuan, A.; Alamillos-Granados, F.J. Computer-assisted and navigated piezoelectric surgery: A new technology to improve precision and surgical safety in craniomaxillofacial surgery. Laryngoscope Investig. Otolaryngol. 2022, 7, 684–691. [Google Scholar] [CrossRef]
- Jarvis, T.; Thornburg, D.; Rebecca, A.M.; Teven, C.M. Artificial Intelligence in Plastic Surgery. Plast. Reconstr. Surg. Glob. Open 2020, 8, e3200. [Google Scholar] [CrossRef]
- Bichu, Y.M.; Hansa, I.; Bichu, A.Y.; Premjani, P.; Flores-Mir, C.; Vaid, N.R. Applications of artificial intelligence and machine learning in orthodontics: A scoping review. Prog. Orthod. 2021, 22, 18. [Google Scholar] [CrossRef]
- Chinski, H.; Lerch, R.; Tournour, D.; Chinski, L.; Caruso, D. An Artificial Intelligence Tool for Image Simulation in Rhinoplasty. Facial Plast. Surg. 2022, 38, 201–206. [Google Scholar] [CrossRef]
- Murphy, D.C.; Saleh, D.B. Artificial Intelligence in plastic surgery: What is it? Where are we now? What is on the horizon? Ann. R. Coll. Surg. Engl. 2020, 102, 577–580. [Google Scholar] [CrossRef]
- Ullrich, P.J.; Garg, S.; Reddy, N.; Hassan, A.; Joshi, C.; Perez, L.; Tassinari, S.; Galiano, R.D. The Racial Representation of Cosmetic Surgery Patients and Physicians on Social Media. Aesthet. Surg. J. 2022, 42, 956–963. [Google Scholar] [CrossRef]
- Patcas, R.; Bernini, D.A.J.; Volokitin, A.; Agustsson, E.; Rothe, R.; Timofte, R. Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age. Int. J. Oral Maxillofac. Surg. 2019, 48, 77–83. [Google Scholar] [CrossRef]
- Mago, J.; Muttanahally, K.S.; Vyas, R.; Tadinada, A. Usefulness of Artificial Intelligence-based Virtual Assistants in Oral and Maxillofacial Radiology Report Writing. World J. Dent. 2021, 12, 97–102. [Google Scholar] [CrossRef]
- Jadczyk, T.; Wojakowski, W.; Tendera, M.; Henry, T.D.; Egnaczyk, G.; Shreenivas, S. Artificial Intelligence Can Improve Patient Management at the Time of a Pandemic: The Role of Voice Technology. J. Med. Internet Res. 2021, 23, e22959. [Google Scholar] [CrossRef] [PubMed]
- WebMD. Amazon. Available online: https://www.amazon.com/gp/product/B01MRM361G (accessed on 21 March 2021).
- Mayo Clinic First Aid. Amazon. Available online: https://www.amazon.com/mayo-clinic-first-aid/dp/b0744ljcv2 (accessed on 21 March 2021).
- Bernauer, S.A.; Müller, J.; Zitzmann, N.U.; Joda, T. Influence of Preparation Design, Marginal Gingiva Location, and Tooth Morphology on the Accuracy of Digital Impressions for Full-Crown Restorations: An In Vitro Investigation. J. Clin. Med. 2020, 9, 3984. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Hotta, Y. CAD/CAM systems available for the fabrication of crown and bridge restorations. Aust. Dent. J. 2011, 56, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Saravi, B.; Vollmer, A.; Hartmann, M.; Lang, G.; Kohal, R.-J.; Boeker, M.; Patzelt, S.B.M. Clinical Performance of CAD/CAM All-Ceramic Tooth-Supported Fixed Dental Prostheses: A Systematic Review and Meta-Analysis. Materials 2021, 14, 2672. [Google Scholar] [CrossRef]
- Bernauer, S.A.; Zitzmann, N.U.; Joda, T. The Use and Performance of Artificial Intelligence in Prosthodontics: A Systematic Review. Sensors 2021, 21, 6628. [Google Scholar] [CrossRef]
- Ariani, N.; Visser, A.; van Oort, R.P.; Kusdhany, L.; Rahardjo, T.B.W.; Krom, B.P.; van der Mei, H.C.; Vissink, A. Current State of Craniofacial Prosthetic Rehabilitation. Int. J. Prosthodont. 2013, 26, 57–67. [Google Scholar] [CrossRef]
- Ciocca, L.; Mingucci, R.; Gassino, G.; Scotti, R. CAD/CAM ear model and virtual construction of the mold. J. Prosthet. Dent. 2007, 98, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Susic, I.; Travar, M.; Susic, M. The application of CAD / CAM technology in Dentistry. IOP Conf. Ser. Mater. Sci. Eng. 2017, 200, 012020. [Google Scholar] [CrossRef]
- Mupparapu, M.; Wu, C.-W.; Chen, Y.-C. Artificial intelligence, machine learning, neural networks, and deep learning: Futuristic concepts for new dental diagnosis. Quintessence Int. 2018, 49, 687–688. [Google Scholar]
- Larsson, P.; Bondemark, L.; Häggman-Henrikson, B. The impact of oro-facial appearance on oral health-related quality of life: A systematic review. J. Oral Rehabil. 2021, 48, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Olivetti, E.C.; Nicotera, S.; Marcolin, F.; Vezzetti, E.; Sotong, J.; Zavattero, E.; Ramieri, G. 3D Soft-Tissue Prediction Methodologies for Orthognathic Surgery—A Literature Review. Appl. Sci. 2019, 9, 4550. [Google Scholar] [CrossRef]
- Thurzo, A.; Kurilová, V.; Varga, I. Artificial Intelligence in Orthodontic Smart Application for Treatment Coaching and Its Impact on Clinical Performance of Patients Monitored with AI-TeleHealth System. Healthcare 2021, 9, 1695. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Lin, H.-H.; Lo, L.-J.; Ho, C.-T. Postoperative outcomes of two- and three-dimensional planning in orthognathic surgery: A comparative study. J. Plast. Reconstr. Aesthetic Surg. 2017, 70, 1101–1111. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Thurzo, A.; Šufliarsky, B.; Urbanová, W.; Čverha, M.; Strunga, M.; Varga, I. Pierre Robin Sequence and 3D Printed Personalized Composite Appliances in Interdisciplinary Approach. Polymers 2022, 14, 3858. [Google Scholar] [CrossRef]
- Liu, H.-H.; Li, L.-J.; Shi, B.; Xu, C.-W.; Luo, E. Robotic surgical systems in maxillofacial surgery: A review. Int. J. Oral Sci. 2017, 9, 63–73. [Google Scholar] [CrossRef]
- Loh, E.; Nguyen, T. Artificial intelligence for medical robotics. In Endorobotics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 23–30. [Google Scholar] [CrossRef]
- Shah, J.; Vyas, A.; Vyas, D. The History of Robotics in Surgical Specialties. Am. J. Robot. Surg. 2014, 1, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Goodman, E.D.; Dawes, A.J.; Gahagan, J.V.; Esquivel, M.M.; Liebert, C.A.; Kin, C.; Yeung, S.; Gurland, B.H. Using AI and computer vision to analyze technical proficiency in robotic surgery. Surg. Endosc. 2022, 37, 3010–3017. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Han, K. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. Radiology 2018, 286, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Choi, J.; Byeon, J.-S. Key Principles of Clinical Validation, Device Approval, and Insurance Coverage Decisions of Artificial Intelligence. Korean J. Radiol. 2021, 22, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, B. Privacy and artificial intelligence: Challenges for protecting health information in a new era. BMC Med. Ethics 2021, 22, 122. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czako, L.; Sufliarsky, B.; Simko, K.; Sovis, M.; Vidova, I.; Farska, J.; Lifková, M.; Hamar, T.; Galis, B. Exploring the Practical Applications of Artificial Intelligence, Deep Learning, and Machine Learning in Maxillofacial Surgery: A Comprehensive Analysis of Published Works. Bioengineering 2024, 11, 679. https://doi.org/10.3390/bioengineering11070679
Czako L, Sufliarsky B, Simko K, Sovis M, Vidova I, Farska J, Lifková M, Hamar T, Galis B. Exploring the Practical Applications of Artificial Intelligence, Deep Learning, and Machine Learning in Maxillofacial Surgery: A Comprehensive Analysis of Published Works. Bioengineering. 2024; 11(7):679. https://doi.org/10.3390/bioengineering11070679
Chicago/Turabian StyleCzako, Ladislav, Barbora Sufliarsky, Kristian Simko, Marek Sovis, Ivana Vidova, Julia Farska, Michaela Lifková, Tomas Hamar, and Branislav Galis. 2024. "Exploring the Practical Applications of Artificial Intelligence, Deep Learning, and Machine Learning in Maxillofacial Surgery: A Comprehensive Analysis of Published Works" Bioengineering 11, no. 7: 679. https://doi.org/10.3390/bioengineering11070679
APA StyleCzako, L., Sufliarsky, B., Simko, K., Sovis, M., Vidova, I., Farska, J., Lifková, M., Hamar, T., & Galis, B. (2024). Exploring the Practical Applications of Artificial Intelligence, Deep Learning, and Machine Learning in Maxillofacial Surgery: A Comprehensive Analysis of Published Works. Bioengineering, 11(7), 679. https://doi.org/10.3390/bioengineering11070679