Recent Advances in Magnesium–Magnesium Oxide Nanoparticle Composites for Biomedical Applications
Abstract
:1. Introduction
2. Magnesium Oxide Nanoparticles (MgO NPs)
3. Mg/MgO NP Composites
3.1. Mg/MgO NP Mechanical Properties
3.2. Mg/MgO NPs’ Corrosion Behavior
3.3. Mg/MgO NPs’ Biological Properties
4. Summary and Future Road Maps
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Vecstaudza, J.; Wesdorp, M.A.; Labberté, M.; Kops, N.; Salerno, M.; Kok, J.; Simon, M.; Harmand, M.F.; Vancíková, K.; et al. Incorporating Strontium Enriched Amorphous Calcium Phosphate Granules in Collagen/Collagen-Magnesium-Hydroxyapatite Osteochondral Scaffolds Improves Subchondral Bone Repair. Mater. Today Bio 2024, 25, 100959. [Google Scholar] [CrossRef] [PubMed]
- Baltatu, M.S.; Vizureanu, P.; Sandu, A.V.; Florido-Suarez, N.; Saceleanu, M.V.; Mirza-Rosca, J.C. New Titanium Alloys, Promising Materials for Medical Devices. Materials 2021, 14, 5934. [Google Scholar] [CrossRef] [PubMed]
- Spataru, M.C.; Cojocaru, F.D.; Sandu, A.V.; Solcan, C.; Duceac, I.A.; Baltatu, M.S.; Voiculescu, I.; Geanta, V.; Vizureanu, P. Assessment of the Effects of Si Addition to a New TiMoZrTa System. Materials 2021, 14, 7610. [Google Scholar] [CrossRef] [PubMed]
- Sandu, A.V.; Baltatu, M.S.; Nabialek, M.; Savin, A.; Vizureanu, P. Characterization and Mechanical Proprieties of New TiMo Alloys Used for Medical Applications. Materials 2019, 12, 2973. [Google Scholar] [CrossRef] [PubMed]
- Shuai, C.; Li, S.; Wang, G.; Yang, Y.; Peng, S.; Gao, C. Strong Corrosion Induced by Carbon Nanotubes to Accelerate Fe Biodegradation. Mater. Sci. Eng. C 2019, 104, 109935. [Google Scholar] [CrossRef] [PubMed]
- Torkaman, R.; Darvishi, S.; Jokar, M.; Kharaziha, M.; Karbasi, M. Electrochemical and in Vitro Bioactivity of Nanocomposite Gelatin-Forsterite Coatings on AISI 316 L Stainless Steel. Prog. Org. Coat. 2017, 103, 40–47. [Google Scholar] [CrossRef]
- Baltatu, M.S.; Vizureanu, P.; Sandu, A.V.; Munteanu, C.; Istrate, B. Microstructural Analysis and Tribological Behavior of Ti-Based Alloys with a Ceramic Layer Using the Thermal Spray Method. Coatings 2020, 10, 1216. [Google Scholar] [CrossRef]
- Baltatu, M.S.; Vizureanu, P.; Sandu, A.V.; Solcan, C.; Hritcu, L.D.; Spataru, M.C. Research Progress of Titanium-Based Alloys for Medical Devices. Biomedicines 2023, 11, 2997. [Google Scholar] [CrossRef]
- Saberi, A.; Bakhsheshi-Rad, H.R.; Karamian, E.; Kasiri-Asgarani, M.; Ghomi, H. Magnesium-Graphene Nano-Platelet Composites: Corrosion Behavior, Mechanical and Biological Properties. J. Alloys Compd. 2020, 821, 153379. [Google Scholar] [CrossRef]
- Sedighi, M.; Hashemi, R.; Kasaeian-Naeini, M.; Sedighi, M.; Hashemi, R. Severe Plastic Deformation (SPD) of Biodegradable Magnesium Alloys and Composites: A Review of Developments and Prospects. J. Magnes. Alloys 2022, 10, 938–955. [Google Scholar] [CrossRef]
- Kong, L.; Heydari, Z.; Lami, G.H.; Saberi, A.; Baltatu, M.S.; Vizureanu, P. A Comprehensive Review of the Current Research Status of Biodegradable Zinc Alloys and Composites for Biomedical Applications. Materials 2023, 16, 4797. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.; Agarwal, A.K.; Rai, K.N. Development of High Strength Hydroxyapatite for Hard Tissue Replacement. Trends Biomater. Artif. Organs 2005, 19, 46–51. [Google Scholar]
- Saberi, A.; Baltatu, M.S.; Vizureanu, P. The Effectiveness Mechanisms of Carbon Nanotubes (CNTs) as Reinforcements for Magnesium-Based Composites for Biomedical Applications: A Review. Nanomaterials 2024, 14, 756. [Google Scholar] [CrossRef] [PubMed]
- Jayalakshmi, S.; Sankaranarayanan, S.; Singh, R.A.; Shabadi, R.; Gupta, M. Utilizing Iron as Reinforcement to Enhance Ambient Mechanical Response and Impression Creep Response of Magnesium. Metals 2021, 11, 1448. [Google Scholar] [CrossRef]
- Kabir, H.; Munir, K.; Wen, C.; Li, Y. Recent Research and Progress of Biodegradable Zinc Alloys and Composites for Biomedical Applications: Biomechanical and Biocorrosion Perspectives. Bioact. Mater. 2021, 6, 836–879. [Google Scholar] [CrossRef] [PubMed]
- Anvari, A. Characterization of Implantation’s Biomaterials Based on the Patient and Doctor Expectations. Res. Med. Eng. Sci. 2018, 4, 2–4. [Google Scholar] [CrossRef]
- Srinivasan, M.; Seetharamu, S. Fracture Toughness of Metal Castings. In Science and Technology of Casting Processes; InTech: London, UK, 2012; pp. 285–312. [Google Scholar] [CrossRef]
- García-Mintegui, C.; Córdoba, L.C.; Buxadera-Palomero, J.; Marquina, A.; Jiménez-Piqué, E.; Ginebra, M.-P.; Cortina, J.L.; Pegueroles, M. Zn-Mg and Zn-Cu Alloys for Stenting Applications: From Nanoscale Mechanical Characterization to in Vitro Degradation and Biocompatibility. Bioact. Mater. 2021, 6, 4430–4446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Saberi, A.; Heydari, Z.; Baltatu, M.S. Bredigite-CNTs Reinforced Mg-Zn Bio-Composites to Enhance the Mechanical and Biological Properties for Biomedical Applications. Materials 2023, 16, 1681. [Google Scholar] [CrossRef]
- Saberi, A.; Bakhsheshi-Rad, H.R.; Ismail, A.F.; Sharif, S.; Razzaghi, M.; Ramakrishna, S.; Berto, F. The Effect of Co-Encapsulated GO-Cu Nanofillers on Mechanical Properties, Cell Response, and Antibacterial Activities of Mg-Zn Composite. Metals 2022, 12, 207. [Google Scholar] [CrossRef]
- Zhao, J.; Haowei, M.; Saberi, A.; Heydari, Z.; Baltatu, M.S. Carbon Nanotube (CNT) Encapsulated Magnesium-Based Nanocomposites to Improve Mechanical, Degradation and Antibacterial Performances for Biomedical Device Applications. Coatings 2022, 12, 1589. [Google Scholar] [CrossRef]
- Yazdimamaghani, M.; Razavi, M.; Vashaee, D.; Moharamzadeh, K.; Boccaccini, A.R.; Tayebi, L. Porous Magnesium-Based Scaffolds for Tissue Engineering. Mater. Sci. Eng. C 2017, 71, 1253–1266. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, Z.; Najeeb, S.; Khurshid, Z.; Verma, V.; Rashid, H.; Glogauer, M. Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials 2015, 8, 5744–5794. [Google Scholar] [CrossRef] [PubMed]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The Essential Metals for Humans: A Brief Overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Du, C.F.; Yuchi, C.X.; Zhang, C.Q. Application of Biodegradable Materials in Orthopedics. J. Med. Biol. Eng. 2019, 39, 633–645. [Google Scholar] [CrossRef]
- Tsakiris, V.; Tardei, C.; Clicinschi, F.M. Biodegradable Mg Alloys for Orthopedic Implants—A Review. J. Magnes. Alloys 2021, 9, 1884–1905. [Google Scholar] [CrossRef]
- Saberi, A.; Bakhsheshi-Rad, H.R.; Karamian, E.; Kasiri-Asgarani, M.; Ghomi, H.; Omidi, M.; Abazari, S.; Ismail, A.F.; Sharif, S.; Berto, F. Synthesis and Characterization of Hot Extruded Magnesium-Zinc Nano-Composites Containing Low Content of Graphene Oxide for Implant Applications. Phys. Mesomech. 2021, 24, 486–502. [Google Scholar] [CrossRef]
- Saberi, A.; Bakhsheshi-Rad, H.R.; Karamian, E.; Kasiri-Asgarani, M.; Ghomi, H. A Study on the Corrosion Behavior and Biological Properties of Polycaprolactone/ Bredigite Composite Coating on Biodegradable Mg-Zn-Ca-GNP Nanocomposite. Prog. Org. Coat. 2020, 147, 105822. [Google Scholar] [CrossRef]
- JunRu Liu, J.; Wang, X.; Saberi, A.; Heydari, Z.H. The Effect of Co-Encapsulated GNPs-CNTs Nanofillers on Mechanical Properties, Degradation and Antibacterial Behavior of Mg-Based Composite. J. Mech. Behav. Biomed. Mater. 2023, 138, 105601. [Google Scholar] [CrossRef] [PubMed]
- Review, A. Designing Advanced Biomedical Biodegradable Mg Alloys: A Review. Metals 2022, 12, 85. [Google Scholar] [CrossRef]
- Ammulu, M.A.; Vinay Viswanath, K.; Giduturi, A.K.; Vemuri, P.K.; Mangamuri, U.; Poda, S. Phytoassisted Synthesis of Magnesium Oxide Nanoparticles from Pterocarpus Marsupium Rox.b Heartwood Extract and Its Biomedical Applications. J. Genet. Eng. Biotechnol. 2021, 19, 21. [Google Scholar] [CrossRef]
- Mazaheri, N.; Naghsh, N.; Karimi, A.; Salavati, H. In Vivo Toxicity Investigation of Magnesium Oxide Nanoparticles in Rat for Environmental and Biomedical Applications. Iran. J. Biotechnol. 2019, 17, e1543. [Google Scholar] [CrossRef] [PubMed]
- Gatou, M.-A.; Skylla, E.; Dourou, P.; Pippa, N.; Gazouli, M.; Lagopati, N.; Pavlatou, E.A. Magnesium Oxide (MgO) Nanoparticles: Synthetic Strategies and Biomedical Applications. Crystals 2024, 14, 215. [Google Scholar] [CrossRef]
- Raghunath, A.; Perumal, E. Metal Oxide Nanoparticles as Antimicrobial Agents: A Promise for the Future. Int. J. Antimicrob. Agents 2017, 49, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Habib, S.S.; Memic, A. Antimicrobial Activity of Metal Oxide Nanoparticles against Gram-Positive and Gram-Negative Bacteria: A Comparative Study. Int. J. Nanomed. 2012, 7, 6003–6009. [Google Scholar] [CrossRef] [PubMed]
- Sawai, J.; Kojima, H.; Igarashi, H.; Hashimoto, A.; Shoji, S.; Sawaki, T.; Hakoda, A.; Kawada, E.; Kokugan, T.; Shimizu, M. Antibacterial Characteristics of Magnesium Oxide Powder. World J. Microbiol. Biotechnol. 2000, 16, 187–194. [Google Scholar] [CrossRef]
- Fahmy, H.M.; El-Hakim, M.H.; Nady, D.S.; Elkaramany, Y.; Mohamed, F.A.; Yasien, A.M.; Moustafa, M.A.; Elmsery, B.E.; Yousef, H.A. Review on MgO Nanoparticles Multifunctional Role in the Biomedical Field: Properties and Applications. Nanomed. J. 2022, 9, 1–14. [Google Scholar] [CrossRef]
- Karthik, K.; Dhanuskodi, S.; Prabu Kumar, S.; Gobinath, C.; Sivaramakrishnan, S. Microwave Assisted Green Synthesis of MgO Nanorods and Their Antibacterial and Anti-Breast Cancer Activities. Mater. Lett. 2017, 206, 217–220. [Google Scholar] [CrossRef]
- Pugazhendhi, A.; Prabhu, R.; Muruganantham, K.; Shanmuganathan, R.; Natarajan, S. Anticancer, Antimicrobial and Photocatalytic Activities of Green Synthesized Magnesium Oxide Nanoparticles (MgONPs) Using Aqueous Extract of Sargassum Wightii. J. Photochem. Photobiol. B Biol. 2019, 190, 86–97. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Jiang, Z.; Akakuru, O.U.; Li, J.; Wu, A. Nanoscale Covalent Organic Frameworks: From Controlled Synthesis to Cancer Therapy. Chem. Commun. 2021, 57, 12417–12435. [Google Scholar] [CrossRef]
- Hickey, D.J.; Ercan, B.; Sun, L.; Webster, T.J. Adding MgO Nanoparticles to Hydroxyapatite-PLLA Nanocomposites for Improved Bone Tissue Engineering Applications. Acta Biomater. 2015, 14, 175–184. [Google Scholar] [CrossRef]
- Passos, V.F.; Rodrigues Gerage, L.K.; Lima Santiago, S. Magnesium Hydroxide-Based Dentifrice as an Anti-Erosive Agent in an in Situ Intrinsic Erosion Model. Am. J. Dent. 2017, 30, 137–141. [Google Scholar] [PubMed]
- Passos, V.F.; Rodrigues, L.K.A.; Santiago, S.L. The Effect of Magnesium Hydroxide-Containing Dentifrice Using an Extrinsic and Intrinsic Erosion Cycling Model. Arch. Oral Biol. 2018, 86, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanzade Zaferani, S.P.; Nabian, N.; Delavar, M.; Rabiee, S.M. Direct Impregnation of MgO Nanoparticles in 58S Bioactive Glass: Bioactivity Evaluation and Antibacterial Activity. Iran. J. Sci. Technol. Trans. A Sci. 2021, 45, 885–898. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, J.; Zhang, X.; Liang, G.; Xu, T.; Niu, W. Three-Dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis In Vitro. Tissue Eng. Regen. Med. 2019, 16, 415–429. [Google Scholar] [CrossRef]
- Ma, J.; Chen, C.Z.; Wang, D.G.; Meng, X.G.; Shi, J.Z. In Vitro Degradability and Bioactivity of Mesoporous CaO-MgO-P2O5-SiO2 Glasses Synthesized by Sol–Gel Method. J. Sol-Gel Sci. Technol. 2010, 54, 69–76. [Google Scholar] [CrossRef]
- Weissleder, R.; Mahmood, U. Molecular Imaging. Radiology 2001, 219, 316–333. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Han, X.; Zhao, C.; Wang, S.; Tang, X. Recent Advance in Biological Responsive Nanomaterials for Biosensing and Molecular Imaging Application. Int. J. Mol. Sci. 2022, 23, 1923. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Kashyap, S.; Yadav, U.; Srivastava, A.; Singh, A.V.; Singh, R.K.; Singh, S.K.; Saxena, P.S. Nitrogen Doped Carbon Quantum Dots Demonstrate No Toxicity under in Vitro Conditions in a Cervical Cell Line and in Vivo in Swiss Albino Mice. Toxicol. Res. 2019, 8, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Thorek, D.L.J.; Chen, A.K.; Czupryna, J.; Tsourkas, A. Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging. Ann. Biomed. Eng. 2006, 34, 23–38. [Google Scholar] [CrossRef]
- Gwinn, M.R.; Vallyathan, V. Nanoparticles: Health Effects—Pros and Cons. Environ. Health Perspect. 2006, 114, 1818–1825. [Google Scholar] [CrossRef]
- Sharma, R.; Saini, S.; Ros, P.R.; Hahn, P.F.; Small, W.C.; de Lange, E.E.; Stillman, A.E.; Edelman, R.R.; Runge, V.M.; Outwater, E.K.; et al. Safety Profile of Ultrasmall Superparamagnetic Iron Oxide Ferumoxtran-10: Phase II Clinical Trial Data. J. Magn. Reson. Imaging 1999, 9, 291–294. [Google Scholar] [CrossRef]
- Anderson, S.D.; Gwenin, V.V.; Gwenin, C.D. Magnetic Functionalized Nanoparticles for Biomedical, Drug Delivery and Imaging Applications. Nanoscale Res. Lett. 2019, 14, 188. [Google Scholar] [CrossRef] [PubMed]
- Blasiak, B.; van Veggel, F.C.J.M.; Tomanek, B. Applications of Nanoparticles for MRI Cancer Diagnosis and Therapy. J. Nanomater. 2013, 2013, 148578. [Google Scholar] [CrossRef]
- Martinez-Boubeta, C.; Balcells, L.; Cristòfol, R.; Sanfeliu, C.; Rodríguez, E.; Weissleder, R.; Lope-Piedrafita, S.; Simeonidis, K.; Angelakeris, M.; Sandiumenge, F.; et al. Self-Assembled Multifunctional Fe/MgO Nanospheres for Magnetic Resonance Imaging and Hyperthermia. Nanomedicine 2010, 6, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Saberi, A.; Bakhsheshi-Rad, H.R.; Abazari, S.; Ismail, A.F.; Sharif, S.; Ramakrishna, S.; Daroonparvar, M.; Berto, F. A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges. Coatings 2021, 11, 747. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, W.; Li, J.; Liu, H.; Li, C.; Li, J. Friction Behavior of Biodegradable Electrospun Polyester Nanofibrous Membranes. Tribol. Int. 2023, 188, 108891. [Google Scholar] [CrossRef]
- Tayebi, M.; Nategh, S.; Najafi, H.; Khodabandeh, A. Tensile Properties and Microstructure of ZK60/SiCw Composite after Extrusion and Aging. J. Alloys Compd. 2020, 830, 154709. [Google Scholar] [CrossRef]
- Momeni, E.; Sharifi, H.; Tayebi, M.; Keyvani, A.; Aghaie, E.; Behnamian, Y. Tribological Behavior of ZK60Gd Alloy Reinforced by SiC Particles after Precipitation Hardening. J. Magnes. Alloys 2023, 11, 3362–3381. [Google Scholar] [CrossRef]
- Tayebi, M.; Najafi, H.; Nategh, S.; Khodabandeh, A. Creep Behavior of ZK60 Alloy and ZK60/SiCw Composite After Extrusion and Precipitation Hardening. Met. Mater. Int. 2021, 27, 3905–3917. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Chi, P.; Bahonar, E.; Tayebi, M. Effects of the Microstructure and Precipitation Hardening on the Thermal Expansion Behavior of ZK60 Magnesium Alloy. J. Alloys Compd. 2022, 901, 163422. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Yarigarravesh, M.; Tayyebi, M.; Tayebi, M. Evaluation of Whisker Alignment and Anisotropic Mechanical Properties of ZK60 Alloy Reinforced with SiCw during KOBO Extrusion Method. J. Manuf. Process. 2022, 84, 344–356. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Y.; Jing, J.; Hou, H. Microstructural Evolution in Graphene Nanoplatelets Reinforced Magnesium Matrix Composites Fabricated through Thixomolding Process. J. Alloys Compd. 2023, 940, 168824. [Google Scholar] [CrossRef]
- Singh, A.V.; Varma, M.; Rai, M.; Pratap Singh, S.; Bansod, G.; Laux, P.; Luch, A. Advancing Predictive Risk Assessment of Chemicals via Integrating Machine Learning, Computational Modeling, and Chemical/Nano-Quantitative Structure-Activity Relationship Approaches. Adv. Intell. Syst. 2024, 6, 2300366. [Google Scholar] [CrossRef]
- Kamanina, N. Carbon Nanotube Coatings’ Role in Transparency, Mechanical Hardness, and Wetting Angle Increase. Coatings 2022, 12, 10–15. [Google Scholar] [CrossRef]
- Kamanina, N.; Fedorova, L.; Likhomanova, S.; Zubtcova, Y.; Kuzhakov, P. Impact of Carbon-Based Nanoparticles on Polyvinyl Alcohol Polarizer Features: Photonics Applications. Nanomaterials 2024, 14, 737. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Lyu, S.; Zhao, Z.; Chen, M. Effects of MgO Nano Particles on the Mechanical Properties and Corrosion Behavior of Mg–Zn–Ca Alloy. Mater. Chem. Phys. 2023, 297, 127380. [Google Scholar] [CrossRef]
- Ali, M.; Hussein, M.A.; Al-Aqeeli, N. Magnesium-Based Composites and Alloys for Medical Applications: A Review of Mechanical and Corrosion Properties. J. Alloys Compd. 2019, 792, 1162–1190. [Google Scholar] [CrossRef]
- Bakkar, A.; Neubert, V. Corrosion Characterisation of Alumina–Magnesium Metal Matrix Composites. Corros. Sci. 2007, 49, 1110–1130. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, T.; Wang, Y.; Wei, F.; Shao, Y.; Meng, G.; Wang, F.; Wu, K. Effect of SiC Particulates on the Corrosion Behavior of Extruded AZ91/SiCp Composites during the Early Stage of Exposure. J. Electrochem. Soc. 2015, 162, C754–C766. [Google Scholar] [CrossRef]
- del Campo, R.; Savoini, B.; Muñoz, A.; Monge, M.A.; Garcés, G. Mechanical Properties and Corrosion Behavior of Mg–HAP Composites. J. Mech. Behav. Biomed. Mater. 2014, 39, 238–246. [Google Scholar] [CrossRef]
- Amaravathy, P.; Sathyanarayanan, S.; Sowndarya, S.; Rajendran, N. Bioactive HA/TiO2 Coating on Magnesium Alloy for Biomedical Applications. Ceram. Int. 2014, 40, 6617–6630. [Google Scholar] [CrossRef]
- Mohan, L.; Durgalakshmi, D.; Geetha, M.; Sankara Narayanan, T.S.N.; Asokamani, R. Electrophoretic Deposition of Nanocomposite (HAp + TiO2) on Titanium Alloy for Biomedical Applications. Ceram. Int. 2012, 38, 3435–3443. [Google Scholar] [CrossRef]
- Gain, A.K.; Zhang, L.; Liu, W. Microstructure and Material Properties of Porous Hydroxyapatite-Zirconia Nanocomposites Using Polymethyl Methacrylate Powders. Mater. Des. 2015, 67, 136–144. [Google Scholar] [CrossRef]
- Shuai, C.; Wang, B.; Bin, S.; Peng, S.; Gao, C. Interfacial Strengthening by Reduced Graphene Oxide Coated with MgO in Biodegradable Mg Composites. Mater. Des. 2020, 191, 108612. [Google Scholar] [CrossRef]
- Zhou, M.Y.; Ren, L.B.; Fan, L.L.; Zhang, Y.W.X.; Lu, T.H.; Quan, G.F.; Gupta, M. Progress in Research on Hybrid Metal Matrix Composites. J. Alloys Compd. 2020, 838, 155274. [Google Scholar] [CrossRef]
- Bobe, K.; Willbold, E.; Morgenthal, I.; Andersen, O.; Studnitzky, T.; Nellesen, J.; Tillmann, W.; Vogt, C.; Vano, K.; Witte, F. In Vitro and in Vivo Evaluation of Biodegradable, Open-Porous Scaffolds Made of Sintered Magnesium W4 Short Fibres. Acta Biomater. 2013, 9, 8611–8623. [Google Scholar] [CrossRef] [PubMed]
- Maurya, P.; Kota, N.; Gibmeier, J.; Wanner, A.; Roy, S. Review on Study of Internal Load Transfer in Metal Matrix Composites Using Diffraction Techniques. Mater. Sci. Eng. A 2022, 840, 142973. [Google Scholar] [CrossRef]
- Xiang, J.; Chen, J.; Zheng, Y.; Li, P.; Huang, J.; Chen, Z. Topological Design for Isotropic Metamaterials Using Anisotropic Material Microstructures. Eng. Anal. Bound. Elem. 2024, 162, 28–44. [Google Scholar] [CrossRef]
- Huang, H.; Liu, H.; Wang, L.; Yan, K.; Li, Y.; Jiang, J.; Ma, A.; Xue, F.; Bai, J. Revealing the Effect of Minor Ca and Sr Additions on Microstructure Evolution and Mechanical Properties of Zn-0.6 Mg Alloy during Multi-Pass Equal Channel Angular Pressing. J. Alloys Compd. 2020, 844, 155923. [Google Scholar] [CrossRef]
- Arabgol, Z.; Assadi, H.; Schmidt, T.; Gärtner, F.; Klassen, T. Analysis of Thermal History and Residual Stress in Cold-Sprayed Coatings. J. Therm. Spray Technol. 2014, 23, 84–90. [Google Scholar] [CrossRef]
- Anjan Kumar Reddy, D.; Rajesh, G.; Anbuchezhiyan, G.; Ponshanmugakumar, A.; Ganesan, R.; Latha, A.; Satyanarayana Gupta, M. Investigating the Mechanical Properties of Titanium Dioxide Reinforced Magnesium Composites. Mater. Today Proc. 2023; (in press). [Google Scholar] [CrossRef]
- Kubásek, J.; Vojtěch, D.; Pospíšilová, I.; Michalcová, A.; Maixner, J. Microstructure and Mechanical Properties of the Micrograined Hypoeutectic Zn–Mg Alloy. Int. J. Miner. Metall. Mater. 2016, 23, 1167–1176. [Google Scholar] [CrossRef]
- Hansen, N. Hall-Petch Relation and Boundary Strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Carneiro, Í.; Simões, S. Strengthening Mechanisms in Carbon Nanotubes Reinforced Metal Matrix Composites: A Review. Metals 2021, 11, 1613. [Google Scholar] [CrossRef]
- Goh, C.S.; Gupta, M.; Wei, J.; Lee, L.C. Characterization of High Performance Mg/MgO Nanocomposites. J. Compos. Mater. 2007, 41, 2325–2335. [Google Scholar] [CrossRef]
- Wang, C.; Ren, F.; Liu, H.; Li, Q.; Sun, B. Achieving High Strength and High Ductility in Submicron-MgO/AZ31 Composites with an Innovative Honeycomb-like Structure. J. Mater. Res. Technol. 2023, 23, 5212–5220. [Google Scholar] [CrossRef]
- Sadooghi, A.; Rahmani, K.; Hashemi, S.J. Effects of Nano and Micro Size of MgO on Mechanical Properties, Wear, and Corrosion of Magnesium Matrix Composite. Strength Mater. 2021, 53, 983–997. [Google Scholar] [CrossRef]
- Khalajabadi, S.Z.; Abdul Kadir, M.R.; Izman, S.; Ebrahimi-Kahrizsangi, R. Fabrication, Bio-Corrosion Behavior and Mechanical Properties of a Mg/HA/MgO Nanocomposite for Biomedical Applications. Mater. Des. 2015, 88, 1223–1233. [Google Scholar] [CrossRef]
- Abazari, S.; Shamsipur, A.; Bakhsheshi-Rad, H.R.; Keshavarz, M.; Kehtari, M.; Ramakrishna, S.; Berto, F. MgO-Incorporated Carbon Nanotubes-Reinforced Mg-Based Composites to Improve Mechanical, Corrosion, and Biological Properties Targeting Biomedical Applications. J. Mater. Res. Technol. 2022, 20, 976–990. [Google Scholar] [CrossRef]
- Rahmani, K.; Nouri, A.; Bakhtiari, H.; Sadooghi, A.; Ghofrani, A.; Nikolova, M.P.; Salmani, F. Mechanical and Corrosion Properties of Mg–MgO and Mg–Al2O3 Composites Fabricated by Equal Channel Angular Extrusion Method. Smart Mater. Manuf. 2023, 1, 100010. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Z.; Xin, Y.; Cai, Y.; Han, J. Effect of Equal Channel Angular Pressing on Microstructure and Mechanical Performance of Innovative Nano MgO-Added Mg-Zn-Ca Composite as a Biomaterial. Mater. Lett. 2021, 304, 130604. [Google Scholar] [CrossRef]
- Ramezanzade, S.; Ebrahimi, G.R.R.; Torabi Parizi, M.; Ezatpour, H.R.R. Synergetic Effect of GNPs and MgOs on the Mechanical Properties of Mg–Sr–Ca Alloy. Mater. Sci. Eng. A 2019, 761, 138025. [Google Scholar] [CrossRef]
- Goh, C.S.; Wei, J.; Lee, L.C.; Gupta, M. Characterization of Mg/MgO Nanocomposites Synthesized Using Powder Metallurgy Technique. In Proceedings of the ASME international Mechanical Engineering Congress and Exposition, Orlando, FL, USA, 5–11 November 2005; pp. 25–28. [Google Scholar] [CrossRef]
- Lin, G.; Liu, D.; Chen, M.; You, C.; Li, Z.; Wang, Y.; Li, W. Preparation and Characterization of Biodegradable Mg-Zn-Ca/MgO Nanocomposites for Biomedical Applications. Mater. Charact. 2018, 144, 120–130. [Google Scholar] [CrossRef]
- Pommiers, S.; Frayret, J.; Castetbon, A.; Potin-Gautier, M. Alternative Conversion Coatings to Chromate for the Protection of Magnesium Alloys. Corros. Sci. 2014, 84, 135–146. [Google Scholar] [CrossRef]
- Lei, T.; Ouyang, C.; Tang, W.; Li, L.-F.; Zhou, L.-S. Enhanced Corrosion Protection of MgO Coatings on Magnesium Alloy Deposited by an Anodic Electrodeposition Process. Corros. Sci. 2010, 52, 3504–3508. [Google Scholar] [CrossRef]
- Thakur, N.; Ghosh, J.; Pandey, S.K.; Pabbathi, A.; Das, J. A Comprehensive Review on Biosynthesis of Magnesium Oxide Nanoparticles, and Their Antimicrobial, Anticancer, Antioxidant Activities as Well as Toxicity Study. Inorg. Chem. Commun. 2022, 146, 110156. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.M.; Emam, T.M.; Elsherbiny, E.A. Bioactivity of Magnesium Oxide Nanoparticles Synthesized from Cell Filtrate of Endobacterium Burkholderia Rinojensis against Fusarium Oxysporum. Mater. Sci. Eng. C 2020, 109, 110617. [Google Scholar] [CrossRef] [PubMed]
- Vijai Anand, K.; Anugraga, A.R.; Kannan, M.; Singaravelu, G.; Govindaraju, K. Bio-Engineered Magnesium Oxide Nanoparticles as Nano-Priming Agent for Enhancing Seed Germination and Seedling Vigour of Green Gram (Vigna radiata L.). Mater. Lett. 2020, 271, 127792. [Google Scholar] [CrossRef]
- Verma, S.K.; Nisha, K.; Panda, P.K.; Patel, P.; Kumari, P.; Mallick, M.A.; Sarkar, B.; Das, B. Green Synthesized MgO Nanoparticles Infer Biocompatibility by Reducing in Vivo Molecular Nanotoxicity in Embryonic Zebrafish through Arginine Interaction Elicited Apoptosis. Sci. Total Environ. 2020, 713, 136521. [Google Scholar] [CrossRef]
- Sharifian, S.; Loghmani, A.; Nayyerain, S.; Javanbakht, S.; Daneii, P. Application of Magnesium Oxide Nanoparticles in Dentistry: A Literature Review. Eur. J. Gen. Dent. 2023, 12, 1–6. [Google Scholar] [CrossRef]
- Ramezani Farani, M.; Farsadrooh, M.; Zare, I.; Gholami, A.; Akhavan, O. Green Synthesis of Magnesium Oxide Nanoparticles and Nanocomposites for Photocatalytic Antimicrobial, Antibiofilm and Antifungal Applications. Catalysts 2023, 13, 642. [Google Scholar] [CrossRef]
- Nandhini, S.N.; Sisubalan, N.; Vijayan, A.; Karthikeyan, C.; Gnanaraj, M.; Gideon, D.A.M.; Jebastin, T.; Varaprasad, K.; Sadiku, R. Recent Advances in Green Synthesized Nanoparticles for Bactericidal and Wound Healing Applications. Heliyon 2023, 9, e13128. [Google Scholar] [CrossRef] [PubMed]
- Bălţatu, M.S.; Vizureanu, P.; Geantă, V.; Nejneru, C.; Țugui, C.A.; Focşăneanu, S.C. Obtaining and Mechanical Properties of Ti-Mo-Zr-Ta Alloys. IOP Conf. Ser. Mater. Sci. Eng. 2017, 209, 012019. [Google Scholar] [CrossRef]
- Savin, A.; Vizureanu, P.; Prevorovsky, Z.; Chlada, M.; Krofta, J.; Baltatu, M.S.; Istrate, B.; Steigmann, R. Noninvasive Evaluation of Special Alloys for Prostheses Using Complementary Methods. IOP Conf. Ser. Mater. Sci. Eng. 2018, 374, 012030. [Google Scholar] [CrossRef]
Tissue/ Material | D (g/cm3) | E (GPa) | UTS (MPa) | YS (MPa) | FT (MPa m1/2) | ε (%) | MH (HV) (kgf/mm2) | UCS (MPa) | D.R | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Natural bone | 1.7–2.1 | 3–30 | 35–283 | 70–100 | 3–6 | 1–4 | 35–40.4 | 164–200 | NBR | [12,13] |
Pure Mg | 1.74 | 41–45 | 135–285 | 130–250 | 15–40 | 5–40 | 42 | 65–100 | 0.8–2.7 | [14,15,16] |
Pure Fe | 7.8 | 213 | 300–540 | 120–150 | 25–60 | 37.5 | 150 | 560 | 0.1 | [13,14,17] |
Pure Zn | 7.1 | 78–121 | 97–150 | 21–30 | 35–120 | 0.3–2 | 32–44 | 30–100 | 0.1–0.3 | [11,18] |
Materials | Method | Microhardness | 0.2%YS (MPa) | UTS (MPa) | UCS (MPa) | FS (%) | Ref. |
---|---|---|---|---|---|---|---|
Mg (99.9% purity) | DMD-HEXT | 45 ± 1 | 126 ± 7 | 192 ± 5 | - | - | [86] |
Mg–0.5MgO | DMD-HEXT | 47 ± 1 | 151 ± 3 | 233 ± 5 | - | - | [86] |
Mg–0.75MgO | DMD-HEXT | 53 ± 1 | 158 ± 5 | 213 ± 4 | - | - | [86] |
Mg–1.0MgO | DMD-HEXT | 54 ± 2 | 169 ± 8 | 223 ± 8 | - | - | [86] |
Mg–27.5%HA | PM | - | - | - | 237 ± 6 | 4.2 ± 0.4 | [89] |
Mg–20%HA–5%MgO | PM | - | - | - | 202 ± 11 | 4.4 ± 0.6 | [89] |
Mg–12.5%HA–10%MgO | PM | - | - | - | 198 ± 9 | 11.5 ± 2.1 | [89] |
Mg–5%HA–15%MgO | PM | - | - | - | 183 ±14 | 11.8 ± 1.7 | [89] |
Mg-3Zn-1Mn | SPM-EXT | 51.6 HV | - | - | 295.6 ± 20.4 | - | [90] |
Mg-3Zn-1Mn/CNTs | SPM-EXT | 74.5 | - | - | 404.8 ± 16.1 | - | [90] |
Mge3Zn-1Mn/MgO-CNTs | SPM-EXT | 83.4 HV | - | - | 429 ± 15 | - | [90] |
AZ31 | LEM-EXT | - | 231.9 | 332.8 | - | 17.6 | [87] |
1MgO/AZ31 | LEM-EXT | - | 246.2 | 344.1 | - | 21.5 | [87] |
2MgO/AZ31 | LEM-EXT | - | 253.1 | 351.9 | - | 18.5 | [87] |
4MgO/AZ31 | LEM-EXT | - | 265.3 | 361.2 | - | 15.4 | [87] |
Pure Mg | ECAE | 41.7 ± 2.3 | - | - | 135 | 2.56 | [91] |
Mg + 10% MgO | ECAE | 44.9 ± 0.5 | - | - | 185 | 1.80 | [91] |
Mg + 20% MgO | ECAE | 49.3 ± 2.2 | - | - | 172 | 1.93 | [91] |
Mg + 30% MgO | ECAE | 52.6 ± 2.5 | - | - | 160 | 2.23 | [91] |
Mg-3Zn-0.2Ca | As-extruded | 53.89 ± 1.98 | - | 378.46 ± 7.35 | 16.84 ± 0.81 | [92] | |
Mg-3Zn-0.2Ca/0.6MgO | As-extruded | 58.29 ± 2.15 | - | 409.12 ± 4.86 | 14.10 ± 0.41 | [92] | |
Mg-3Zn-0.2Ca/0.6MgO | 1-pass ECPed | 60.30 ± 3.08 | - | 362.35 ± 9.33 | 26.31 ± 0.37 | [92] | |
Mg-3Zn-0.2Ca/0.6MgO | 4-pass ECPed | 67.58 ± 2.31 | - | 379.06 ± 14.20 | 34.05 ± 0.85 | [92] | |
Mg-3Zn-0.2Ca/0.6MgO | 8-pass ECPed | 71.55 ± 2.80 | - | 405.77 ± 12.51 | 34.18 ± 0.99 | [92] | |
Mg-0.3Sr-0.3Ca | VSC, HEXT | 50 ± 2.5 | 174 (TYS) 68 (CYS) | 233 | 300 | 7.4 (TFS) 15.2 (CFS) | [93] |
Mg-0.3Sr-0.3Ca/0.2GNPs | VSC, HEXT | 53 ± 3 | 213 (TYS) 90 (CYS) | 235 | 303 | 10.2 (TFS) 16.9 (CFS) | [93] |
Mg-0.3Sr-0.3Ca/0.2GNPs + 1.5MgO | VSC, HEXT | 63 ± 3 | 224 (TYS) 96 (CYS) | 239 | 330 | 13.8 (TFS) 18.3 (CFS) | [93] |
Mg pure | PM-HEXT | - | 127 ± 5 | 205 ± 4 | - | - | [94] |
Mg-0.1MgO | PM-HEXT | - | 141± 8 | 213 ± 4 | - | - | [94] |
Mg-0.2MgO | PM-HEXT | - | 146 ± 8 | 206 ± 8 | - | - | [94] |
Mg-0.3MgO | PM-HEXT | - | 148 ± 6 | 208 ± 8 | - | - | [94] |
Mg-0.4MgO | PM-HEXT | - | 137 ± 3 | 192 ± 4 | - | - | [94] |
Pure Mg | PBM | 46.54 | - | - | 109.7 | - | [88] |
Mg-1.5vol.% MgO- micro | PBM | 49.28 | - | - | 119.4 | - | [88] |
Mg-3vol.% MgO- micro | PBM | 50.18 | - | - | 127.6 | - | [88] |
Mg-5vol.% MgO- micro | PBM | 56.3 | - | - | 141.5 | - | [88] |
Mg-1.5vol.% MgO- nano | PBM | 55.96 | - | - | 136.9 | - | [88] |
Mg-3vol.% MgO- nano | PBM | 59.88 | - | - | 152.3 | - | [88] |
Mg-5vol.% MgO- nano | PBM | 65.26 | - | - | 168.4 | - | [88] |
Mg-3Zn-0.2Ca | HSMC-HA-HEXT | - | 257.4 | 298 | - | 16.5 | [95] |
Mg-3Zn-0.2Ca | HSMC-HEXT | - | 243.5 | 289 | - | 20 | [95] |
Mg-3Zn-0.2Ca-0.1MgO | HSMC-HEXT | - | 263.7 | 301 | - | 19.2 | [95] |
Mg-3Zn-0.2Ca-0.2MgO | HSMC-HEXT | - | 277.6 | 309 | - | 15.1 | [95] |
Mg-3Zn-0.2Ca-0.3MgO | HSMC-HEXT | - | 289 | 317 | - | 14.6 | [95] |
Mg-3Zn-0.2Ca-0.5MgO | HSMC-HEXT | - | 300 | 329 | - | 14.1 | [95] |
Samples | Method | Electrolyte | CR (mm/year) | Ecorr (V/SCE) | Icorr (µA/cm2) | Ref. |
---|---|---|---|---|---|---|
Mg–27.5%HA | PM | SBF | 4.28 | −1.4873 | 187.4 | [89] |
Mg–20%HA–5%MgO | PM | SBF | 4.65 | −1.4346 | 203.6 | [89] |
Mg–12.5%HA–10%MgO | PM | SBF | 1.06 | −1.2582 | 46.8 | [89] |
Mg–5%HA–15%MgO | PM | SBF | 1.94 | −1293.8 | 85.2 | [89] |
Mg-3Zn-1Mn | SPM-EXT | SBF | 2.77 | −1.53 | 121.34 | [90] |
Mge3Zn-1Mn/CNTs | SPM-EXT | SBF | 2.32 | −1.47 | 101.56 | [90] |
Mge3Zn-1Mn/MgO-CNTs | SPM-EXT | SBF | 1.98 | −1.43 | 86.73 | [90] |
Pure Mg | ECAE | NaCl solution | 1.66 | −1.4173 | 201 | [91] |
Mg + 10% MgO | ECAE | NaCl solution | 14.18 | −1.3881 | 23.1 | [91] |
Mg + 20% MgO | ECAE | NaCl solution | 28.21 | −1.4442 | 64.6 | [91] |
Mg + 30% MgO | ECAE | NaCl solution | 39.21 | −1.5442 | 84.6 | [91] |
Mg-0.3Sr-0.3Ca | VSC, HEXT | SBF | 1.832 | 7.373 | [93] | |
Mg-0.3Sr-0.3Ca/0.2GNPs | VSC, HEXT | SBF | 1.776 | 6.980 | [93] | |
Mg-0.3Sr-0.3Ca/0.2GNPs + 1.5MgO | VSC, HEXT | SBF | 1.800 | 9.279 | [93] | |
Pure Mg | PBM | NaCl solution | 2.168 | −2196.71 | 58.6 | [88] |
Mg-1.5vol.% Mgo—micro | PBM | NaCl solution | 8.897 | −1921.06 | 131.6 | [88] |
Mg-3vol.% Mgo—micro | PBM | NaCl solution | 19.679 | −1336.71 | 321.8 | [88] |
Mg-5vol.% Mgo—micro | PBM | NaCl solution | 28.456 | −1314.16 | 461.7 | [88] |
Mg-1.5vol.% Mgo—nano | PBM | NaCl solution | 5.642 | −2103.67 | 89.5 | [88] |
Mg-3vol.% Mgo—nano | PBM | NaCl solution | 12.714 | −1719.83 | 182.1 | [88] |
Mg-5vol.% Mgo—nano | PBM | NaCl solution | 17.561 | −1695.12 | 241.3 | [88] |
Mg-3Zn-0.2Ca | HSMC-HA-HEXT | SBF | 6.44 ± 0.65 | −1.749 | 84.9 | [95] |
Mg-3Zn-0.2Ca | HSMC-HEXT | SBF | 4.45 ± 0.21 | −1.729 | 40.4 | [95] |
Mg-3Zn-0.2Ca-0.1MgO | HSMC-HEXT | SBF | 3.92 ± 0.45 | −1.669 | 33.5 | [95] |
Mg-3Zn-0.2Ca-0.2MgO | HSMC-HEXT | SBF | 3.10 ± 0.2 | −1.659 | 16.4 | [95] |
Mg-3Zn-0.2Ca-0.3MgO | HSMC-HEXT | SBF | 3.55 ± 0.42 | −1.689 | 24.5 | [95] |
Mg-3Zn-0.2Ca-0.5MgO | HSMC-HEXT | SBF | 5.40 ± 0.3 | −1.729 | 69.3 | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saberi, A.; Baltatu, M.S.; Vizureanu, P. Recent Advances in Magnesium–Magnesium Oxide Nanoparticle Composites for Biomedical Applications. Bioengineering 2024, 11, 508. https://doi.org/10.3390/bioengineering11050508
Saberi A, Baltatu MS, Vizureanu P. Recent Advances in Magnesium–Magnesium Oxide Nanoparticle Composites for Biomedical Applications. Bioengineering. 2024; 11(5):508. https://doi.org/10.3390/bioengineering11050508
Chicago/Turabian StyleSaberi, Abbas, Madalina Simona Baltatu, and Petrica Vizureanu. 2024. "Recent Advances in Magnesium–Magnesium Oxide Nanoparticle Composites for Biomedical Applications" Bioengineering 11, no. 5: 508. https://doi.org/10.3390/bioengineering11050508
APA StyleSaberi, A., Baltatu, M. S., & Vizureanu, P. (2024). Recent Advances in Magnesium–Magnesium Oxide Nanoparticle Composites for Biomedical Applications. Bioengineering, 11(5), 508. https://doi.org/10.3390/bioengineering11050508