Finite Element Analysis of a Rib Cage Model: Influence of Four Variables on Fatigue Life during Simulated Manual CPR
Abstract
:1. Introduction
2. Methods
2.1. Finite Element Model Development
2.2. Fatigue Fracture Analysis
2.3. Finite Element Analysis Conditions
2.3.1. Material Properties of Bone Age
2.3.2. Magnitude of Compression Force
2.3.3. Compression Site
2.3.4. Compression Rate
2.4. Comprehensive Influence Analysis
2.4.1. Sensitivity of Load Condition Parameters and Correlations across Age Groups
2.4.2. Metamodel Construction for Fatigue Life Prediction across All Conditions
3. Results
3.1. Fatigue Life
3.2. Sensitivity of Fatigue Life
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Age | Load Magnitude | Load Site | Load Rate [Compressions/min] |
---|---|---|---|
Young | 450 N | Recommended site | 80, 100, 110, 120, 140 |
Below 2.5 cm | 80, 100, 110, 120, 140 | ||
Below 5 cm | 80, 100, 110, 120, 140 | ||
500 N | Recommended site | 80, 100, 110, 120, 140 | |
Below 2.5 cm | 80, 100, 110, 120, 140 | ||
Below 5 cm | 80, 100, 110, 120, 140 | ||
550 N | Recommended site | 80, 100, 110, 120, 140 | |
Below 2.5 cm | 80, 100, 110, 120, 140 | ||
Below 5 cm | 80, 100, 110, 120, 140 | ||
Middle | 450 N | Recommended site | 80, 100, 110, 120, 140 |
Below 2.5 cm | 80, 100, 110, 120, 140 | ||
Below 5 cm | 80, 100, 110, 120, 140 | ||
500 N | Recommended site | 80, 100, 110, 120, 140 | |
Below 2.5 cm | 80, 100, 110, 120, 140 | ||
Below 5 cm | 80, 100, 110, 120, 140 | ||
550 N | Recommended site | 80, 100, 110, 120, 140 | |
Below 2.5 cm | 80, 100, 110, 120, 140 | ||
Below 5 cm | 80, 100, 110, 120, 140 | ||
Old | 450 N | Recommended site | 80, 100, 110, 120, 140 |
Below 2.5 cm | 80, 100, 110, 120, 140 | ||
Below 5 cm | 80, 100, 110, 120, 140 | ||
500 N | Recommended site | 80, 100, 110, 120, 140 | |
Below 2.5 cm | 80, 100, 110, 120, 140 | ||
Below 5 cm | 80, 100, 110, 120, 140 | ||
550 N | Recommended site | 80, 100, 110, 120, 140 | |
Below 2.5 cm | 80, 100, 110, 120, 140 | ||
Below 5 cm | 80, 100, 110, 120, 140 |
Appendix B
Age | Load Magnitude | Load Site | Load Rate [Compressions/min] |
---|---|---|---|
Young | 450 N | Recommended site | 80, 100 |
Below 2.5 cm | 110, 120 | ||
Below 5 cm | 140 | ||
500 N | Recommended site | 80, 100 | |
Below 2.5 cm | 110 | ||
Below 5 cm | 120, 140 | ||
550 N | Recommended site | 80 | |
Below 2.5 cm | 100, 110 | ||
Below 5 cm | 120, 140 | ||
Middle | 450 N | Recommended site | 120, 140 |
Below 2.5 cm | 80 | ||
Below 5 cm | 100, 110 | ||
500 N | Recommended site | 140 | |
Below 2.5 cm | 80, 100 | ||
Below 5 cm | 110, 120 | ||
550 N | Recommended site | 120, 140 | |
Below 2.5 cm | 80, 100 | ||
Below 5 cm | 110 | ||
Old | 450 N | Recommended site | 110 |
Below 2.5 cm | 120, 140 | ||
Below 5 cm | 80, 100 | ||
500 N | Recommended site | 100, 110 | |
Below 2.5 cm | 120, 140 | ||
Below 5 cm | 80 | ||
550 N | Recommended site | 110, 120 | |
Below 2.5 cm | 140 | ||
Below 5 cm | 80, 100 |
References
- Bush, C.M.; Jones, J.S.; Cohle, S.D.; Johnson, H. Pediatric injuries from cardiopulmonary resuscitation. Ann. Emerg. Med. 1996, 28, 40–44. [Google Scholar] [CrossRef]
- Cloete, G.; Dellimore, K.H.; Scheffer, C.; Smuts, M.S.; Wallis, L.A. The impact of backboard size and orientation on sternum-to-spine compression depth and compression stiffness in a manikin study of CPR using two mattress types. Resuscitation 2011, 82, 1064–1070. [Google Scholar] [CrossRef]
- Wang, J.P.; Zhang, Y.M.; Yang, R.J.; Zhang, K.; Chai, M.M.; Zhou, D.C. Efficacy and safety of active abdominal compression-decompression versus standard CPR for cardiac arrests: A systematic review and meta-analysis of 17 RCTs. Int. J. Surg. 2019, 71, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Baubin, M.; Rabl, W.; Pfeiffer, K.P.; Benzer, A.; Gilly, H. Chest injuries after active compression-decompression cardiopulmonary resuscitation (ACD-CPR) in cadavers. Resuscitation 1999, 43, 9–15. [Google Scholar] [CrossRef]
- Deliliga, A.; Chatzinikolaou, F.; Koutsoukis, D.; Chrysovergis, I.; Voultsos, P. Cardiopulmonary resuscitation (CPR) complications encountered in forensic autopsy cases. BMC Emerg. Med. 2019, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Suazo, M.; Herrero, J.; Fortuny, G.; Puigjaner, D.; López, J.M. Biomechanical response of human rib cage to cardiopulmonary resuscitation maneuvers: Effects of the compression location. Int. J. Numer. Methods Biomed. Eng. 2022, 38, e3585. [Google Scholar] [CrossRef]
- Azeli, Y.; Barbería, E.; Jiménez-Herrera, M.; Ameijide, A.; Axelsson, C.; Bardají, A. Serious injuries secondary to cardiopulmonary resuscitation: Incidence and associated factors. Emergencias 2019, 31, 327–334. [Google Scholar]
- Jackson, C.T.; Greendyke, R.M. Pulmonary and cerebral fat embolism after closed-chest cardiac massage. Surg. Gynecol. Obstet. 1965, 120, 25–27. [Google Scholar] [PubMed]
- Henriksen, H. Rib fractures following external cardiac massage. Acta Anaesthesiol. Scand. 1967, 11, 57–64. [Google Scholar] [CrossRef]
- Kim, M.J.; Park, Y.S.; Kim, S.W.; Yoon, Y.S.; Lee, K.R.; Lim, T.H.; Lim, H.; Park, H.Y.; Park, J.M.; Chung, S.P. Chest injury following cardiopulmonary resuscitation: A prospective computed tomography evaluation. Resuscitation 2013, 84, 361–364. [Google Scholar] [CrossRef]
- Kloss, T.; Püschel, K.; Wischhusen, F.; Welk, I.; Roewer, N.; Jungck, E. Resuscitation injuries. Anasth. Intensivther. Notfallmedizin 1983, 18, 199–203. [Google Scholar]
- Saternus, K. Direkte und indirekte Traumatisierung bei der Reanimation. Z. Rechtsmed. 1981, 86, 58. [Google Scholar] [CrossRef] [PubMed]
- Van Wijck, S.F.M.; Prins, J.T.H.; Verhofstad, M.H.J.; Wijffels, M.M.E.; Van Lieshout, E.M.M. Rib fractures and other injuries after cardiopulmonary resuscitation for non-traumatic cardiac arrest: A systematic review and meta-analysis. Eur. J. Trauma Emerg. Surg. 2024, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Curtis, E.; Litwic, A.; Cooper, C.; Dennison, E. Determinants of Muscle and Bone Aging. J. Cell. Physiol. 2015, 230, 2618–2625. [Google Scholar] [CrossRef] [PubMed]
- Schuit, S.C.E.; Van der Klift, M.; Weel, A.E.A.M.; De Laet, C.E.D.H.; Burger, H.; Seeman, E.; Hofman, A.; Uitterlinden, A.G.; van Leeuwen, J.P.T.M.; Pols, H.A.P. Fracture incidence and association with bone mineral density in elderly men and women: The Rotterdam Study. Bone 2004, 34, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Cho, J.H.; Shin, M.C.; Choi, H.Y.; Park, C.W.; Lee, H.Y.; Won, M.H. The study of the changes of chest wall shape and chest compression site according to increasing age. J. Korean Soc. Emerg. Med. 2014, 25, 440–446. [Google Scholar]
- Berg, K.M.; Soar, J.; Andersen, L.W.; Böttiger, B.W.; Cacciola, S.; Callaway, C.W.; Couper, K.; Cronberg, T.; D’Arrigo, S.; Deakin, C.D.; et al. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2020, 142 (Suppl. S1), S92–S139. [Google Scholar] [CrossRef]
- Nolan, J.P.; Maconochie, I.; Soar, J.; Olasveengen, T.M.; Greif, R.; Wyckoff, M.H.; Singletary, E.M.; Aickin, R.; Berg, K.M.; Mancini, M.E.; et al. Executive summary: 2020 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation 2020, 142 (Suppl. S1), S2–S27. [Google Scholar] [CrossRef]
- Kimpara, H.; Lee, J.B.; Yang, K.H.; King, A.I.; Iwamoto, M.; Watanabe, I.; Miki, K. Development of a Three-Dimensional Finite Element Chest Model for the 5th Percentile Female; SAE Technical Paper; SAE: Warrendale, PA, USA, 2005. [Google Scholar]
- Kitagawa, Y.; Yasuki, T. Correlation among seatbelt load, chest deflection, rib fracture and internal organ strain in frontal collisions with human body finite element models. In Proceedings of the IRCOBI Conference, Gothenburg, Sweden, 11–13 September 2013. [Google Scholar]
- Iraeus, J.; Brolin, K.; Pipkorn, B. Generic finite element models of human ribs, developed and validated for stiffness and strain prediction—To be used in rib fracture risk evaluation for the human population in vehicle crashes. J. Mech. Behav. Biomed. Mater. 2020, 106, 103742. [Google Scholar] [CrossRef]
- Vavalle, N.A.; Davis, M.L.; Stitzel, J.D.; Gayzik, F.S. Quantitative Validation of a Human Body Finite Element Model Using Rigid Body Impacts. Ann. Biomed. Eng. 2015, 43, 2163–2174. [Google Scholar] [CrossRef]
- Hardy, R.; Watson, J.; Howard, M. Developments in the simulation of real world car to pedestrian accidents using a pedestrian humanoid finite element model. Int. J. Crashworthiness 2000, 5, 103–118. [Google Scholar] [CrossRef]
- Huang, G.; Wan, Y.; Chen, K.; Yin, Z.; Song, Q.; Xu, Y.; Guo, X. Finite element analysis of posterior acetabular column plate and posterior acetabular wall prostheses in treating posterior acetabular fractures. J. Orthop. Surg. Res. 2023, 18, 94. [Google Scholar] [CrossRef] [PubMed]
- Larsson, K.J.; Blennow, A.; Iraeus, J.; Pipkorn, B.; Lubbe, N. Rib Cortical Bone Fracture Risk as a Function of Age and Rib Strain: Updated Injury Prediction Using Finite Element Human Body Models. Front. Bioeng. Biotechnol. 2021, 9, 677768. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhao, H.; Li, K.; Su, S.; Fan, X.; Yin, Z. Study on pedestrian thorax injury in vehicle-to-pedestrian collisions using finite element analysis. Chin. J. Traumatol. 2015, 18, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Lord, M.J.; Ha, K.I.; Song, K.S. Stress fractures of the ribs in golfers. Am. J. Sports Med. 1996, 24, 118–122. [Google Scholar] [CrossRef]
- Nishida, N.; Ohgi, J.; Jiang, F.; Ito, S.; Imajo, Y.; Suzuki, H.; Funaba, M.; Nakashima, D.; Sakai, T.; Chen, X. Finite Element Method Analysis of Compression Fractures on Whole-Spine Models Including the Rib Cage. Comput. Math. Methods Med. 2019, 2019, 8348631. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S. Simulation of car-pedestrian accident. In Proceedings of the 16th International Technical Conference on the Enhanced Safety of VehiclesNational Highway Traffic Safety AdministrationTransport CanadaTransport Canada, Windsor, ON, Canada, 31 May–4 June 1998. [Google Scholar]
- Holcombe, S.A.; Hwang, E.; Derstine, B.A.; Wang, S.C. Measuring rib cortical bone thickness and cross section from CT. Med. Image Anal. 2018, 49, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Kindig, M.W.; Kerrigan, J.R.; Untaroiu, C.D.; Subit, D.; Crandall, J.R.; Kent, R.W. Rib fractures under anterior-posterior dynamic loads: Experimental and finite-element study. J. Biomech. 2010, 43, 228–234. [Google Scholar] [CrossRef]
- Li, Z.; Kindig, M.W.; Subit, D.; Kent, R.W. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction. Med. Eng. Phys. 2010, 32, 998–1008. [Google Scholar] [CrossRef]
- Poulard, D.; Kent, R.W.; Kindig, M.; Li, Z.; Subit, D. Thoracic response targets for a computational model: A hierarchical approach to assess the biofidelity of a 50th-percentile occupant male finite element model. J. Mech. Behav. Biomed. Mater. 2015, 45, 45–64. [Google Scholar] [CrossRef]
- Merchant, R.M.; Topjian, A.A.; Panchal, A.R.; Cheng, A.; Aziz, K.; Berg, K.M.; Lavonas, E.J.; Magid, D.J.; Adult Basic and Advanced Life Support, Pediatric Basic and Advanced Life Support, Neonatal Life Support, Resuscitation Education Science, and Systems of Care Writing Groups. Part 1: Executive Summary: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142 (Suppl. S2), S337–S357. [Google Scholar] [CrossRef] [PubMed]
- Panchal, A.R.; Bartos, J.A.; Cabañas, J.G.; Donnino, M.W.; Drennan, I.R.; Hirsch, K.G.; Kudenchuk, P.J.; Kurz, M.C.; Lavonas, E.J.; Morley, P.T.; et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142 (Suppl. S2), S366–S468. [Google Scholar] [CrossRef] [PubMed]
- Harlow, D.G. Low cycle fatigue: Probability and statistical modeling of fatigue life. In Proceedings of the Pressure Vessels and Piping Conference, Anaheim, CA, USA, 20–24 July 2014; American Society of Mechanical Engineers: New York, NY, USA, 2014. [Google Scholar]
- Wang, J.; Ren, L.; Xie, L.Z.; Xie, H.P.; Ai, T. Maximum mean principal stress criterion for three-dimensional brittle fracture. Int. J. Solids Struct. 2016, 102, 142–154. [Google Scholar] [CrossRef]
- Carrion, P.E.; Shamsaei, N.; Daniewicz, S.R.; Moser, R.D. Fatigue behavior of Ti-6Al-4V ELI including mean stress effects. Int. J. Fatigue 2017, 99, 87–100. [Google Scholar] [CrossRef]
- Ilieş, H.T.; Flanagan, D.; McCullough, P.T.; McQuoid, S. Determining the Fatigue Life of Dental Implants. J. Med. Devices 2008, 2, 011003. [Google Scholar] [CrossRef]
- Ziaie, B.; Khalili, S.M.R. Evaluation of Fatigue Life for Dental Implants Using FEM Analysis. Prosthesis 2021, 3, 300–313. [Google Scholar] [CrossRef]
- Ding, M.; Dalstra, M.; Danielsen, C.C.; Kabel, J.; Hvid, I.; Linde, F. Age variations in the properties of human tibial trabecular bone. J. Bone Jt. Surg. Br. 1997, 79, 995–1002. [Google Scholar] [CrossRef]
- Kent, R.; Lee, S.H.; Darvish, K.; Wang, S.; Poster, C.S.; Lange, A.W.; Brede, C.; Lange, D.; Matsuoka, F. Structural and Material Changes in the Aging Thorax and Their Role in Crash Protection for Older Occupants; SAE Technical Paper; SAE: Warrendale, PA, USA, 2005. [Google Scholar]
- Mansour, J.M. Biomechanics of cartilage. In Kinesiology: The Mechanics and Pathomechanics of Human Movement; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2003; Volume 2, pp. 66–79. [Google Scholar]
- Kuo, H.C.; Wu, J.L. A new approach with orthogonal array for global optimization in design of experiments. J. Glob. Optim. 2009, 44, 563–578. [Google Scholar] [CrossRef]
Geometrical Details of the Rib Cage Model | |
---|---|
Rib cage width | 324 mm |
Rib angle | 39.59° |
Haller index | 2.534 |
Sagittal cross-sectional area | 644.7 cm2 |
Age | Load Magnitude | Load Site | Load Rate [Compressions/min] | ||
---|---|---|---|---|---|
1. Bone material properties | Young | 500 N | Recommended site | 110 | |
Middle | |||||
Old | |||||
Chest Compression Conditions | 2. Magnitude of compression force | Young | 450 N | Recommended site | 110 |
Middle | 500 N | ||||
Old | 550 N | ||||
3. Compression site | Young | 500 N | Recommended site | 110 | |
Middle | Below 2.5 cm | ||||
Old | Below 5 cm | ||||
4. Compression rate | Young | 500 N | Recommended site | 80 | |
100 | |||||
Middle | 110 | ||||
120 | |||||
Old | 140 |
Rib Cartilage | Cortical Bone | |
---|---|---|
Compressive modulus [MPa] | 0.45~0.80 | 24,000 |
Young | Middle | Old | |
---|---|---|---|
Compressive modulus [MPa] | 654 | 829 | 613 |
Compressive strength [MPa] | 10.6 | 9.86 | 7.27 |
Ultimate compressive strain [%] | 2.48 | 2.12 | 2.05 |
Hyperparameter | Setting |
---|---|
Activation Function | ReLU |
Optimization Method | Stochastic Gradient Descent |
Tolerance for Optimization | 0.0001 |
Momentum | 0.9 |
Batch Size | Default |
Learning Rate | 0.01 |
Maximum Number of Iterations | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, J.H.; Sul, J.H.; Ko, D.H.; Seo, M.J.; Kim, S.M.; Lim, H.S. Finite Element Analysis of a Rib Cage Model: Influence of Four Variables on Fatigue Life during Simulated Manual CPR. Bioengineering 2024, 11, 491. https://doi.org/10.3390/bioengineering11050491
Jeon JH, Sul JH, Ko DH, Seo MJ, Kim SM, Lim HS. Finite Element Analysis of a Rib Cage Model: Influence of Four Variables on Fatigue Life during Simulated Manual CPR. Bioengineering. 2024; 11(5):491. https://doi.org/10.3390/bioengineering11050491
Chicago/Turabian StyleJeon, Jong Hyeok, Jae Ho Sul, Dae Hwan Ko, Myoung Jae Seo, Sung Min Kim, and Hong Seok Lim. 2024. "Finite Element Analysis of a Rib Cage Model: Influence of Four Variables on Fatigue Life during Simulated Manual CPR" Bioengineering 11, no. 5: 491. https://doi.org/10.3390/bioengineering11050491
APA StyleJeon, J. H., Sul, J. H., Ko, D. H., Seo, M. J., Kim, S. M., & Lim, H. S. (2024). Finite Element Analysis of a Rib Cage Model: Influence of Four Variables on Fatigue Life during Simulated Manual CPR. Bioengineering, 11(5), 491. https://doi.org/10.3390/bioengineering11050491