Morphology Observation of Two-Dimensional Monolayers of Model Proteins on Water Surface as Revealed by Dropping Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Monolayer Formation
2.2.2. Surface Tension Measurement (STm)
2.2.3. Brewster Angle Microscopy (BAM)
2.2.4. Atomic Force Microscopy (AFM)
3. Results and Discussion
3.1. π-A Isotherm Curve
3.2. Compression Moduli (Cs−1)
3.3. BAM (Brewster Angle Microscopy)
3.4. AFM (Atomic Force Microscopy)
3.5. Morphology of GD and Al Monolayers
3.5.1. GD Monolayer
3.5.2. Al Monolayer
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shimabayashi, S.; Terada, H.; Okabayashi, H. Biocolloid 1&2; Hirokawa Publishing: Tokyo, Japan, 1990. [Google Scholar]
- Gennis, R.B. Biomembrane, Molecular Structure and Function; Springer: New York, NY, USA, 1990. [Google Scholar]
- Hatta, I.; Murata, M. Dynamics of Biomembrane; Kyoritsu Shuppan Co., Ltd.: Tokyo, Japan, 2000. [Google Scholar]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 7th ed; WH Freeman: New York, NY, USA, 2017. [Google Scholar]
- Nakamura, H.; Arisaka, F. Protein Shape and Properties; Kyoritsu Shuppan, Co. Ltd.: Tokyo, Japan, 1999. [Google Scholar]
- Sarges, R.; Witkop, B.; Gramicidin, A.V. The Structure of Valine- and Isoleucine-Gramicidin A. J. Am. Chem. Soc. 1965, 87, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Kessler, N.; Schuhmann, H.; Morneweg, S.; Linne, U.; Marahiel, M.A. The Linear Pentadecapeptide Gramicidin Is Assembled by Four Multimodular Nonribosomal Peptide Synthetases That Comprise 16 Modules with 56 Catalytic Domains. J. Biol. Chem. 2004, 279, 7413–7419. [Google Scholar] [CrossRef] [PubMed]
- Lum, K.; Ingolfsson, H.I.; Koeppe II, R.E.; Andersen, O.S. Exchange of Gramicidin between Lipid Bilayers: Implications for the Mechanism of Channel Formation. Biophys. J. 2017, 113, 1757–1767. [Google Scholar] [CrossRef] [PubMed]
- Mueller, P.; Rudin, P.O. Action Potentials Induced in Biomolecular Lipid Membranes. Nature 1968, 217, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Balazs, L.; Andras, S.; Laszlo, M.; Csaba, V.; Laszlo, K. The History of Alamethicin: A Review of the Most Extensively Studied Peptaibol. Chem. Biodiv. 2007, 4, 1027–1051. [Google Scholar]
- Kawai, T. Interfaces and Surfactants—Fundamentals and Applications; Japan Oil Chemists’ Society: Tokyo, Japan, 2005. [Google Scholar]
- Suezaki, Y. Physics of Lipid Membrane; Kyusyu University Press: Fukuoka, Japan, 2007. [Google Scholar]
- Yamamoto, Y.; Taga, K. Lipid monolayer and interaction with anesthetics. Encycl. Biocol. Bioint. Sc. 2016, 1, 36–58. [Google Scholar]
- Yoshida, D.; Yokoyama, T.; Shimoaki, T.; Tomita, T.; Yoshida, T.; Yamamoto, Y.; Taga, K.; Sumino, A.; Dewa, T.; Nango, M.; et al. Morphology observation of dipalmitoyl phosphatidyl choline (DPPC) monolayer on water surface by dropping method. J. Biophys. Chem. 2013, 4, 115–121. [Google Scholar] [CrossRef]
- Yokoyama, T.; Yoshida, D.; Mori, H.; Okabe, M.; Shervani, Z.; Taga, K.; Yamamoto, Y.; Sumino, A.; Dewa, T.; Nango, M.; et al. Morphological Observation of Specific Condensation Effect of Cholesterol on Dipalmitoyl Phosphatidyl Choline (DPPC) Monolayer by Dropping Method. J. Biophys. Chem. 2016, 7, 98–109. [Google Scholar] [CrossRef]
- Ito, D.; Ikeda, T.; Taga, K.; Yamamoto, Y.; Shervani, Z.; Yamamoto, M. Structural Change in Dimyristoyl Phosphatidyl Choline (DMPC) Molecule Alkyl Chains on the Addition of Cholesterol to DMPC Monolayer: Specific Addition Effect of Cholesterol. J. Biophys. Chem. 2019, 10, 15–29. [Google Scholar] [CrossRef]
- Watanabe, Y.; Uchida, D.; Akatsuka, H.; Yoshino, A.; Taga, K.; Yamamoto, Y.; Shervani, Z.; Yamamoto, M. Morphological Behavior of DPPC-DMPC Two-dimensional Mixed Monolayer on Water Surface by Dropping Method. Eur. J. Adv. Chem. Res. 2022, 3, 52–63. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Amano, T.; Taga, K.; Yamamoto, Y.; Shervani, Z.; Yamamoto, M. Surface Properties of Novel Surfactant, Dihexadecyl Gemini Phosphate, Monolayers on Water Surface by Dropping Method. J. Biophys. Chem. 2017, 8, 39–50. [Google Scholar] [CrossRef]
- Kato, T.; Matsumoto, N.; Kawano, M.; Suzuki, N.; Iriyama, K. Transition to three-dimensional structures in monolayers of a series of long-chain acids on the water surface by compression studied by transmission electron microscopy and atomic force microscopy. Thin Solid Film. 1994, 242, 223–228. [Google Scholar] [CrossRef]
- Chen, Y.; Wallace, B.A. Solvent Effects on the Conformation and Far UV CD Spectra of Gramicidin. Bipolymers 1997, 42, 771–781. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Haldar, S.; Sun Haiyan Koeppe II, R.E.; Chattopadhyay, A. Importance of indole N-H hydrogen bonding in the organization and dynamics of gramicidin channels. Biochim. Biophys. Acta 2014, 1838, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Michielsent, S.; Pecora, R. Solution Dimensions of the Gramicidin Dimer by Dynamic Light Scattering. Biochemistry 1981, 20, 6994–6997. [Google Scholar] [CrossRef] [PubMed]
- Wallace, B.A. Structure of gramicidin A. Biophys. J. 1986, 49, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Doyle, D.A.; Wallace, B.A. The dynamic nature of gramicidin. Biomembr. A Multi-Vol. Treatise Transmembrane Recept. Channels 1997, 6, 327–359. [Google Scholar]
- Volinsky, R.; Kolusheva, S.; Berman, A.; Jelinek, R. Investigations of antimicrobial peptides in planar film systems. Biochim. Biophys. Acta 2006, 1758, 1393–1407. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.W.; Jakes, R.; Hartley, B.S. The Primary Structure of Alamethicin. Biochem. J. 1970, 117, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Czernek, J.; Brus, J. Modeling the Structure of Crystalline Alamethicin and Its NMR Chemical Shift Tensors. Antibiotics 2021, 10, 1265. [Google Scholar] [CrossRef]
- Nagano, T.; Mishima, D.; Javkhlantugs, N.; Wang, J.; Ishioka, D.; Yokota, K.; Norisada, K.; Kawamura, I.; Ueda, K.; Naito, A. Structure and orientation of antibiotic peptide Alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. Biochim. Biophys. Acta 2015, 1848, 2789–2798. [Google Scholar] [CrossRef] [PubMed]
- Volinsky, R.; Kolusheva, S.; Berman, A.; Jelinek, R. Microscopic Visualization of Alamethicin Incorporation into Model Membrane Monolayers. Langmuir 2004, 20, 11084–11091. [Google Scholar] [CrossRef] [PubMed]
- Gaines, G.L. Insoluble Monolayers at Liquid-Gas Interface; Interscience Publishers: New York, NY, USA, 1966. [Google Scholar]
- Broniatowski, M.; Flasinski, M.; Dynarowicz-Latka, P.; Majewski, J. Grazing Incidence Diffraction and X-ray Reflectivity Studies of the Interactions of Inorganic Mercury Salts with Membrane Lipids in Langmuir Monolayers at the Air/Water Interface. J. Phys. Chem. B 2010, 114, 9474–9484. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, T.; Kato, S. Detailed Analysis of the Surface Area and Elasticity in the Saturated 1,2-Diacylphosphatidylcholine/Cholesterol Binary Monolayer System. Langmuir 2015, 31, 9086–9096. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.; Vogel, H.J.; Prenner, E.J. Biophysical characterization of monofilm model systems composed of selected tear film phospholipids. Biochim. Biophys. Acta 2016, 1858, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Przykaza, K.; Wozniak, K.; Jurak, M.; Wiacek, A.E.; Mroczka, R. Properties of the Langmuir and Langmuir-Blodgett monolayers of cholesterol-cyclosporine A on water and polymer support. Adsorption 2019, 25, 923–936. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asada, Y.; Tanaka, S.; Nagano, H.; Noguchi, H.; Yoshino, A.; Taga, K.; Yamamoto, Y.; Shervani, Z. Morphology Observation of Two-Dimensional Monolayers of Model Proteins on Water Surface as Revealed by Dropping Method. Bioengineering 2024, 11, 366. https://doi.org/10.3390/bioengineering11040366
Asada Y, Tanaka S, Nagano H, Noguchi H, Yoshino A, Taga K, Yamamoto Y, Shervani Z. Morphology Observation of Two-Dimensional Monolayers of Model Proteins on Water Surface as Revealed by Dropping Method. Bioengineering. 2024; 11(4):366. https://doi.org/10.3390/bioengineering11040366
Chicago/Turabian StyleAsada, Yukie, Shinya Tanaka, Hirotaka Nagano, Hiroki Noguchi, Akihiro Yoshino, Keijiro Taga, Yasushi Yamamoto, and Zameer Shervani. 2024. "Morphology Observation of Two-Dimensional Monolayers of Model Proteins on Water Surface as Revealed by Dropping Method" Bioengineering 11, no. 4: 366. https://doi.org/10.3390/bioengineering11040366
APA StyleAsada, Y., Tanaka, S., Nagano, H., Noguchi, H., Yoshino, A., Taga, K., Yamamoto, Y., & Shervani, Z. (2024). Morphology Observation of Two-Dimensional Monolayers of Model Proteins on Water Surface as Revealed by Dropping Method. Bioengineering, 11(4), 366. https://doi.org/10.3390/bioengineering11040366