Dynamic Modelling, Process Control, and Monitoring of Selected Biological and Advanced Oxidation Processes for Wastewater Treatment: A Review of Recent Developments
Abstract
:1. Introduction
2. System Identification/Modelling
2.1. Modelling Biological Treatment Processes—ASPs
2.2. Modelling Biological Treatment Processes—SBR
2.3. Modelling other Biological Wastewater Treatment Processes
2.4. Modelling AOP-Based Treatment Processes
3. Controlling Treatment Processes
3.1. Controlling Biological Treatment Processes—ASP
3.2. Controlling Biological Treatment Processes—SBR
3.3. Controlling other Biological Treatment Processes
3.4. Controlling AOP-Based Treatment Processes
4. Monitoring Treatment Processes
4.1. Hardware Sensors
4.2. Soft Sensors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Acronyms
ABAC | Ammonia-Based Aeration Control |
ABR | Ada Boost Regression |
ACO | Ant Colony Optimization |
ACR | Anaerobic Contact Reactor |
AD | Anaerobic Digestion |
ADM | Anaerobic Digestion Model |
AE | Aeration Energy |
AECI | Aeration Energy Cost Index |
AFBR | Anaerobic Fluidized-Bed Reactor |
AFNN | Adaptive Fuzzy Neural Network |
AFR | Anaerobic Filter Reactor |
AI | Artificial Intelligence |
ALD | Approximate Linear Dependence |
ALK | Alkalinity |
AnMBR | Anaerobic Membrane Bioreactor |
ANN | Artificial Neural Network |
AOP | Advanced Oxidation Process |
ARMA | Autoregressive Moving Average Stochastic Model |
ARMAX | AutoRegressive Moving Average with eXogenous input |
ARX | AutoRegressive with eXogenous input model |
AS | Activated Sludge |
ASI | Absorbance Slope Index |
ASM | Activated Sludge Model |
ASP | Activated Sludge Process |
BAF | Biological Aerated Filter |
BN | Bayesian Network |
BOD5 | 5-Days Biochemical Oxygen Demand |
BODst | Short-Term Biochemical Oxygen Demand |
Boosting-IPW-PLS | Boosting–iterative predictor weighting–partial least square |
BPFANN | Backpropagation Function Artificial Neural Network |
BSM | Benchmark Simulation Model |
CAS | Conventional Activated Sludge |
CC | Correlation Coefficient |
CDI | Chronic Daily Intake |
CNN | Convolutional Neural Network |
COD | Chemical Oxygen Demand |
Cu-NP | Copper Nanoparticle |
CV | Controlled Variable |
DAS | Differential Absorbance Spectra |
DDM | Data-Driven Model |
DenseNet | Densely Connected Convolutional Network |
DL | Deep Learning |
DO | Dissolved Oxygen |
DOM | Dissolved Organic Matter |
EB | Electron Beam |
EC | Electrical Conductivity |
EEM | Excitation–Emission Matrix |
EGSB | Expanded Granular Sludge Bed |
EPS | Extracellular Polymeric Substance |
EQI | Effluent Quality Index |
FB | Feedback |
FF | Feedforward |
FFNN | Feedforward Neural Network |
FI | Fluorescence Index |
FLC | Fuzzy Logic Control |
FOPTD | First-Order Plus Time Delay |
FPE | Final Prediction Error |
FPI | Fractional order Proportional Integral |
FPLS | Fuzzy Partial Least Square |
FPLS-DBN | Fuzzy Partial Least Square-Based Dynamic Bayesian Network |
GA | Genetic Algorithm |
GBR | Gradient Boost Regression |
GD | Gradient Descent |
GHG | Greenhouse Gas |
HGO | High Gain Observer |
HQ | Hazard Quotient |
HRT | Hydraulic Retention Time |
HW | Hammerstein–Wiener Model |
IAC | Iterative Adaptive Critic |
IAE | Integral of Absolute Error |
IFAS | Integrated Fixed Film Activated Sludge |
IMC | Internal Model Control |
ISE | Integral Square Error |
ISE | Ion-Selective Electrode |
IWA | International Water Association |
IWW | Industrial Wastewater |
IWWTP | Industrial Wastewater Treatment Plant |
KLD | Kilo Liter per Day |
LM | Levenberg–Marquardt algorithm |
LNMIIT | LNM Institute of Information Technology |
LQ | Linear Quadratic |
MATLAB | Matrix Laboratory |
MBBR | Moving Bed Biofilm Reactor |
MBR | Membrane Bioreactor |
MGPR | Multivariate Gaussian Processes Regression |
MIMO | Multi-Input Multi-Output |
MLFCN | Machine Learning Fully Connected Network |
MLPANN | Multi-Layer Perceptron Artificial Neural Network |
MLR | Multivariate Linear Regression |
MLSS | Mixed Liquor Suspended Solids |
MLVSS | Mixed Liquor Volatile Suspended Solids |
MOPC | Multi-Objective Predictive Control |
MPC | Model Predictive Control |
MRVM | Multivariate Relevant Vector Machine |
MSE | Mean Squared Error |
MV | Manipulated Variable |
MWW | Municipal Wastewater |
MWWTP | Municipal Wastewater Treatment Plant |
NARX | Nonlinear AutoRegressive with eXogenous input model |
NARXNN | Nonlinear AutoRegressive eXogenous Neural Network |
NMC | Nonlinear Internal Model Control |
NMPC | Nonlinear Model Predictive Control |
NP | Nanoparticle |
NTP | Non-Thermal Plasma |
NOM | Natural Organic Matter |
O&G | Oil and Grease |
OCI | Operational Cost Index |
OFPC | Output Feedback Predictive Control |
OR | Oxygen Requirement |
ORP | Oxidation-Reduction Potential |
OUR | Oxygen Uptake Rate |
PARAFAC | Parallel Factor Analysis |
PDS | Peroxydisulfate |
PI | Proportional Integral |
PID | Proportional Integral Derivative |
PMBC | Process Model-Based Control |
PRBS | Pseudo-Random Binary Sequence |
PRWWTP | Petroleum Refinery Wastewater Treatment Plant |
PSO | Particle Swarm Optimization |
PVA | Polyvinyl Alcohol |
RAS | Return Activated Sludge |
RB49 | Reactive Blue 49 |
RBB | Reactive Black B |
RBC | Rotating Biological Contactor |
QFT | Quantitative Feedback Theory |
RBFNN | Radial Basis Function Neural Network |
RFR | Random Forest Regression |
RLS | Recursive Least Square |
RMSE | Root Mean Square Error |
RNN | Recurrent Neural Network |
ROS | Reactive Oxygen Species |
SAFF | Submerged Aerobic Fixed Film |
SBR | Sequencing Batch Reactor |
SCADA | Supervisory Control and Data Acquisition |
SIMO | Single-Input Multi-Output |
SISO | Single-Input Single-Output |
SME | Small And Medium Enterprise |
SMP | Soluble Microbial Product |
SOFNN | Self-Organizing Fuzzy Neural Network |
SOPTD | Second-Order Plus Time Delay |
SOUR | Specific Oxygen Uptake Rate |
SQP | Sequential Quadratic Programming |
SRF | Sludge Recirculating Flow |
SRT | Sludge Retention Time |
SS | Suspended Solids |
SSC | Supervisory Sequential Controller |
SVI | Sludge Volume Index |
SVM | Support Vector Machine |
T | Temperature |
TDS | Total Dissolved Solids |
TF | Transfer Function |
TMOOA | Transfer Multi-Objective Optimization Algorithm |
TMP | Transmembrane Pressure |
TN | Total Nitrogen |
TOC | Total Organic Carbon |
TP | Total Phosphorous |
TPANN | Two-Part ANN |
TrOC | Trace Organic Contaminant |
TSS | Total Suspended Solids |
UASB | Up-flow Anaerobic Sludge Blanket |
UI | Unknown Input |
UIS | Unknown Input State |
UV | Ultraviolet |
UVA | Ultraviolet Absorbance |
UV-VIS | Ultraviolet–Visible |
VFA | Volatile Fatty Acid |
VFD | Variable Frequency Drive |
WRBFNN | Wavelet Radial Basis Function-Based Neural Network |
WWTP | Wastewater Treatment Plant |
XWTP | Xiangcheng Drinking Water Treatment Plant |
References
- Capodaglio, A.G. Biorefinery of Sewage Sludge: Overview of Possible Value-Added Products and Applicable Process Technologies. Water 2023, 15, 1195. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Tzanakakis, V.A.; Capodaglio, A.G.; Dercas, N. A Critical Review of Water Reuse: Lessons from Prehistoric Greece for Present and Future Challenges. Water 2023, 15, 2385. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Capodaglio, A.G.; Angelakis, A.N. Insights into Global Water Reuse Opportunities. Sustainability 2023, 15, 13007. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A. Energy and Resources Recovery from Excess Sewage Sludge: A Holistic Analysis of Opportunities and Strategies. Resour. Conserv. Recycl. 2023, 19, 200184. [Google Scholar] [CrossRef]
- Tinivella, R.; Bargiggia, R.; Zanoni, G.; Callegari, A.; Capodaglio, A.G. High-Strength, Chemical Industry Wastewater Treatment Feasibility Study for Energy Recovery. Sustainability 2023, 15, 16285. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Urban Wastewater Mining for Circular Resource Recovery: Approaches and Technology Analysis. Water 2023, 15, 3967. [Google Scholar] [CrossRef]
- Eckenfelder, W.W.; Ford, D.L.; Englande, A.J. Industrial Water Quality, 4th ed.; McGraw-Hill: New York, NY, USA, 2009; ISBN 9780071548663. [Google Scholar]
- Ahammad, S.Z.; Graham, D.W.; Dolfing, J. Wastewater Treatment: Biological. In Environmental Management Handbook; Fath, B.D., Jorgensen, S.E., Eds.; CRC Press: Boca Raton, FL, USA, 2022; Volume 4, pp. 561–577. [Google Scholar]
- Tchobanoglous, G.; Stensel, H.D.; Tsuchihashi, R.; Burton, F.; Abu-Orf, M.; Bowden, G.; Pfrang, W. Metcalf & Eddy, Inc. Wastewater Engineering: Treatment and Resource Recovery, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Bustillo-Lecompte, C.F.; Mehrvar, M. Slaughterhouse Wastewater Characteristics, Treatment, and Management in the Meat Processing Industry: A Review on Trends and Advances. J. Environ. Manag. 2015, 161, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Falås, P.; Longrée, P.; La Cour Jansen, J.; Siegrist, H.; Hollender, J.; Joss, A. Micropollutant Removal by Attached and Suspended Growth in a Hybrid Biofilm-Activated Sludge Process. Water Res. 2013, 47, 4498–4506. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, R.; Sawicki, H.; Żuk, K. Novel Hierarchical Nonlinear Control Algorithm to Improve Dissolved Oxygen Control in Biological WWTP. J. Process Control 2021, 105, 78–87. [Google Scholar] [CrossRef]
- Zhang, W.; Tooker, N.B.; Mueller, A.V. Enabling Wastewater Treatment Process Automation: Leveraging Innovations in Real-Time Sensing, Data Analysis, and Online Controls. Environ. Sci. Water Res. Technol. 2020, 6, 2973–2992. [Google Scholar] [CrossRef]
- Fabbri, D.; Bianco Prevot, A. Analytical Control in Advanced Oxidation Processes: Surrogate Models and Indicators vs Traditional Methods. Microchem. J. 2021, 171, 106799. [Google Scholar] [CrossRef]
- Rayaroth, M.P.; Aravindakumar, C.T.; Shah, N.S.; Boczkaj, G. Advanced Oxidation Processes (AOPs) Based Wastewater Treatment—Unexpected Nitration Side Reactions—A Serious Environmental Issue: A Review. Chem. Eng. J. 2022, 430, 133002. [Google Scholar] [CrossRef]
- Brillas, E. A Critical Review on Ibuprofen Removal from Synthetic Waters, Natural Waters, and Real Wastewaters by Advanced Oxidation Processes. Chemosphere 2022, 286, 131849. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Sable, S.; Gamal El-Din, M. Advanced Oxidation Processes for the Degradation of Dissolved Organics in Produced Water: A Review of Process Performance, Degradation Kinetics and Pathway. Chem. Eng. J. 2022, 429, 132492. [Google Scholar] [CrossRef]
- Ghafoori, S.; Mehrvar, M.; Chan, P.K. Photoassisted Fenton-like Degradation of Aqueous Poly(Acrylic Acid): From Mechanistic Kinetic Model to CFD Modeling. Chem. Eng. Res. Des. 2013, 91, 2617–2629. [Google Scholar] [CrossRef]
- Al-Musawi, T.J.; Mazari Moghaddam, N.S.; Rahimi, S.M.; Hajjizadeh, M.; Nasseh, N. Hexadecyltrimethylammonium-Activated and Zinc Oxide-Coated Nano-Bentonite: A Promising Photocatalyst for Tetracycline Degradation. Sustain. Energy Technol. Assess. 2022, 53, 102451. [Google Scholar] [CrossRef]
- Golrizkhatami, F.; Taghavi, L.; Nasseh, N.; Panahi, H.A. Synthesis of Novel MnFe2O4/BiOI Green Nanocomposite and Its Application to Photocatalytic Degradation of Tetracycline Hydrochloride: (LC-MS Analyses, Mechanism, Reusability, Kinetic, Radical Agents, Mineralization, Process Capability, and Purification of Actual Pharmaceutical Wastewater). J. Photochem. Photobiol. A 2023, 444, 114989. [Google Scholar] [CrossRef]
- Huerta-Fontela, M.; Galceran, M.T.; Ventura, F. Fast Liquid Chromatography-Quadrupole-Linear Ion Trap Mass Spectrometry for the Analysis of Pharmaceuticals and Hormones in Water Resources. J. Chromatogr. A 2010, 1217, 4212–4222. [Google Scholar] [CrossRef] [PubMed]
- Hossein Panahi, A.; Al-Musawi, T.J.; Masihpour, M.; Fard, S.F.T.; Nasseh, N. Photocatalytic Degradation of Humic Acid Using Bentonite@Fe3O4@ZnO Magnetic Nanocomposite: An Investigation of the Characterization of the Photocatalyst, Degradation Pathway, and Modeling by Solver Plugin. Water 2023, 15, 2931. [Google Scholar] [CrossRef]
- Nasab, E.A.; Nasseh, N.; Damavandi, S.; Amarzadeh, M.; Ghahrchi, M.; Hoseinkhani, A.; Alver, A.; Khan, N.A.; Farhadi, A.; Danaee, I. Efficient Purification of Aqueous Solutions Contaminated with Sulfadiazine by Coupling Electro-Fenton/Ultrasound Process: Optimization, DFT Calculation, and Innovative Study of Human Health Risk Assessment. Environ. Sci. Pollut. Res. 2023, 30, 84200–84218. [Google Scholar] [CrossRef]
- Parsa, Z.; Motevassel, M.; Khosravi-Nikou, M.R.; Jorfi, S.; Ghasemi, B. Biodegradability Enhancement of Azo Dye Direct Orange-26 Using UV/Fenton-like Process: Optimization Using Response Surface Methodology. Desalination Water Treat. 2017, 81, 233–241. [Google Scholar] [CrossRef]
- Hayati, F.; Khodabakhshi, M.R.; Isari, A.A.; Moradi, S.; Kakavandi, B. LED-Assisted Sonocatalysis of Sulfathiazole and Pharmaceutical Wastewater Using N,Fe Co-Doped TiO2@SWCNT: Optimization, Performance and Reaction Mechanism Studies. J. Water Process Eng. 2020, 38, 101693. [Google Scholar] [CrossRef]
- Amor, C.; Marchão, L.; Lucas, M.S.; Peres, J.A. Application of Advanced Oxidation Processes for the Treatment of Recalcitrant Agro-Industrial Wastewater: A Review. Water 2019, 11, 205. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Contaminants of Emerging Concern Removal by High-Energy Oxidation-Reduction Processes: State of the Art. Appl. Sci. 2019, 9, 4562. [Google Scholar] [CrossRef]
- Harremoes, P.; Capodaglio, A.G.; Hellstrom, B.G.; Henze, M.; Jensen, K.N.; Lynggaard-Jensen, A.; Otterpohl, R.; Soeberg, H. Wastewater Treatment Plants Under Transient Loading -Performance, Modelling and Control. Water Sci. Technol. 1993, 27, 71–115. [Google Scholar] [CrossRef]
- Callegari, A.; Capodaglio, A.G. Effects of Selected Industrial Pollutants on Urban WWTPs Activated Sludge Population, and Possible Mitigation Strategies. Water Pract. Technol. 2017, 12, 619–637. [Google Scholar] [CrossRef]
- Hug, T.; Maurer, M. Stochastic Modeling to Identify Requirements for Centralized Monitoring of Distributed Wastewater Treatment. Water Sci. Technol. 2012, 65, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Dries, J. Dynamic Control of Nutrient-Removal from Industrial Wastewater in a Sequencing Batch Reactor, Using Common and Low-Cost Online Sensors. Water Sci. Technol. 2016, 73, 740–745. [Google Scholar] [CrossRef]
- Iratni, A.; Chang, N. Bin Advances in Control Technologies for Wastewater Treatment Processes: Status, Challenges, and Perspectives. IEEE/CAA J. Autom. Sin. 2019, 6, 337–363. [Google Scholar] [CrossRef]
- Sadeghassadi, M.; Macnab, C.J.B.; Gopaluni, B.; Westwick, D. Application of Neural Networks for Optimal-Setpoint Design and MPC Control in Biological Wastewater Treatment. Comput. Chem. Eng. 2018, 115, 150–160. [Google Scholar] [CrossRef]
- Alex, J.; Benedetti, L.; Copp, J.; Gernaey, K.V.; Jeppsson, U.; Nopens, I.; Pons, M.N.; Steyer, J.P.; Vanrolleghem, P. Benchmark Simulation Model No. 1 (BSM1). In Technical Report 3, IWA Task Group on Benchmarking of Control Strategies for WWTPs; International Water Association: London, UK, 2018. [Google Scholar]
- Mesquita, D.P.; Quintelas, C.; Amaral, A.L.; Ferreira, E.C. Monitoring Biological Wastewater Treatment Processes: Recent Advances in Spectroscopy Applications. Rev. Environ. Sci. Biotechnol. 2017, 16, 395–424. [Google Scholar] [CrossRef]
- Lin, Y.P.; Dhib, R.; Mehrvar, M. Nonlinear System Identification for Aqueous PVA Degradation in a Continuous UV/H2O2 Tubular Photoreactor. Ind. Eng. Chem. Res. 2021, 60, 1302–1315. [Google Scholar] [CrossRef]
- Lin, Y.P.; Dhib, R.; Mehrvar, M. Recent Advances in Dynamic Modeling and Process Control of PVA Degradation by Biological and Advanced Oxidation Processes: A Review on Trends and Advances. Environments 2021, 8, 116. [Google Scholar] [CrossRef]
- Ljung, L. System Identification ToolboxTM User’s Guide; The MathWorks: Natick, MA, USA, 2011; pp. 1–237. [Google Scholar]
- Petre, E.; Selisteanu, D.; Sulea-Iorgulescu, C.; Mehedinteanu, S. Mathematical Modelling and Control for an Activated Sludge Process in a Wastewater Treatment Plant. In Proceedings of the 20th International Carpathian Control Conference (ICCC), Krakow-Wieliczka, Poland, 26–29 May 2019; IEEE: New York City, NY, USA, 2019; pp. 1–6. [Google Scholar]
- Tejaswini, E.S.S.; Uday Bhaskar Babu, G.; Seshagiri Rao, A. Design and Evaluation of Advanced Automatic Control Strategies in a Total Nitrogen Removal Activated Sludge Plant. Water Environ. J. 2021, 35, 791–806. [Google Scholar] [CrossRef]
- Smida, F.; Ladhari, T.; Hadj Saïd, S.; M’Sahli, F. Unknown Inputs Nonlinear Observer for an Activated Sludge Process. Math. Probl. Eng. 2018, 2018, 1382914. [Google Scholar] [CrossRef]
- Alex, J.; Benedetti, L.; Copp, J.; Gernaey, K.V.; Jeppsson, U.; Nopens, I.; Pons, M.N.; Rosen, C.; Steyer, J.P.; Vanrolleghem, P. Benchmark Simulation Model No. 2 (BSM2). In Technical Report 3, IWA Task Group on Benchmarking of Control Strategies for WWTPs; International Water Association: London, UK, 2018. [Google Scholar]
- Abbasi, N.; Ahmadi, M.; Naseri, M. Quality and Cost Analysis of a Wastewater Treatment Plant Using GPS-X and CapdetWorks Simulation Programs. J. Environ. Manag. 2021, 284, 111993. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Zhang, Y.; Zhang, F.; Huang, M. Modeling of Wastewater Treatment Processes Using Dynamic Bayesian Networks Based on Fuzzy PLS. IEEE Access 2020, 8, 92129–92140. [Google Scholar] [CrossRef]
- Harja, G.; Vlad, G.; Nascu, I. MPC Advanced Control of Dissolved Oxygen in an Activated Sludge Wastewater Treatment Plant. In Proceedings of the IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 19–21 May 2016; IEEE: New York City, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Sadeghassadi, M.; Macnab, C.J.B.; Westwick, D. Dissolved Oxygen Control of BSM1 Benchmark Using Generalized Predictive Control. In Proceedings of the IEEE Conference on Systems, Process and Control (ICSPC 2015), Bandar Sunway, Malaysia, 18–20 December 2015; IEEE: New York City, NY, USA, 2015; pp. 1–6. [Google Scholar]
- Novotny, V.; Jones, H.; Feng, X.; Capodaglio, A. Time Series Analysis Models of Activated Sludge Plants. Water Sci. Technol. 1991, 23, 1107–1116. [Google Scholar] [CrossRef]
- Mirbagheri, S.A.; Saberi Yahyaei, S.M.; Rafeidehkordi, N.; Vakilian, R. Comparison of CAS, MBR, SBR, and Biolak Treatment Systems in Removal of BOD and COD from Municipal Wastewater-Case Study: Ekbatan Wastewater Treatment Plant. In Proceedings of the 15th International Conference on Environmental Science and Technology (CEST), Rhodes, Greece, 31 August–2 September 2017; pp. 1–5. [Google Scholar]
- Wanner, J. Comparison of Biocenoses from Continuous and Sequencing Batch Reactors. Water Sci. Technol. 1992, 25, 239–249. [Google Scholar] [CrossRef]
- Papadimitriou, C.A.; Samaras, P.; Sakellaropoulos, G.P. Comparative Study of Phenol and Cyanide Containing Wastewater in CSTR and SBR Activated Sludge Reactors. Bioresour. Technol. 2009, 100, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, J.B.; Vuono, M.; Dionisi, D. Model-Based Comparison of Sequencing Batch Reactors and Continuous-Flow Activated Sludge Processes for Biological Wastewater Treatment. Comput. Chem. Eng. 2021, 144, 107127. [Google Scholar] [CrossRef]
- Jafarinejad, S. Simulation for the Performance and Economic Evaluation of Conventional Activated Sludge Process Replacing by Sequencing Batch Reactor Technology in a Petroleum Refinery Wastewater Treatment Plant. Chem. Eng. 2019, 3, 45. [Google Scholar] [CrossRef]
- Jafarinejad, S. Cost Estimation and Economical Evaluation of Three Configurations of Activated Sludge Process for a Wastewater Treatment Plant (WWTP) Using Simulation. Appl. Water Sci. 2017, 7, 2513–2521. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Manchala, K.R.; Sun, Y.; Zhang, D.; Wang, Z.W. Chapter Two-Anaerobic Digestion Modelling. In Advances in Bioenergy; Li, Y., Ge, X., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 2, pp. 69–141. [Google Scholar]
- Abbassi-Guendouz, A.; Brockmann, D.; Trably, E.; Dumas, C.; Delgenès, J.-P.; Steyer, J.-P.; Escudié, R. Total Solids Content Drives High Solid Anaerobic Digestion via Mass Transfer Limitation. Bioresour. Technol. 2012, 111, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, A.; Rustum, R.; Adeloye, A.J. Review of Anaerobic Digestion Modeling and Optimization Using Nature-Inspired Techniques. Processes 2019, 7, 953. [Google Scholar] [CrossRef]
- Mannina, G.; Ni, B.-J.; Makinia, J.; Harmand, J.; Alliet, M.; Brepols, C.; Ruano, M.V.; Robles, A.; Heran, M.; Gulhan, H.; et al. Biological Processes Modelling for MBR Systems: A Review of the State-of-the-Art Focusing on SMP and EPS. Water Res. 2023, 242, 120275. [Google Scholar] [CrossRef] [PubMed]
- Robles, Á.; Ruano, M.V.; Charfi, A.; Lesage, G.; Heran, M.; Harmand, J.; Seco, A.; Steyer, J.P.; Batstone, D.J.; Kim, J.; et al. A Review on Anaerobic Membrane Bioreactors (AnMBRs) Focused on Modelling and Control Aspects. Bioresour. Technol. 2018, 270, 612–626. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ji, J.; Ni, J.; Wang, S.; Guo, Y.; Hu, Y.; Liu, S.; Huang, S.-F.; Li, Y.-Y. Application of Deep Learning for Predicting the Treatment Performance of Real Municipal Wastewater Based on One-Year Operation of Two Anaerobic Membrane Bioreactors. Sci. Total Environ. 2022, 813, 151920. [Google Scholar] [CrossRef] [PubMed]
- Yaqub, M.; Lee, W. Modeling Nutrient Removal by Membrane Bioreactor at a Sewage Treatment Plant Using Machine Learning Models. J. Water Process Eng. 2022, 46, 102521. [Google Scholar] [CrossRef]
- Mahmod, N.; Wahab, N.A.; Gaya, M.S. Modelling and Control of Fouling in Submerged Membrane Bioreactor Using Neural Network Internal Model Control. IAES Int. J. Artif. Intell. 2020, 9, 100–108. [Google Scholar] [CrossRef]
- Gopi Kiran, M.; Das, R.; Behera, S.K.; Pakshirajan, K.; Das, G. Modelling a Rotating Biological Contactor Treating Heavy Metal Contaminated Wastewater Using Artificial Neural Network. Water Supply 2021, 21, 1895–1912. [Google Scholar] [CrossRef]
- Chanh, N.D.Q.; Bing, L.; Van Quang, T.; Terashima, M.; Goel, R.; Yasui, H. Dynamic Simulation of Trickling Filter Process with Hydraulic Stress Tests. J. Water Environ. Technol. 2016, 14, 398–410. [Google Scholar] [CrossRef]
- Sultan, T.; Cho, J. Optimization of a UV/H2O2 AOP System Using Scavenger Radicals and Response Surface Methodology. Chem. Eng. Commun. 2016, 203, 1093–1104. [Google Scholar] [CrossRef]
- Johnson, M.B.; Mehrvar, M. Aqueous Metronidazole Degradation by UV/H2O2 Process in Single- and Multi-Lamp Tubular Photoreactors: Kinetics and Reactor Design. Ind. Eng. Chem. Res. 2008, 47, 6525–6537. [Google Scholar] [CrossRef]
- Hamad, D. Experimental Investigation of Polyvinyl Alcohol Degradation in UV/H2O2 Photochemical Reactors Using Different Hydrogen Peroxide Feeding Strategies. Ph.D. Thesis, Ryerson University, Toronto, Canada, 2015. [Google Scholar]
- Hamad, D.; Mehrvar, M.; Dhib, R. Photochemical Kinetic Modeling of Degradation of Aqueous Polyvinyl Alcohol in a UV/H2O2 Photoreactor. J. Polym. Environ. 2018, 26, 3283–3293. [Google Scholar] [CrossRef]
- Hamad, D.; Dhib, R.; Mehrvar, M. Effects of Hydrogen Peroxide Feeding Strategies on the Photochemical Degradation of Polyvinyl Alcohol. Environ. Technol. 2016, 37, 2731–2742. [Google Scholar] [CrossRef] [PubMed]
- Hamad, D.; Mehrvar, M.; Dhib, R. Experimental Study of Polyvinyl Alcohol Degradation in Aqueous Solution by UV/H2O2 Process. Polym. Degrad. Stab. 2014, 103, 75–82. [Google Scholar] [CrossRef]
- Hamad, D.; Dhib, R.; Mehrvar, M. Photochemical Degradation of Aqueous Polyvinyl Alcohol in a Continuous UV/H2O2 Process: Experimental and Statistical Analysis. J. Polym. Environ. 2016, 24, 72–83. [Google Scholar] [CrossRef]
- Shahwan, M.M.; Ghafoori, S.; Dhib, R.; Mehrvar, M. Modeling PVA Degradation in a Continuous Photochemical Reactor Using Experimental Step Testing and Process Identification. J. Environ. Chem. Eng. 2021, 9, 104983. [Google Scholar] [CrossRef]
- Hamad, D.; Dhib, R.; Mehrvar, M. Identification and Model Predictive Control (MPC) of Aqueous Polyvinyl Alcohol Degradation in UV/H2O2 Photochemical Reactors. J. Polym. Environ. 2021, 29, 2572–2584. [Google Scholar] [CrossRef]
- Lin, Y.P. ARX and NARX Modeling and Control of a Continuous UV/H2O2 Photoreactor for the Aqueous PVA Degradation. Master’s Thesis, Ryerson University, Toronto, ON, Canada, 2021. [Google Scholar]
- Lin, Y.P.; Dhib, R.; Mehrvar, M. ARX/NARX Modeling and PID Controller in a UV/H2O2 Tubular Photoreactor for Aqueous PVA Degradation. Chem. Eng. Res. Des. 2023, 195, 286–302. [Google Scholar] [CrossRef]
- Yu, R.F.; Chen, H.W.; Liu, K.Y.; Cheng, W.P.; Hsieh, P.H. Control of the Fenton Process for Textile Wastewater Treatment Using Artificial Neural Networks. J. Chem. Technol. Biotechnol. 2010, 85, 267–278. [Google Scholar] [CrossRef]
- Foschi, J.; Turolla, A.; Antonelli, M. Artificial Neural Network Modeling of Full-Scale UV Disinfection for Process Control Aimed at Wastewater Reuse. J. Environ. Manag. 2021, 300, 113790. [Google Scholar] [CrossRef]
- Djeddou, M.; Loukam, I. Predictive Modeling of Ozone Dosing in Full-Scale Drinking Water Treatment Plant Using Improved Hybrid Model Based on Discrete Wavelet Decomposition and Radial Basis Function Neural Network (WRBFNN). In Proceedings of the 3rd International Conference on Disinfection and DBPs, Milan, Italy, 27 June–1 July 2022. [Google Scholar]
- Wang, D.; Li, S.; Yang, J.; You, Z.; Zhou, X. Adaptive MPC for Ozone Dosing Process of Drinking Water Treatment Based on RBF Modeling. Trans. Inst. Meas. Control 2014, 36, 58–67. [Google Scholar] [CrossRef]
- Dongsheng, W.; Yongjie, L.; Zhang, L. A Case Study on the MPC for Ozone Dosing Process Based on SVM. In Proceedings of the 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; IEEE: New York City, NY, USA, 2017; pp. 1772–1776. [Google Scholar]
- Abouzlam, M.; Ouvrard, R.; Mehdi, D.; Pontlevoy, F.; Gombert, B.; Karpel, N.; Leitner, V.; Boukari, S. An Optimal Control of a Wastewater Treatment Reactor by Catalytic Ozonation. Control Eng. Pract. 2013, 21, 105–112. [Google Scholar] [CrossRef]
- Abouzlam, M.; Ouvrard, R.; Mehdi, D.; Pontlevoy, F.; Gombert, B.; Vel Leitner, N.K.; Boukari, S.O.B. Identification of a Wastewater Treatment Reactor by Catalytic Ozonation. IFAC-PapersOnline 2012, 45, 1448–1453. [Google Scholar] [CrossRef]
- Abouzlam, M.; Ouvrard, R.; Poinot, T.; Mehdi, D.; Pontlevoy, F.; Gombert, B.; Leitner, N.K.V. A Grey-Box Model Identification of an Advanced Oxidation Process for Wastewater Treatment. IFAC-PapersOnLine 2015, 48, 556–561. [Google Scholar] [CrossRef]
- Kermani, M.; Mehralipour, J.; Kakavandi, B. Photo-Assisted Electroperoxone of 2,4-Dichlorophenoxy Acetic Acid Herbicide: Kinetic, Synergistic and Optimization by Response Surface Methodology. J. Water Process Eng. 2019, 32, 100971. [Google Scholar] [CrossRef]
- Bashiri, F.; Khezri, S.M.; Kalantary, R.R.; Kakavandi, B. Enhanced Photocatalytic Degradation of Metronidazole by TiO2 Decorated on Magnetic Reduced Graphene Oxide: Characterization, Optimization and Reaction Mechanism Studies. J. Mol. Liq. 2020, 314, 113608. [Google Scholar] [CrossRef]
- Amarzadeh, M.; Azqandi, M.; Nateq, K.; Ramavandi, B.; Khan, N.A.; Nasseh, N. Heterogeneous Fenton-like Photocatalytic Process towards the Eradication of Tetracycline under UV Irradiation: Mechanism Elucidation and Environmental Risk Analysis. Water 2023, 15, 2336. [Google Scholar] [CrossRef]
- Stewart, R.D.; Bashar, R.; Amstadt, C.; Uribe-Santos, G.A.; McMahon, K.D.; Seib, M.; Noguera, D.R. Pilot-Scale Comparison of Biological Nutrient Removal (BNR) Using Intermittent and Continuous Ammonia-Based Low Dissolved Oxygen Aeration Control Systems. Water Sci. Technol. 2022, 85, 579–590. [Google Scholar] [CrossRef]
- Kumar, S.S.; Latha, K. A Supervisory Fuzzy Logic Control Scheme to Improve Effluent Quality of a Wastewater Treatment Plant. Water Sci. Technol. 2021, 84, 3415–3424. [Google Scholar] [CrossRef]
- Du, S.; Yan, Q.; Qiao, J. Event-Triggered PID Control for Wastewater Treatment Plants. J. Water Process Eng. 2020, 38, 101659. [Google Scholar] [CrossRef]
- El-Zemity, A.S.; Gaafar, A.A.; Ahmed, A.K.; Abdelwahab, A.S.; Saad, H.M.; Elboushi, M.K.; Ibraheem, A.M. Wastewater Treatment Model with Smart Irrigation Utilizing PID Control. In Proceedings of the 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 24–26 October 2020; IEEE: New York City, NY, USA, 2020; pp. 374–379. [Google Scholar]
- Zhang, D.; Chu, J.; He, Y.; Jin, H.; Han, W. Study and Application of Self-Adaptive Fuzzy PID Control in Dissolved Oxygen Control of Wastewater Treatment. IOP Conf. Ser. Mater. Sci. Eng. 2019, 562, 012147. [Google Scholar] [CrossRef]
- Revollar, S.; Vilanova, R.; Francisco, M.; Vega, P. PI Dissolved Oxygen Control in Wastewater Treatment Plants for Plantwide Nitrogen Removal Efficiency. IFAC-PapersOnLine 2018, 51, 450–455. [Google Scholar] [CrossRef]
- Shen, W.; Tao, E.; Chen, X.; Liu, D.; Liu, H. Nitrate Control Strategies in an Activated Sludge Wastewater Treatment Process. Korean J. Chem. Eng. 2014, 31, 386–392. [Google Scholar] [CrossRef]
- Vlad, C.; Sbarciog, M.; Barbu, M.; Caraman, S.; Wouwer, A.V. Indirect Control of Substrate Concentration for a Wastewater Treatment Process by Dissolved Oxygen Tracking. Control Eng. Appl. Inform. 2012, 14, 37–47. [Google Scholar]
- Pisa, I.; Morell, A.; Vilanova, R.; Vicario, J.L. Noisy Signals in Wastewater Treatment Plants Data-Driven Control: Spectral Analysis Approach for the Design of ANN-IMC Controllers. In Proceedings of the IEEE Conference on Industrial Cyberphysical Systems (ICPS), Tampere, Finland, 10–12 June 2020; IEEE: New York City, NY, USA, 2020; pp. 320–325. [Google Scholar]
- Dongsheng, W.; Yongjie, L.; Lei, Z.; Songhao, Z.; Zhu, S. A Case Study on the IMC for Ozone Dosing Process of Drinking Water Treatment. In Proceedings of the 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 4430–4434. [Google Scholar]
- Lindberg, C.F.; Carlsson, B. Nonlinear and Set-Point Control of the Dissolved Oxygen Concentration in an Activated Sludge Process. Water Sci. Technol. 1996, 34, 135–142. [Google Scholar] [CrossRef]
- Barros, P.R.; Carlsson, B. Iterative Design of a Nitrate Controller Using an External Carbon Source in an Activated Sludge Process. Water Sci. Technol. 1998, 37, 95–102. [Google Scholar] [CrossRef]
- Vlad, C.; Caraman, S.; Carp, D.; Minzu, V.; Barbu, M. Gain Scheduling Control of Dissolved Oxygen Concentration in a Wastewater Treatment Process. In Proceedings of the 20th Mediterranean Conference on Control and Automation, Barcelona, Spain, 3–6 July 2012; pp. 860–865. [Google Scholar]
- Sheik, A.G.; Seepana, M.M.; Ambati, S.R. Supervisory Control Configurations Design for Nitrogen and Phosphorus Removal in Wastewater Treatment Plants. Water Environ. Res. 2021, 93, 1289–1302. [Google Scholar] [CrossRef] [PubMed]
- Duzinkiewicz, K.; Brdys, M.A.; Kurek, W.; Piotrowski, R. Genetic Hybrid Predictive Controller for Optimized Dissolved-Oxygen Tracking at Lower Control Level. IEEE Trans. Control Syst. Technol. 2009, 17, 1183–1192. [Google Scholar] [CrossRef]
- Liu, J.; Olsson, G.; Mattiasson, B. Monitoring and Control of an Anaerobic Upflow Fixed-Bed Reactor for High-Loading-Rate Operation and Rejection of Disturbances. Biotechnol. Bioeng. 2004, 87, 43–53. [Google Scholar] [CrossRef]
- Mannina, G.; Cosenza, A.; Rebouças, T.F. Aeration Control in Membrane Bioreactor for Sustainable Environmental Footprint. Bioresour. Technol. 2020, 301, 122734. [Google Scholar] [CrossRef] [PubMed]
- García-Diéguez, C.; Molina, F.; Roca, E. Multi-Objective Cascade Controller for an Anaerobic Digester. Process Biochem. 2011, 46, 900–909. [Google Scholar] [CrossRef]
- Robles, Á.; Durán, F.; Ruano, M.V.; Ribes, J.; Rosado, A.; Seco, A.; Ferrer, J. Instrumentation, Control, and Automation for Submerged Anaerobic Membrane Bioreactors. Environ. Technol. 2015, 36, 1795–1806. [Google Scholar] [CrossRef] [PubMed]
- Robles, A.; Ruano, M.V.; Ribes, J.; Seco, A.; Ferrer, J. Model-Based Automatic Tuning of a Filtration Control System for Submerged Anaerobic Membrane Bioreactors (AnMBR). J. Membr. Sci. 2014, 465, 14–26. [Google Scholar] [CrossRef]
- Yu, R.F. Feed-Forward Dose Control of Wastewater Chlorination Using On-Line pH and ORP Titration. Chemosphere 2004, 56, 973–980. [Google Scholar] [CrossRef]
- Zhan, J.X.; Ikehata, M.; Mayuzumi, M.; Koizumi, E.; Kawaguchi, Y.; Hashimoto, T. An Aeration Control Strategy for Oxidation Ditch Processes Based on Online Oxygen Requirement Estimation. Water Sci. Technol. 2013, 68, 76–82. [Google Scholar] [CrossRef]
- Wang, D.; Ha, M.; Qiao, J. Data-Driven Iterative Adaptive Critic Control toward an Urban Wastewater Treatment Plant. IEEE Trans. Ind. Electron. 2021, 68, 7362–7369. [Google Scholar] [CrossRef]
- Méndez-Acosta, H.O.; Campos-Delgado, D.U.; Femat, R. Intelligent Control of an Anaerobic Digester: Fuzzy-Based Gain Scheduling for a Geometrical Approach. In Proceedings of the 2003 IEEE International Symposium on Intelligent Control, Houston, TX, USA, 5–8 October 2003; IEEE: New York City, NY, USA, 2003; pp. 298–303. [Google Scholar]
- Abdellatif, N.; Bouhafs, W.; Harmand, J.; Jean, F. A Geometrical Approach for the Optimal Control of Sequencing Batch Bio-Reactors. Stat. Optim. Inf. Comput. 2021, 9, 368–382. [Google Scholar] [CrossRef]
- Han, H.G.; Zhang, L.; Qiao, J.F. Data-Based Predictive Control for Wastewater Treatment Process. IEEE Access 2017, 6, 1498–1512. [Google Scholar] [CrossRef]
- Ozgur, N.H.; Stenstrom, M.K. KBES for Process Control of Nitrification in Activated Sludge Process. J. Environ. Eng. 1994, 120, 87–107. [Google Scholar] [CrossRef]
- Serra, P.; Lafuente, J.; Moreno, R.; Prada, C.; Poch, M. Development of a Real-Time Expert System for Wastewater Treatment Plants Control. Control Eng. Pract. 1993, 1, 329–335. [Google Scholar] [CrossRef]
- Laukkanen, R.; Pursiainen, J. Rule-Based Expert Systems in the Control of Wastewater Treatment Systems. Water Sci. Technol. 1991, 24, 299–306. [Google Scholar] [CrossRef]
- Galluzzo, M.; Cosenza, B. Control of the Biodegradation of Mixed Wastes in a Continuous Bioreactor by a Type-2 Fuzzy Logic Controller. Comput. Chem. Eng. 2009, 33, 1475–1483. [Google Scholar] [CrossRef]
- Husin, M.H.; Rahmat, M.F.; Wahab, N.A.; Sabri, M.F.M. Improving Total Nitrogen Removal Using a Neural Network Ammonia-Based Aeration Control in Activated Sludge Process. Int. J. Smart Sens. Intell. Syst. 2021, 14, 1–16. [Google Scholar] [CrossRef]
- Du, X.; Wang, J.; Jegatheesan, V.; Shi, G. Dissolved Oxygen Control in Activated Sludge Process Using a Neural Network-Based Adaptive PID Algorithm. Appl. Sci. 2018, 8, 261. [Google Scholar] [CrossRef]
- Han, H.; Qiao, J.; Chen, Q. Model Predictive Control of Dissolved Oxygen Concentration Based on a Self-Organizing RBF Neural Network. Control Eng. Pract. 2012, 20, 465–476. [Google Scholar] [CrossRef]
- Carrasco, R.; Sanchez, E.N.; Cadet, C. Hybrid Intelligent Control for a Wastewater Treatment Prototype. In Proceedings of the 17th Mediterranean Conference on Control and Automation, Thessaloniki, Greece, 24–26 June 2009; IEEE: New York City, NY, USA, 2019; pp. 1221–1226. [Google Scholar]
- Vega, P.; Lamanna, R.; Revollar, S.; Francisco, M. Integrated Design and Control of Chemical Processes—Part II: An Illustrative Example. Comput. Chem. Eng. 2014, 71, 618–635. [Google Scholar] [CrossRef]
- Alberto, C.; Rui, C.B.; Arau, A.M.; Alexandre, F.; Jorge, A.S.; Landeck, A.C. Sensor-Fault Tolerance in a Wastewater Treatment Plant by Means of ANFIS-Based Soft Sensor and Control Reconfiguration. Neural Comput. Appl. 2018, 30, 3265–3276. [Google Scholar] [CrossRef]
- Klaus, S.; Baumler, R.; Rutherford, B.; Thesing, G.; Zhao, H.; Charles, B. Startup of a Partial Nitritation-Anammox MBBR and the Implementation of pH-Based Aeration Control. Water Environ. Res. 2017, 89, 500–508. [Google Scholar] [CrossRef]
- Jamaludin, I.W.; Wahab, N.A.; Khalid, N.S.; Sahlan, S.; Ibrahim, Z.; Rahmat, M.F. N4SID and MOESP Subspace Identification Methods. In Proceedings of the 9th International Colloquium on Signal Processing and Its Applications, Kuala Lumpur, Malaysia, 8–10 March 2013; IEEE: New York City, NY, USA, 2013; pp. 140–145. [Google Scholar]
- Pisa, I.; Morell, A.; Vicario, J.L.; Vilanova, R. ANN-Based Internal Model Control Strategy Applied in the WWTP Industry. In Proceedings of the 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September; IEEE: New York City, NY, USA, 2019; pp. 1477–1480. [Google Scholar]
- Han, H.; Liu, Z.; Hou, Y.; Qiao, J. Data-Driven Multiobjective Predictive Control for Wastewater Treatment Process. IEEE Trans. Ind. Inform. 2020, 16, 2767–2775. [Google Scholar] [CrossRef]
- Nejjari, F.; Dahhou, B.; Benhammou, A.; Roux, G. Non-Linear Multivariable Adaptive Control of an Activated Sludge Wastewater Treatment Process. Int. J. Adapt. Control Signal Process 1999, 13, 347–365. [Google Scholar] [CrossRef]
- Carp, D.; Barbu, M.; Minzu, V. Robust Control of an Activated Sludge Wastewater Treatment Process. In Proceedings of the 17th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 11–13 October 2013; pp. 97–102. [Google Scholar]
- Khatri, N.; Khatri, K.K.; Sharma, A. Enhanced Energy Saving in Wastewater Treatment Plant Using Dissolved Oxygen Control and Hydrocyclone. Environ. Technol. Innov. 2020, 18, 100678. [Google Scholar] [CrossRef]
- Fan, L.; Boshnakov, K. Fuzzy Logic Based Dissolved Oxygen Control for SBR Wastewater Treatment Process. In Proceedings of the 8th World Congress on Intelligent Control and Automation (WCICA), Jinan, China, 7–9 July 2010; pp. 4142–4146. [Google Scholar]
- Traoré, A.; Grieu, S.; Puig, S.; Corominas, L.; Thiery, F.; Polit, M.; Colprim, J. Fuzzy Control of Dissolved Oxygen in a Sequencing Batch Reactor Pilot Plant. Chem. Eng. J. 2005, 111, 13–19. [Google Scholar] [CrossRef]
- Mannina, G.; Capodici, M.; Cosenza, A.; Di Trapani, D. Carbon and Nutrient Biological Removal in a University of Cape Town Membrane Bioreactor: Analysis of a Pilot Plant Operated under Two Different C/N Ratios. Chem. Eng. J. 2016, 296, 289–299. [Google Scholar] [CrossRef]
- Lin, C.; Yu, R.; Cheng, W.; Liu, C. Monitoring and Control of UV and UV-TiO2 Disinfections for Municipal Wastewater Reclamation Using Artificial Neural Networks. J. Hazard. Mater. 2012, 209–210, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Smida, F.; Ladhari, T.; Saïd, S.H.; M’sahli, F. Unknown Inputs Observer-Based Output Feedback Predictive Controller for an Activated Sludge Process. IETE J. Res. 2020, 66, 556–568. [Google Scholar] [CrossRef]
- Gu, Y.; Li, Y.; Yuan, F.; Yang, Q. Optimization and Control Strategies of Aeration in WWTPs: A Review. J. Clean. Prod. 2023, 418, 138008. [Google Scholar] [CrossRef]
- Alattabi, A.W.; Harris, C.; Alkhaddar, R.; Alzeyadi, A.; Abdulredha, M. Online Monitoring of a Sequencing Batch Reactor Treating Domestic Wastewater. Procedia Eng. 2017, 196, 800–807. [Google Scholar] [CrossRef]
- van Rooyen, I.L.; Brink, H.G.; Nicol, W. pH-Based Control Strategies for the Nitrification of High-Ammonium Wastewaters. Fermentation 2021, 7, 319. [Google Scholar] [CrossRef]
- Jain, M. Anaerobic Membrane Bioreactor as Highly Efficient and Reliable Technology for Wastewater Treatment—A Review. Adv. Chem. Eng. Sci. 2018, 08, 82–100. [Google Scholar] [CrossRef]
- Ferrero, G.; Rodríguez-Roda, I.; Comas, J. Automatic Control Systems for Submerged Membrane Bioreactors: A State-of-the-Art Review. Water Res. 2012, 46, 3421–3433. [Google Scholar] [CrossRef] [PubMed]
- Vanrolleghem, P.A.; Lee, D.S. On-Line Monitoring Equipment for Wastewater Treatment Processes: State of the Art. Water Sci. Technol. 2003, 4, 1–34. [Google Scholar] [CrossRef]
- Cornelissen, R.; Van Dyck, T.; Dries, J.; Ockier, P.; Smets, I.; Van Den Broeck, R.; Van Hulle, S.; Feyaerts, M. Application of Online Instrumentation in Industrial Wastewater Treatment Plants—A Survey in Flanders, Belgium. Water Sci. Technol. 2018, 78, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, A.G.; Callegari, A.; Molognoni, D. Online Monitoring of Priority and Dangerous Pollutants in Natural and Urban Waters: A State-of-the-Art Review. Manag. Environ. Qual. 2016, 27, 507–536. [Google Scholar] [CrossRef]
- Watts, J.B.; Garber, W.F. On Line Respirometry: A Powerful Tool for Activated Sludge Plant Operation and Design. Water Sci. Technol. 1993, 28, 389–399. [Google Scholar] [CrossRef]
- Spanjers, H.; Patry, G.G.; Keesman, K.J. Respirometry-Based On-Line Model Parameter Estimation at a Full-Scale WWTP. Water Sci. Technol. 2002, 45, 335–343. [Google Scholar] [CrossRef]
- Ching, P.M.L.; So, R.H.Y.; Morck, T. Advances in Soft Sensors for Wastewater Treatment Plants: A Systematic Review. J. Water Process Eng. 2021, 44, 102367. [Google Scholar] [CrossRef]
- Duan, W.; Gunes, M.; Baldi, A.; Gich, M.; Fernández-Sánchez, C. Compact Fluidic Electrochemical Sensor Platform for On-Line Monitoring of Chemical Oxygen Demand in Urban Wastewater. Chem. Eng. J. 2022, 449, 137837. [Google Scholar] [CrossRef]
- Cruz, I.A.; Andrade, L.R.S.; Bharagava, R.N.; Nadda, A.K.; Bilal, M.; Figueiredo, R.T.; Ferreira, L.F.R. An Overview of Process Monitoring for Anaerobic Digestion. Biosyst. Eng. 2021, 207, 106–119. [Google Scholar] [CrossRef]
- Martínez, R.; Vela, N.; el Aatik, A.; Murray, E.; Roche, P.; Navarro, J.M. On the Use of an IoT Integrated System for Water Quality Monitoring and Management in Wastewater Treatment Plants. Water 2020, 12, 1096. [Google Scholar] [CrossRef]
- Dürrenmatt, D.J.Ô.; Gujer, W. Data-Driven Modeling Approaches to Support Wastewater Treatment Plant Operation. Environ. Model. Softw. 2012, 30, 47–56. [Google Scholar] [CrossRef]
- Song, Z.M.; Xu, Y.L.; Liang, J.K.; Peng, L.; Zhang, X.Y.; Du, Y.; Lu, Y.; Li, X.Z.; Wu, Q.Y.; Guan, Y.T. Surrogates for On-Line Monitoring of the Attenuation of Trace Organic Contaminants during Advanced Oxidation Processes for Water Reuse. Water Res. 2021, 190, 116733. [Google Scholar] [CrossRef] [PubMed]
- Mjalli, F.S.; Al-Asheh, S.; Alfadala, H.E. Use of Artificial Neural Network Black-Box Modeling for the Prediction of Wastewater Treatment Plants Performance. J. Environ. Manag. 2007, 83, 329–338. [Google Scholar] [CrossRef]
- Fernandez de Canete, J.; del Saz-orozco, P.; Gómez-de-gabriel, J.; Baratti, R.; Ruano, A.; Rivas-blanco, I. Control and Soft Sensing Strategies for a Wastewater Treatment Plant Using a Neuro-Genetic Approach. Comput. Chem. Eng. 2021, 144, 107146. [Google Scholar] [CrossRef]
- Sharafati, A.; Haji Seyed Asadollah, S.B.; Hosseinzadeh, M. The Potential of New Ensemble Machine Learning Models for Effluent Quality Parameters Prediction and Related Uncertainty. Process Saf. Environ. Prot. 2020, 140, 68–78. [Google Scholar] [CrossRef]
- Xiao, H.; Bai, B.; Li, X.; Liu, J.; Liu, Y.; Huang, D. Interval Multiple-Output Soft Sensors Development with Capacity Control for Wastewater Treatment Applications: A Comparative Study. Chemom. Intell. Lab. Syst. 2019, 184, 82–93. [Google Scholar] [CrossRef]
- Cong, Q.; Yu, W. Integrated Soft Sensor with Wavelet Neural Network and Adaptive Weighted Fusion for Water Quality Estimation in Wastewater Treatment Process. Measurement 2018, 124, 436–446. [Google Scholar] [CrossRef]
- Bagheri, M.; Mirbagheri, S.A.; Ehteshami, M.; Bagheri, Z. Modeling of a Sequencing Batch Reactor Treating Municipal Wastewater Using Multi-Layer Perceptron and Radial Basis Function Artificial Neural Networks. Process Saf. Environ. Prot. 2014, 93, 111–123. [Google Scholar] [CrossRef]
- Deniere, E.; Chys, M.; Audenaert, W.; Nopens, I.; Van Langenhove, H.; Van Hulle, S.; Demeestere, K. Status and Needs for Online Control of Tertiary Ozone-Based Water Treatment: Use of Surrogate Correlation Models for Removal of Trace Organic Contaminants. Rev. Environ. Sci. Biotechnol. 2021, 20, 297–331. [Google Scholar] [CrossRef]
- Si, X.; Hu, Z.; Huang, S. Combined Process of Ozone Oxidation and Ultrafiltration as an Effective Treatment Technology for the Removal of Endocrine-Disrupting Chemicals. Appl. Sci. 2018, 8, 1240. [Google Scholar] [CrossRef]
- Song, Y.; Breider, F.; Ma, J.; von Gunten, U. Nitrate Formation during Ozonation as a Surrogate Parameter for Abatement of Micropollutants and the N-Nitrosodimethylamine (NDMA) Formation Potential. Water Res. 2017, 122, 246–257. [Google Scholar] [CrossRef]
- Chen, Z.; Li, M.; Wen, Q. Comprehensive Evaluation of Three Sets of Advanced Wastewater Treatment Trains for Treating Secondary Effluent: Organic Micro-Pollutants and Bio-Toxicity. Chemosphere 2017, 189, 426–434. [Google Scholar] [CrossRef]
- Chon, K.; Salhi, E.; von Gunten, U. Combination of UV Absorbance and Electron Donating Capacity to Assess Degradation of Micropollutants and Formation of Bromate during Ozonation of Wastewater Effluents. Water Res. 2015, 81, 388–397. [Google Scholar] [CrossRef]
- Pisarenko, A.N.; Stanford, B.D.; Yan, D.; Gerrity, D.; Snyder, S.A. Effects of Ozone and Ozone/Peroxide on Trace Organic Contaminants and NDMA in Drinking Water and Water Reuse Applications. Water Res. 2012, 46, 316–326. [Google Scholar] [CrossRef]
- Gerrity, D.; Gamage, S.; Jones, D.; Korshin, G.V.; Lee, Y.; Pisarenko, A.; Trenholm, R.A.; von Gunten, U.; Wert, E.C.; Snyder, S.A. Development of Surrogate Correlation Models to Predict Trace Organic Contaminant Oxidation and Microbial Inactivation during Ozonation. Water Res. 2012, 46, 6257–6272. [Google Scholar] [CrossRef]
- Dickenson, E.R.V.; Drewes, J.E.; Sedlak, D.L.; Wert, E.C.; Snyder, S.A. Applying Surrogates and Indicators to Assess Removal Efficiency of Trace Organic Chemicals during Chemical Oxidation of Wastewaters. Environ. Sci. Technol. 2009, 43, 6242–6247. [Google Scholar] [CrossRef]
- Wert, E.C.; Rosario-Ortiz, F.L.; Snyder, S.A. Using Ultraviolet Absorbance and Color to Assess Pharmaceutical Oxidation during Ozonation of Wastewater. Environ. Sci. Technol. 2009, 43, 4858–4863. [Google Scholar] [CrossRef]
- Bahr, C.; Schumacher, J.; Ernst, M.; Luck, F.; Heinzmann, B.; Jekel, M. SUVA as Control Parameter for the Effective Ozonation of Organic Pollutants in Secondary Effluent. Water Sci. Technol. 2007, 55, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Sgroi, M.; Anumol, T.; Vagliasindi, F.G.A.; Snyder, S.A.; Roccaro, P. Comparison of the New Cl2/O3/UV Process with Different Ozone- and UV-Based AOPs for Wastewater Treatment at Pilot Scale: Removal of Pharmaceuticals and Changes in Fluorescing Organic Matter. Sci. Total Environ. 2021, 765, 142720. [Google Scholar] [CrossRef] [PubMed]
- Nanaboina, V.; Korshin, G.V. Evolution of Absorbance Spectra of Ozonated Wastewater and Its Relationship with the Degradation of Trace-Level Organic Species. Environ. Sci. Technol. 2010, 44, 6130–6137. [Google Scholar] [CrossRef] [PubMed]
- Wittmer, A.; Heisele, A.; McArdell, C.S.; Böhler, M.; Longree, P.; Siegrist, H. Decreased UV Absorbance as an Indicator of Micropollutant Removal Efficiency in Wastewater Treated with Ozone. Water Sci. Technol. 2015, 71, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Li, W.T.; Jin, J.; Li, Q.; Wu, C.F.; Lu, H.; Zhou, Q.; Li, A.M. Developing LED UV Fluorescence Sensors for Online Monitoring DOM and Predicting DBPs Formation Potential during Water Treatment. Water Res. 2016, 93, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Alcalde, A.; Esplugas, S.; Sans, C. Abatement of Ozone-Recalcitrant Micropollutants during Municipal Wastewater Ozonation: Kinetic Modelling and Surrogate-Based Control Strategies. Chem. Eng. J. 2019, 360, 1092–1100. [Google Scholar] [CrossRef]
- Park, M.; Anumol, T.; Daniels, K.D.; Wu, S.; Ziska, A.D.; Snyder, S.A. Predicting Trace Organic Compound Attenuation by Ozone Oxidation: Development of Indicator and Surrogate Models. Water Res. 2017, 119, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Chys, M.; Audenaert, W.T.M.; Deniere, E.; Mortier, S.T.F.C.; Langenhove, H.; Nopens, I.; Demeestere, K.; Hulle, S.W.H.V. Surrogate-Based Correlation Models in View of Real-Time Control of Ozonation of Secondary Treated Municipal Wastewater—Model Development and Dynamic Validation. Environ. Sci. Technol. 2017, 51, 14233–14243. [Google Scholar] [CrossRef]
- Miklos, D.B.; Wang, W.L.; Linden, K.G.; Drewes, J.E.; Hübner, U. Comparison of UV-AOPs (UV/H2O2, UV/PDS and UV/Chlorine) for TOrC Removal from Municipal Wastewater Effluent and Optical Surrogate Model Evaluation. Chem. Eng. J. 2019, 362, 537–547. [Google Scholar] [CrossRef]
- Li, W.; Nanaboina, V.; Chen, F.; Korshin, G.V. Removal of Polycyclic Synthetic Musks and Antineoplastic Drugs in Ozonated Wastewater: Quantitation Based on the Data of Differential Spectroscopy. J. Hazard. Mater. 2016, 304, 242–250. [Google Scholar] [CrossRef]
- Korshin, G.; Chow, C.W.K.; Fabris, R.; Drikas, M. Absorbance Spectroscopy-Based Examination of Effects of Coagulation on the Reactivity of Fractions of Natural Organic Matter with Varying Apparent Molecular Weights. Water Res. 2009, 43, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Audenaert, W.T.M.; Vandierendonck, D.; Hulle, S.W.H.V.; Nopens, I. Comparison of Ozone and HO• Induced Conversion of Effluent Organic Matter (EfOM) Using Ozonation and UV/H2O2 Treatment. Water Res. 2013, 47, 2387–2398. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Gao, F.; Chen, G. Wastewater Quality Monitoring System Using Sensor Fusion and Machine Learning Techniques. Water Res. 2012, 46, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kovalova, L.; McArdell, C.S.; von Gunten, U. Prediction of Micropollutant Elimination during Ozonation of a Hospital Wastewater Effluent. Water Res. 2014, 64, 134–148. [Google Scholar] [CrossRef]
- Tu, X.; Meng, X.; Pan, Y.; Crittenden, J.C.; Wang, Y. Degradation Kinetics of Target Compounds and Correlations with Spectral Indices during UV/H2O2 Post-Treatment of Biologically Treated Acrylonitrile Wastewater. Chemosphere 2020, 243, 125384. [Google Scholar] [CrossRef]
- Carstea, E.M.; Bridgeman, J.; Baker, A.; Reynolds, D.M. Fluorescence Spectroscopy for Wastewater Monitoring: A Review. Water Res. 2016, 95, 205–219. [Google Scholar] [CrossRef]
- Yu, Z.; Li, W.; Tan, S. Real-Time Monitoring of the Membrane Biofouling Based on Spectroscopic Analysis in a Marine MBBR-MBR (Moving Bed Biofilm Reactor-Membrane Bioreactor) for Saline Wastewater Treatment. Chemosphere 2019, 235, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
Model | Description | Application |
---|---|---|
ASM1 | Biological conversion of organic matter into biomass and carbon dioxide in ASPs | Most widely used model to design/simulate conventional ASPs |
ASM2 | Extension of ASM1, includes the conversion of nitrogen and phosphorus compounds | Predicting behaviour of nitrogen removal processes |
ASM2d | Extension of ASM2, includes additional details and factors affecting the performance of the treatment process | Predicting process performance and behaviour of nitrogen removal |
ASM3 | Extension of ASM2, includes phosphorus removal through biological processes | Predicting behaviour of nitrogen and phosphorus removal processes |
ASM4 | Extension of ASM2, includes phosphorus removal through chemical precipitation | Predicting behaviour of nitrogen and phosphorus removal processes |
ASM7 | Comprehensive model, combination of ASM1, ASM2, ASM4 | Predicting behaviour of nitrogen and phosphorus removal processes |
Wastewater Treatment Process | Challenges Ahead of Dynamic Modelling | Actions Taken |
---|---|---|
Biological |
|
|
AOP-based |
|
|
Type of Control Method | Control Strategy | Note |
---|---|---|
Linear control | P/PI/PID [40,75,87,88,89,90,91,92,93,94] | Proportional control (P):
|
IMC [88,95,96] |
| |
Pole replacement [97,98,99] |
| |
Cascade [12,87,88,100,101,102,103,104,105,106] |
| |
FF [107,108] |
| |
Adaptive [39,79,91,92,99,109] |
| |
Optimal [81,82] |
| |
MPC [73,79,80,99] |
| |
Nonlinear control | Geometric nonlinear [110,111] |
|
Gain scheduling [99,110] |
| |
NMPC [12,112] |
| |
NMC [113,114,115] |
| |
AI-based control | Expert system (Knowledge-based) [102,106] |
|
Fuzzy logic-based [40,91,106,116] |
| |
ANN-based [75,76,79,95,96,112,117,118,119,120] |
| |
Nature-inspired algorithm-based [121] |
| |
Hybrid AI-based [93,122,123,124,125] |
|
Wastewater Treatment Process | Influent Wastewater Data Origin | Reactor Size | Dynamic Process Model | Control Strategy | Control Parameters | Study Focus and Other Information | Reference |
---|---|---|---|---|---|---|---|
ASP | Visakhapatnam MWWTP, India | Full scale: two anoxic tanks, 663 each, three aerobic tanks, 883 each | ASM1 in BSM1 | PI, FPI, MPC, FLC | CVs: , ; MVs: aeration rate, internal recycling flow rate | Simulation; controller tuning methods: iSIMC for PI, a proposed method for FPI | [40] |
ASP | Default data for typical MWW data embedded in BSM1 | Full scale: two anoxic tanks, three aerobic tanks | BSM1 | Data-driven iterative adaptive critic (IAC) control | CVs: DO, ; MVs: oxygen transfer coefficient, internal recycling flow rate | Simulation; outperformance of IAC over PID | [109] |
ASP | Default data for typical MWW data embedded in BSM2 | Full scale | System identification: adaptive fuzzy neural network (AFNN) in BSM2 | Data-driven MOPC alongside TMOOA | CVs: DO, ; MVs: oxygen transfer coefficient, internal recycle flow rate | Simulation | [126] |
ASP | Făcăi WWTP, Craiova, Romania | Full scale: anoxic tank, 3375 and aerobic tank, 15,000 | A modified ASM by Nejjari et al. [127] | Adaptive multivariable control | CVs: DO, inlet wastewater concentration; MVs: aeration rate, RAS rate | Simulation | [39] |
ASP | Toulouse City sewer system, France | Pilot scale: a bioreactor, 0.03 | ASM1 | - | - | Simulation; sampling time: 20 min | [41] |
ASP | IWW, unknown food industry | Pilot scale: a bioreactor, 0.1 | System identification: FOPTD-TF by graphical method | Adaptive Gain scheduling | CV: DO; MV: aeration rate | Simulation and implementation; controller tuning method: pole-zero allocation | [99] |
ASP | Unknown WWTP | Full scale: one anoxic tank and two aerobic tanks | ASM1 in SIMBA toolbox, MATLAB | Dual QFT loop | CVs: DO, ; MV: aeration rate | Simulation | [128] |
ASP | Kartuzy WWTP, Northern Poland | Full scale: four aerobic tanks | ASM2 in SIMBA toolbox, MATLAB | Hierarchical two-level NMPC | CV: DO; MV: aeration rate | Simulation and implementation; sampling time: 5 min | [101] |
ASP | LNMIIT WWTP, Jaipur, India | Pilot scale: Capacity of 125 KLD | - | PID implemented in a PLC controller | CV: DO; MV: aeration rate | Simulation and implementation; aeration rate regulation by installing VFD | [129] |
ABAC | Nine Springs WWTP, Madison, WI, USA | Pilot scale: five anoxic and aerobic tanks, 2180 L total volume | ASM1 in BSM1 | Cascade of PI-P controllers | CV: ; MV: aeration rate | Simulation and implementation | [87] |
ABAC | Default data for typical MWW data embedded in BSM1 | ASM1 in BSM1 | Cascade of FLC-PI controllers | CV: DO; MV: aeration rate | Simulation; controller tuning method: IMC-based for PI, sampling time: 15 min | [88] | |
SBR | Swarzewo WWTP, Poland | Full scale: three anoxic tanks, 5000, three aerobic tanks, 6500 | ASM2 in SIMBA toolbox, MATLAB | Cascade supervisory sequential controller (SSC)-NMPC | CV: DO; MV: aeration rate | Simulation; sampling time: 2 min | [12] |
SBR | Unknown (data is available in the study) | Full scale | ASM2d in MATLAB | Fuzzy control | CV: DO; MV: oxygen transfer coefficient | Simulation | [130] |
SBR | Cerlà WWTP, Spain | Pilot scale | - | On/off, PID, fuzzy control implemented in Labwindows® | CV: DO; MV: aeration rate | Simulation and implementation; outperformance of fuzzy control | [131] |
Oxidation ditch | Yumoto WWTP, Japan | Full scale | ASM3 and ASM2d in WEST | Combination of FB and FF | CV: OR; MV: aeration rate | Simulation and implementation | [108] |
MBR | Unknown WW | Pilot scale | FFNN, RBFNN, NARXNN | IMC | CVs: flux, TMP; MV: permeate pump voltage | Simulation | [62] |
Series of AD+MBR | Mixture of WW from Palermo WWTP, Italy, and synthetic WW | Pilot scale: anaerobic tank, 62 L, anoxic tank, 102 L, aerobic tank, 211 L, MBR tank, 36 | Integration of modified ASM2d and physical sub-model | Cascade of PI controllers | CVs: DO, , ; MV: aeration flow rate | Simulation | [103,132] |
Up-flow anaerobic fixed bed reactor | Synthetic WW, COD = 8300 mg/L | Lab scale: cylindrical reactor, 1.8 L | - | Rule-based supervisory control | CVs: pH, gas flow rate, methane content; MV: influent flow rate | Simulation and implementation; sampling time: 2.5 min for pH, 30 min for gas flow rate | [102] |
Up-flow sludge bed filter | Synthetic ethanol-contained WW representing winery WW | Pilot scale: 1150 L | Modified ADM1 | Cascade of PID controllers | CVs: [VFAs]eff, Qmethane, eff; MV: influent flow rate | Simulation; controller tuning method: ISE | [104] |
AnMBR | Carraixet WWTP, Valencia, Spain | Full scale: anaerobic tank, 1300 L, two membrane tanks, 800 L each | Resistance-in-series filtration | Hierarchical control, lower layer: PID and on/off, upper layer: fuzzy and rule-based controllers | CVs: fouling rate, TMP, membrane permeability, SRF; MVs: influent flow rate, back-flushing initiation and duration, etc. | Simulation; controller tuning: trial and error for PID, IAE for fuzzy | [106] |
UV/H2O2 | Synthetic PVA-contained WW | Lab scale: series of two photoreactors, 0.92 L total volume | System identification: ARX, NARX, HW | FB-PID | CV: effluent pH; MV: | Simulation; controller tuning method: IAE, sampling time: 8 min | [74] |
UV/H2O2 | Synthetic PVA-contained WW | Lab scale: series of two photoreactors 0.92 L total volume | System identification: ARX, ARMAX, standard TF, state-space | MPC | CVs: , ; MVs: , feed flow rate; Disturbance: | Simulation; sampling time: 30 s | [73] |
Catalytic ozonation | Synthetic WW: paranitrophenol solution, COD = 500 mg/L | Lab scale: reactor, 19 L | Grey-box identification: combining experimental data with mass balance | - | CVs: , UVA340,eff; MV: ozonator power | Simulation; sampling time: 8 s | [83] |
Ozonation disinfection | Xiangcheng WWTP (XWTP), Suzhou, China | Full scale | System identification: RBFNN trained by PSO | Adaptive MPC | CVs: ozone exposure, ; MVs: , | Simulation and implementation | [79] |
Catalytic ozonation | Synthetic WW: paranitrophenol solution, COD = 500 mg/L | Pilot scale: Reactor, 19 L | System identification TF method, parameter estimation by LM algorithm | Optimal linear quadratic (LQ) control | CVs: ; UVA340,outlet; MV: ozonator power | Simulation | [81,82] |
UV and UV/TiO2 disinfection | Miao-Li City sewer system, Taiwan | Lab scale | System identification: BPFNN | Manual control | CV: Total coliform counts in the effluent, MV: | Simulation and implementation | [133] |
Fenton | Synthetic textile WW (PVA+ Reactive Blue 49 (RB49) and Reactive Black B (RBB) dyes) | Lab scale: initial pH adjusting tank, 0.9 L, main oxidation tank, 1.2 L, second pH adjusting tank, 1.2 L, settling tank, 0.9 L | System identification: BPFNN | ANN-based control | CVs: , ; MVs: dosage, dosage | Simulation and implementation; sampling time: 30 min | [76] |
Wastewater Treatment Process | Motivations for Implementing Process Control | Limitations |
---|---|---|
Biological |
|
|
AOP-based |
|
|
Estimated Parameter | Indicators | Source of Dataset | Modelling Method | Highlights | Reference |
---|---|---|---|---|---|
Combination of influent parameters (Qin), bioreactor parameters (, , ), effluent parameters (, ) | Biological treatment unit, unknown WWTP | ANN | Good model fitness for all parameters: : = 0.9; : = 0.88; : = 0.91 | [152] | |
, , , , , and | Biological treatment unit, Shokouhieh WWTP, Qom, Iran | Ada Boost Regression (ABR), Gradient Boost Regression (GBR), and Random Forest Regression (RFR) | Outperformance of GBR in predicting target parameters: : CC = 0.962, RMSE = 30.3 mg/L; : CC = 0.9, RMSE = 4.6 mg/L; : CC = 0.75, RMSE = 9.6 mg/L | [153] | |
Sludge Volume Index (SVI) | Combination of influent parameters (Vin, , , , ), bioreactor parameters (T, SRT, ), effluent parameters (, , , ) | Biological treatment unit, Beijing WWTP, China | Multivariate Linear Regression (MLR), Multivariate Relevant Vector Machine (MRVM) and Multivariate Gaussian Processes Regression (MGPR) models | Multi-output soft sensor with good performance | [154] |
Combination of influent parameters (Qin, , , , , ), bioreactor parameters (, , RAS flow rate, recycling mixture flow rate) | Biological treatment unit, unknown WWTP | Adaptive estimation: Combination of Hammerstein with wavelet neural networks, adaptive weighted fusion, and approximate linear dependence (ALD) analysis | Outperformance of adaptive model (error% = 6.41) | [155] | |
Combination of , , , reaction time, aeration rate, SRT, MLVSS, filling time, bioreactor parameters (T, SRT, ) | SBR, Ekbatan WWTP, Tehran, Iran | RBFNN and multi-layer perceptron artificial neural networks (MLPANN) | Good performance of both models; Superior accuracy of MLPANN for all target parameters; Higher R2 and lower RMSE in MLPANN for both training and test data | [156] | |
Four different combinations: -Only , -Only , -Only , -All , , and . | Biological treatment unit; Doha West WWTP | ANN | The best performed input-output models: -: R = 0.923, MSE = 0.014; -: R = 0.951, MSE = 0.061; -: R = 0.987, MSE = 0.021 | [151] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parsa, Z.; Dhib, R.; Mehrvar, M. Dynamic Modelling, Process Control, and Monitoring of Selected Biological and Advanced Oxidation Processes for Wastewater Treatment: A Review of Recent Developments. Bioengineering 2024, 11, 189. https://doi.org/10.3390/bioengineering11020189
Parsa Z, Dhib R, Mehrvar M. Dynamic Modelling, Process Control, and Monitoring of Selected Biological and Advanced Oxidation Processes for Wastewater Treatment: A Review of Recent Developments. Bioengineering. 2024; 11(2):189. https://doi.org/10.3390/bioengineering11020189
Chicago/Turabian StyleParsa, Zahra, Ramdhane Dhib, and Mehrab Mehrvar. 2024. "Dynamic Modelling, Process Control, and Monitoring of Selected Biological and Advanced Oxidation Processes for Wastewater Treatment: A Review of Recent Developments" Bioengineering 11, no. 2: 189. https://doi.org/10.3390/bioengineering11020189
APA StyleParsa, Z., Dhib, R., & Mehrvar, M. (2024). Dynamic Modelling, Process Control, and Monitoring of Selected Biological and Advanced Oxidation Processes for Wastewater Treatment: A Review of Recent Developments. Bioengineering, 11(2), 189. https://doi.org/10.3390/bioengineering11020189