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Abstract: This review emphasizes the significance of formulating control strategies for biological and
advanced oxidation process (AOP)-based wastewater treatment systems. The aim is to guarantee
that the effluent quality continuously aligns with environmental regulations while operating costs
are minimized. It highlights the significance of understanding the dynamic behaviour of the process
in developing effective control schemes. The most common process control strategies in wastewater
treatment plants (WWTPs) are explained and listed. It is emphasized that the proper control scheme
should be selected based on the process dynamic behaviour and control goal. This study further
discusses the challenges associated with the control of wastewater treatment processes, including
inadequacies in developed models, the limitations of most control strategies to the simulation stage,
the imperative requirement for real-time data, and the financial and technical intricacies associated
with implementing advanced controller hardware. It is discussed that the necessity of the availability
of real-time data to achieve reliable control can be achieved by implementing proper, accurate
hardware sensors in suitable locations of the process or by developing and implementing soft sensors.
This study recommends further investigation on available actuators and the criteria for choosing the
most appropriate one to achieve robust and reliable control in WWTPs, especially for biological and
AOP-based treatment approaches.

Keywords: process control; dynamic modelling; online monitoring; real-time monitoring; wastewater
treatment; biological wastewater treatment; ASPs; SBRs; AOPs

1. Introduction

Despite the finite water resources on Earth, the demand for water is continuously
increasing. Therefore, wastewater treatment is necessary to clean and recycle used water
for consumption. Indeed, the objective of wastewater treatment plants (WWTPs) is not to
produce a profit-making product but to protect water as an asset. Additionally, releasing
untreated or inadequately treated wastewater into the environment poses risks such as
eutrophication, the release of toxic substances, heavy metals, and other harmful materials,
endangering the ecosystem. As a result, there has been a notable trend towards establishing
closed-loop wastewater treatment systems in recent years. These systems aim to reintegrate
treated water into the consumption cycle while maximizing the recycling and recovery of
nutrients, metals, and energy [1–6].

The primary objective of municipal wastewater treatment plants (MWWTPs) is to
degrade organics and nutrients. On the contrary, treating industrial wastewater is more
challenging due to its varying characteristics depending on the industry type. In MWWTPs,
the predominant organic degradation occurs in the biological treatment stage. Figure 1
illustrates the categorization of major biological treatment methods into aerobic and anaer-
obic processes [7–9]. Each of these processes is further classified as suspended-growth,
attached-growth, or hybrid-growth, depending on the dominant mechanism whereby
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microorganisms are incorporated into the treatment process. Aerobic biological treatment
processes generally dominate wastewater treatment in both MWWTPs and industrial
wastewater treatment plants (IWWTPs). However, aerobic methods may prove less effec-
tive in cases of exceptionally high organic content, prompting consideration of anaerobic
processes as the preferred biological treatment approach [10]. Commonly adopted bio-
logical processes in WWTPs are suspended-growth, among which the most frequently
observed aerobic suspended-growth biological processes, especially in MWWTPs, are the
activated sludge process (ASP) and the sequencing batch reactor (SBR) [11–13]. While
biological wastewater treatment is favoured for its economic advantages and generally
effective performance, its efficacy diminishes when addressing nonbiodegradable, recal-
citrant, and high molecular weight compounds. In recent decades, the concentrations of
these compounds have increased in urban and industrial wastewater, due to their high
usage in manufacturing and presence in final products [14].

Advanced oxidation processes (AOPs) have demonstrated notable performance in
degrading various organics, including refractory ones. These processes primarily rely
on the non-selective reaction of in situ-produced hydroxyl radicals (HO•) and other re-
active oxygen species (ROS) with organic contaminants. The reaction rates are typically
significant, ranging between 108 and 1011 M−1s−1 [15,16]. As a result, these mechanisms
have the potential to oxidize various contaminants including low-concentration, toxic, or
nonbiodegradable organics [17,18]. Some of the common AOPs with involved ROS are
shown in Figure 2. It is important to note that when compounds are degraded in certain
AOPs, complex by-products may be generated. Due to the strong atomic bonds in their
molecules, such by-products may resist further degradation, subsequently hindering min-
eralization [19,20]. This challenge is also encountered in some real WWTPs [21]. However,
some studies affirm the effectiveness of AOPs in diminishing chronic daily intake (CDI) and
hazard quotient (HQ) linked to specific recalcitrant pollutants [22,23]. Additionally, numer-
ous studies have proven that AOPs enhance the biodegradability of low-biodegradability
wastewater [14,22–25] and produce low-toxicity, biodegradable by-products compared to
the original pollutants. In some cases, even the complete mineralization of contaminants
has been reported [25]. Therefore, contemplating the utilization of AOPs as a viable strat-
egy for addressing recalcitrant pollutants merits consideration if the preliminary lab-scale
experimental assessment has been performed.

AOPs can be classified into homogeneous and heterogeneous reactions based on the
number of phases in the oxidation reaction [26]. As depicted in Figure 3, each of these
classes is divided into chemical and photochemical processes based on whether light is
involved in the process or not. Additionally, beyond the conventional AOPs outlined in
Figure 3, high-energy AOPs such as electron beam (EB) and non-thermal plasma (NTP)
have shown significant efficiency in removing specific pollutants. Their application is
particularly notable when conventional AOPs cannot achieve optimal mineralization [27].

Despite the efficiency of AOPs in removing refractory pollutants, their implementation
in full-scale applications is challenging due to the high operating costs and the need for
continuous monitoring to ensure the quality of the effluent. Optimizing AOP processes
and implementing adequate controls for them can result in maintaining treated effluent
quality within acceptable regulatory ranges while reducing operating costs.
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Over the past few decades, numerous studies have aimed to enhance the efficacy
of water and wastewater treatment technologies. These efforts involve implementing
novel treatment methods and conducting optimization studies on both traditional and
innovative approaches. Although these studies have improved the efficiency of treatment
processes, a significant number of them are limited to study processes at their steady-
state conditions. Nevertheless, most real processes do not keep operating at steady-state
conditions. In other words, operational conditions change over time due to unexpected
disturbances and uncertainties. These uncertainties encompass various factors. One factor
involves disturbances in the ambient conditions. Another factor is the fluctuation in
process inputs, such as variations in influent flow rates resulting from seasonal weather
changes [28]. Additionally, there might be abrupt variations in influent characteristics
due to the introduction of unexpected chemicals into wastewater, often discharged by
industrial sectors into the sewer [29]. Furthermore, the complex nonlinear behaviour of
processes, exemplified by the ASP under different operating conditions, adds to the array of
uncertainties. Sometimes, the uncertainty is due to the high difference between the actual
process variables and their predicted values by the developed steady-state model [30].
The dynamic behaviour of the process can be modelled and understood by studying the
changes in process output(s) over time resulting from applying known changes to the
process input variable(s).

Knowing the process dynamic behaviour, as the first crucial step in designing an
efficient control, helps to anticipate the system output changes due to disturbances or
changes in process inputs. This knowledge can be used in a feedforward (FF) or model
predictive control (MPC) to prevent undesired violations in output or a feedback (FB)
control to regulate the process by manipulating the manipulated variable (MV), after
indicating offsets. Consequently, such control systems aid WWTPs in regulating the process
and maintaining the effluent quality at desired discharge values to meet environmental
discharge regulations or potable water standards [31,32]. Minimizing costs and maintaining
process safety are other common, desirable process control goals.

The challenges in controlling biological wastewater processes stem from their inherent
complexity. This complexity is evident in the intricate dynamic responses of microor-
ganisms to elevated concentrations of unconventional pollutants. Additionally, variable
process time constants and fluctuations in influent characteristics and flow rates contribute
to these challenges. In WWTPs, the setpoints of controlled variables (CVs) are not constant
over time due to the changes in regulations, weather, and influent conditions. In these
scenarios, sophisticated control techniques can effectively regulate the process by adapting
to the new setpoint [33,34].

In a control scheme, regulating the process to reject disturbance or track the reference
trajectory can be carried out manually (open-loop system) or automatically (closed-loop
system). Automation reduces the need for human intervention and results in decreasing
operational costs. Also, a reliable and precise automatic system can maintain desired
effluent quality and process safety by fast and immediate responses to process deviation
from the desired target. Therefore, considering strict environmental discharge standards
and the importance of providing healthy drinking water for consumers, automation in
water treatment plants and WWTPs is highly beneficial and advantageous when properly
implemented. The real-time monitoring is critical to provide fast and reliable control for
WWTPs, avoiding releasing insufficiently treated water into the environment [35].

Therefore, this study aims to provide readers with a summary of dynamic modelling,
process control, and monitoring of selected biological and AOP-based wastewater treatment
processes. Considering the prevalence of the ASP and the SBR as the predominant aerobic
biological processes in WWTPs, these two processes were selected to outline their modelling,
process control, and monitoring.



Bioengineering 2024, 11, 189 6 of 44

2. System Identification/Modelling

Depending on process complexity, a dynamic model is developed using either mech-
anistic models, which rely on kinetics, chemical, and physical information, or through
system identification using experimental data. Subsequently, black-box system identifica-
tion, as illustrated in Figure 4, or data-driven models (DDM) are exclusively derived from
input–output experimental data.
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The known input, u(t), can be sinusoidal, pulse, step, or pseudo-random binary sequence (PRBS),
resulting in process output y(t) as frequency response, pulse response, or process reaction curve.

Figure 5 shows different model structures of system identification, employed to map
dynamic processes. Dynamic models are classified as linear, nonlinear, and artificial
intelligence (AI)-based models constructed from an optimization scheme. In fact, to estimate
model parameters, the weighted quadratic norm of the prediction error, VN(θ, N), must be
minimized. The expression for VN(θ, N) is given by the following equation:

VN(θ, N) =
1
N

N

∑
k=1

ε2(k, θ) (1)

where ε(k, θ) represents the difference between the actual process output (ym(k)) and the
predicted process output (y(k, θ)), with N being the number of samples in the training
data set.

ε(k, θ) = ym(k)− y(k, θ) (2)

As the complexity of a system increases, mapping its dynamic behaviour using linear
structures is less accurate. Hence, implementing nonlinear structures, including AI-based
structures, results in a dynamic model with a better fit. The parameters of each dynamic
structure, illustrated in Figure 5, are estimated based on the basic mathematical equation
presented earlier. Describing each modelling structure is out of the scope of this study and
has been discussed in our previous study [36,37]. Figure 6 illustrates the necessary steps
prior to, during, and after the system identification.

System identification is acknowledged as a valuable tool to elucidate the dynamic
behaviour of complex and nonlinear water/wastewater treatment processes, especially
biological and chemical ones such as ASPs, SBRs, and AOPs.
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2.1. Modelling Biological Treatment Processes—ASPs

The widespread implementation of biological treatment processes in WWTPs moti-
vates researchers to delve deeper for enhanced process understanding [39]. Further, the
knowledge gained of the degradation is used to optimize the wastewater treatment process
by increasing the degradation efficiency and decreasing costs. In addition, a control system
must be applied to keep the process operating at its optimal conditions by designing a
suitable control strategy. Also, it must be considered that the ASP is a nonlinear and
complex process [39]. The dynamic complexity of ASPs arises primarily from the dynamic
variations in microorganisms’ behaviour when exposed to disturbances. This complexity is
further compounded by the fact that the ASP integrates various biological and physical
processes [40]. Biological processes exhibit slower kinetics with a relatively larger average
hydraulic retention time (HRT) than chemical processes. The large HRT contributes to a sig-
nificant time delay, representing the lag between process input changes and corresponding
output responses in the control system.

Due to the significance of the ASP in wastewater treatment, many studies have been
conducted on developing activated sludge models (ASMs). As a result, standard mathemat-
ical models, including ASM1, ASM2, ASM2d, ASM3, ASM4, and ASM7, shown in Table 1,
have been developed by the International Water Association (IWA) to describe and predict
the biological behaviour of ASPs [12,41]. These models provide valuable information
for the design, operation, and control of WWTPs, helping to optimize their performance
and ensuring effective operations. Each model has a specific application and provides a
different level of detail for the treatment process.

Table 1. The main ASMs in wastewater treatment developed by the IWA.

Model Description Application

ASM1 Biological conversion of organic matter into biomass
and carbon dioxide in ASPs

Most widely used model to design/simulate
conventional ASPs

ASM2 Extension of ASM1, includes the conversion of nitrogen
and phosphorus compounds Predicting behaviour of nitrogen removal processes

ASM2d
Extension of ASM2, includes additional details and
factors affecting the performance of the
treatment process

Predicting process performance and behaviour of
nitrogen removal

ASM3 Extension of ASM2, includes phosphorus removal
through biological processes

Predicting behaviour of nitrogen and phosphorus
removal processes

ASM4 Extension of ASM2, includes phosphorus removal
through chemical precipitation

Predicting behaviour of nitrogen and phosphorus
removal processes

ASM7 Comprehensive model, combination of ASM1,
ASM2, ASM4

Predicting behaviour of nitrogen and phosphorus
removal processes

In conclusion, selecting the proper model to use depends on specific requirements in a
particular WWTP. Implementing these general models into a WWTP requires calibration,
which entails adjusting the model coefficients based on plant-specific data. Sometimes,
designing and implementing an effective process control system based on these models is
impractical due to their complex structure. Consequently, some studies have employed
reduced, modified, altered, or simplified ASMs for process control [41]. For example, Smida
et al. [41] developed a cascade high gain observer (HGO) to approximate the unknown
input values (UI) and unknown input state variables (UIS) of a reduced ASM for an ASP
by measuring only two state variables. The two state variables were dissolved oxygen
(DO) and NO−

3 concentrations. In their study, UIs were inlet ammonia and inlet substrate
concentrations, whereas the UISs were the concentration of biodegradable substrate and
the concentration of ammonia.
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In addition to standard ASMs, two benchmark simulation models (BSMs), including
BSM1 and BSM2, have been developed to evaluate the design and control strategies
for ASPs [34,42]. In fact, BSMs serve as benchmark models to compare and assess the
performance of different treatment system designs and proposed controls, while ASMs
provide a more detailed and comprehensive description of the biological and chemical
processes in WWTPs. Moreover, specialized software applications, such as SIMBA, GPS-X,
BioWin, and WEST, incorporating dynamic models for ASPs, provide valuable assistance
in analyzing and simulating wastewater treatment systems [43].

Although ASMs have shown good performance, they contain too many differential
equations requiring specific data to be calibrated. As a result, some studies have been
investigated employing other modelling methods to predict some parameters based on
monitoring alternative process parameters. For instance, to find the dynamic relationship
of the suspended solids (SS) content in the effluent of a WWTP with its influent characteris-
tics, a fuzzy partial least square-based–dynamic Bayesian network (FPLS-DBN) has been
employed [44]. This model is a combination of the Bayesian network (BN) with the fuzzy
partial least squares (FPLS) methods. It has been observed that the developed approach can
capture the nonlinearity and complexity of the process and predict the process output better
than other conventional modelling methods and better than the BN or the FPLS alone [44].
Also, in another study, monitored data from the ASP in a WWTP were used to estimate
the parameters of the state-space model representing the ASP [45]. Sadeghassadi et al. [46]
used the autoregressive with exogenous input model (ARX) structure to model the ASP,
and the results demonstrated a notable alignment between the actual and predicted data
using the developed model. Novotny et al. [47] formulated a transfer function (TF) utilizing
an autoregressive moving average stochastic model (ARMA). The TF aimed to describe the
dynamic linear interdependency of mixed liquor suspended solids (MLSS) within the ASP
and other pertinent process parameters. The data used for this formulation were collected
from the Green Bay WWTP, Wisconsin. A noteworthy aspect of this derived model lies in
its conformity with the mass balance model of the process. This alignment rendered the
developed model mechanistic in nature rather than a black-box identification. Furthermore,
in the same study, an artificial neural network (ANN) was utilized as a black-box model to
predict the nonlinear correlation between the number of filamentous microorganisms in the
ASP of the Jones Island WWTP, Milwaukee, WI, and various process parameters over time.

2.2. Modelling Biological Treatment Processes—SBR

The SBR process in a WWTP operates in a cyclic manner to treat continuously incom-
ing wastewater. The choice between the ASP (also known as conventional activated sludge
(CAS)) or SBR for an MWWTP or an IWWTP hinges upon various parameters. These
parameters include space limitations, desired effluent quality, frequency of fluctuations
in influent flow rate and characteristics [31], and cost considerations. Generally, com-
pared to CAS, the SBR necessitates a smaller footprint and demonstrates greater flexibility
in adapting to diverse operating conditions. However, its control can pose challenges
compared to CAS, given additional parameters to control, such as the number of cycles
within a specified time duration and the optimal duration of each phase. Furthermore,
experimental investigations indicated that in treating municipal wastewater, SBRs can
exhibit superior 5-day biochemical oxygen demand (BOD5) removal compared to CAS [48].
However, both CAS and SBRs demonstrated the same performance in COD removal [49].
On the other hand, for industrial wastewater, SBRs can result in a higher BOD5 and COD
removal in comparison to CAS [50]. In a theoretical assessment, SBRs demonstrated a
near-complete BOD5 removal for slowly biodegradable wastewater. In contrast, residual
BOD5 content was observed in the CAS effluent. Also, comparable oxygen consumption
and sludge generation were observed in both methods. Notably, higher nitrogen removal
was ascertained for CAS unless the HRT and the number of cycles per day for SBRs were in-
creased [51]. In terms of cost estimation, a simulation study comparing the implementation
of two CAS units in parallel against one CAS unit and one SBR in parallel for a petroleum
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refinery wastewater treatment plant (PRWWTP) revealed lower expenditures in project
construction, operation, energy, and amortization costs for the former scenario [52]. The
anticipated costs for materials, chemicals, and maintenance remained consistent between
the two configurations. Similarly, in a separate simulation study evaluating the deployment
of CAS and SBRs for a WWTP in Tehran, only chemical costs were equivalent for both
processes. All other associated costs for SBRs exceeded those for CAS [53]. ASMs and
BSMs are applicable to describe the dynamic behaviour of SBRs. Conclusively, the main
challenges ahead of dynamic modelling of biological treatment processes, including ASPs
and SBRs, are tabulated in Table 2.

Table 2. Challenges ahead of dynamic modelling of biological and AOP-based wastewater treatment
processes.

Wastewater
Treatment Process Challenges Ahead of Dynamic Modelling Actions Taken

Biological

• Complex and interactive combination of
biodegradation and physical processes;

• Complex behaviour of microorganisms in presence
of process disturbances;

• Non-linearity of the process;
• Large time delay;
• Calibration requirement of ASMs and ADMs for

each specific treatment unit;
• Need for tailored calibration methods with specific

data sets for each type of ASMs and ADMs;
• Lack of data for some process model parameters;
• Complexity of ASMs and ADMs, limiting their

application for integration into control schemes;
• Difficulty in incorporating unmeasurable process

disturbances into the process model;
• Limitation in ADMs in representing some

processes involved in AD;
• Model validation challenges due to substantial

data requirements;
• Limitation to validate some developed models by

experimental data;
• Influence of bioreactor design parameters on the

biological reaction;
• Necessity of studying dynamic hydraulic

behaviour alongside mass balances for
certain bioreactors;

• Complexity of fully understanding fouling
dynamic in biological membranes and filters;

• Necessity of investigating SMP and EPS dynamics
for MBRs and AnMBRs, in details.

• Developed standard mechanistic models by
IWA, including ASM1, ASM2, ASM2d,
ASM3, ASM4, ASM7, and ADM1,

• Developed reduced, modified, altered, or
simplified ASMs and ADMs,

• Combined ASMs and ADMs with
membrane resistance model for MBR
and AnMBR,

• Employed black-box or AI-based
approaches to model the process based on
available data.

AOP-based

• Non-linearity of the process;
• Complexity of the process mechanism;
• Incomplete data due to ROSs instability;
• Difficulty in sensitivity analysis due to process

complexity and lack of data;
• Limitation of some developed models to steady

state operation;
• Model validation challenges due to substantial

data requirements;
• Influence of reactor design parameters on

chemical reactions;
• Necessity of studying dynamic hydraulic

behaviour alongside mass balances for
certain reactors.

• Employed black-box or AI-based
approaches to model processes based on
experimental data,

• Modelled processes using the gray-box
approach.
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2.3. Modelling other Biological Wastewater Treatment Processes

While this study primarily concentrates on studying ASPs and SBRs as selected bio-
logical wastewater treatment methods, it is important to briefly discuss the modelling of
some other biological approaches, previously shown in Figure 1. Among other methodolo-
gies, it can be asserted that anaerobic digestion (AD) has achieved a more comprehensive
understanding, as evidenced by the development of the standard anaerobic digestion
model no. 1 (ADM1) by the IWA [54]. While certain researchers have identified limita-
tions in ADM1 for capturing specific aspects of the AD [55], it remains a valuable tool
for effectively describing certain anaerobic processes, such as an anaerobic contact reactor
(ACR). Furthermore, some studies have modified the parameters of ADM1 to enhance its
applicability to their specific investigated system [56]. Some other studies have employed
AI-based methods for modelling AD [57]. Modelling becomes increasingly challenging
when addressing processes that encompass both biodegradation and separation processes.
Most of the processes listed in Figure 1 involve a synergistic combination of biological and
physical processes. For instance, in the case of an aerobic membrane bioreactor (MBR) and
an anaerobic membrane bioreactor (AnMBR), the modelling of the process necessitates the
comprehensive consideration of various factors and processes occurring simultaneously.
This includes consideration of biological metabolism, substance biodegradation, membrane
separation mechanisms, the hydrodynamic behaviour of substances, particularly soluble
microbial products (SMPs) and extracellular polymeric substances (EPSs) leading to mem-
brane fouling, the specific reactor configuration, operation, and ambient conditions [58,59].
Additionally, it is imperative to consider that these processes interact with each other. For
instance, the presence of a membrane influences biomass population and diversity, and
membrane fouling can result in short circuits that impact overall membrane performance.
Modelling AnMBRs becomes significantly more complex when gas/biogas sparging is
introduced as a means of fouling control [59]. In addition, despite numerous efforts to
comprehend the behaviour and kinetics of SMPs, certain aspects remain inadequately
addressed. On the other hand, the dynamics of EPSs are understudied. It is noteworthy to
consider that most studies investigating the behaviour of either SMPs or EPSs rely only
on experimental data, which, while valuable, are less effective than examining the actual
data [58]. Same as other processes, addressing the difficulties of developing a mechanistic
model for MBRs and AnMBRs involves the application of black-box modelling. For exam-
ple, Li et al. [60] employed three deep learning (DL) methods to forecast the performance
of two AnMBR systems in a Japanese WWTP. All DL methods, including machine learning
fully connected network (MLFCN), convolutional neural network (CNN), and densely con-
nected convolutional network (DenseNet), demonstrated strong predictive capabilities for
AnMBR performance. Notably, DenseNet exhibited the best overall performance. Also, for
the modelling of MBRs, ML- and AI-based approaches have been used successfully [61,62].
In another study, Gopi Kiran et al. [63] developed an ANN-based model to predict COD
and heavy metal removal in a rotating biological contactor (RBC). It is important to note
that the IWA standard models developed for ASMs and ADMs can be incorporated into
the mechanistic modelling of processes outlined in Figure 1. For example, a modified
ASM1 model was effectively used for the dynamic simulation of a pilot-scale trickling filter
bioreactor implemented at the Phu Loc WWTP, Da Nang, Vietnam [64].

2.4. Modelling AOP-Based Treatment Processes

AOPs exhibit a complex and nonlinear dynamic for several reasons. The main rea-
son for intricate reaction mechanisms and degradation paths for AOPs is the nonselec-
tive reactions of generated ROS with various species extending beyond the target com-
pound. This also involves the nonselective reaction of a ROS with other ROS or even
itself, known as the scavenging effect, especially at higher oxidant concentrations than
the optimal amount [65,66]. Additionally, the degradation in photo-involved AOPs may
occur through both direct and indirect photolysis, adding further complexity to the pro-
cess dynamic [67–71]. Given the complexity and nonlinearity of AOPs, in studying their
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dynamics, the tendency is towards utilizing system identification. For instance, Shahwan
et al. [72] studied the transient behaviour of the ultraviolet (UV)/H2O2 process by mod-
elling the degradation of polyvinyl alcohol (PVA) in a photoreactor. This modelling was
conducted by estimating the first-order plus time delay (FOPTD) and the second-order plus
time delay (SOPTD) TFs. Both the graphical method and MATLAB system identification
toolbox were employed to estimate TFs. In their study, the process response to each step
change in the [H2O2]in/[PVA]in mass ratio, was measured by measuring time-varying pH
in the effluent. Subsequently, for each experiment, a separate TF was identified. In most
experiments, the FOPTD-TF demonstrated more accuracy than the SOPTD-TF in describing
the process dynamic.

Hamad et al. [73] studied the UV/H2O2 process for PVA degradation as a multi-input
multi-output (MIMO) system. In their study, process inputs were inlet feed flow rate
(mL/min) and inlet H2O2 concentration (mg/L), process outputs were residual H2O2
(mg/L) and effluent total organic carbon (TOC) (mg/L), and disturbance was PVA concen-
tration in the feed (mg/L). Experimental data from step change experiments were fitted to
a fourth-order state-space model to describe the dynamic behaviour of the process success-
fully. Recently, Lin et al. [74] used ARX, a nonlinear autoregressive with exogenous input
model (NARX) (along with different activation functions), and Hammerstein–Wiener (HW)
structures to describe the same system as a single-input single-output (SISO). In their study,
the process input was inlet H2O2 concentration, and the process output was the effluent pH.
Their investigation involved the study of the dynamic system in two scenarios. The first
scenario was operating a single photoreactor and the second scenario was the operation of
two photoreactors in series. Due to the high nonlinearity of the process, the ARX model
showed poor fitness in both studied scenarios (almost 65% fitness). In investigating the
single-photoreactor, fitting the experimental data to the HW structure resulted in 68.78%
and 69.49% fitness of the training data and validation data, respectively, to the developed
model. However, the open-loop stability test and whiteness test failed. In the second sce-
nario [75], fitting the experimental data to the HW structure led to a relatively low fitness
level for the training and validation data, with values of 50.6% and 24.76%, respectively.
Also, modelling the process using NARX, along with the tree partition function, resulted in
the best fit in the single-photoreactor scenario. In that case, the highest fitness of 91.59%,
lowest final prediction error (FPE), and lowest mean squared error (MSE) were obtained.
However, the best model to describe the process when two identical photoreactors were
operating in series was achieved by NARX accompanied by the sigmoid activation function.

The COD removal and colour removal of synthetic textile wastewater in a Fenton
process was modelled using the backpropagation function artificial neural network (BP-
FANN) approach. These models considered the inlet Fe2+ flow rate, inlet H2O2 flow rate,
measured pH, and measured oxidation–reduction potential (ORP) in the oxidation reactor
as influential factors. Then, to obtain the desired COD/colour removal, Fe2+ and H2O2
dosages were adjusted manually by constantly comparing the predicted process response
with the desired one. In fact, the process response was predicted using an ANN model
alongside information on monitored pH and ORP of the system and initial dosages of
Fe2+ and H2O2 [76]. While that study claimed to address online monitoring and control
of the process, it is important to note that the monitoring and computation time intervals
were relatively large, allowing the system to reach a steady state. Thus, further research is
required to explore the dynamic behaviour of the system during transient states.

Foschi et al. [77] implemented different linear regression approaches, ANN, and
two-part ANN (TPANN), to model the UV disinfection process using data from the S.
Rocco WWTP, Milan, Italy. The process variables were the concentration of E. coli in
the influent, the number of operating UV lamps (as a representative of UV intensity),
turbidity, and temperature. The process response was the concentration of E. coli in the
effluent. Djeddou and Loukam [78] modified the performance of the radial basis function
neural network (RBFNN) model to predict ozonation disinfection by combining it with
the wavelet transformation function. Predicted values for ozone dosing (mg/L) using a
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hybrid wavelet radial basis function-based neural network (WRBFNN) model showed a
good agreement with the actual data. The actual data were obtained from the Oued Al-
Athmania drinking water treatment plant. Wang et al. [79] employed the RBFNN to model
the nonlinear dynamic behaviour of the primary ozonation step of the water disinfection
process in the Xiangcheng drinking water treatment plant (XWTP), Suzhou, China. The
RBFNN model was trained using different algorithms, including gradient descent (GD),
genetic algorithm (GA), and particle swarm optimization (PSO). Among them all, RBFNN-
PSO showed the best convergence and the lowest prediction error. Dongsheng et al. [80]
developed the ozonation disinfection model using RBFNN to map the complexity and
nonlinearity of the process. Abouzlam et al. [81,82] studied the catalytic ozonation as a
single-input multi-output (SIMO) system. In their study, CVs were the concentration of
ozone gas in process effluent and the absorbance of UV340 at effluent as an indicator of
pollutant concentration. The MV was the ozonator inlet power. The nonlinear Wiener
model and FOPTD-TF were developed successfully to identify the process. Although
employing system identification helped to describe the dynamic behaviour of catalytic
ozonation mathematically, the developed model was entirely statistical. Hence, in a later
study, Abouzlam et al. [83] investigated the dynamic behaviour of the process using
the gray-box approach. In that study, physically meaningful differential equations were
developed by applying mass balance equations over the ozonation reactor. Given the
existing knowledge of certain time-varying physical parameters derived from experimental
data, the Levenberg-Marquardt (LM) algorithm was employed to estimate parameters for
the dynamic model. The outcomes of their study demonstrated a good convergence of the
LM algorithm. Consequently, a nonlinear mechanistic dynamic model was developed to
describe the catalytic ozonation of the synthetic wastewater. In developing mechanistic
models for AOPs, a comprehensive understanding of the process is imperative to propose
optimal process mechanisms. Also, the identification of the critical reactions responsible
for pollutant degradation is essential. This identification often involves estimating reaction
rate constants or conducting specific experimental studies. For instance, in AOPs, the
implementation of trapping tests is beneficial. In trapping tests, a particular reagent is
introduced to the reaction to react with a specific ROS selectively. This helps identify the
main ROS responsible for pollutant degradation [20,23,25,84–86]. If the contributions of
other ROS to the pollutant degradation are negligible, omitting related reactions from
the mechanistic model enhances computational efficiency while maintaining accuracy
in representing essential reactions. Table 2 outlines the main difficulties in the dynamic
modelling of AOP-based wastewater treatment processes and the actions that have been
taken to resolve them.

Later, the developed dynamic models for the processes will be utilized in designing
appropriate controllers.

3. Controlling Treatment Processes

After developing an appropriate dynamic model for the treatment process, the model
can be implemented in a process control scheme to regulate the process to reject distur-
bances or track the trajectory reference. This approach is called process model-based control
(PMBC). Table 3 shows the different types of studied and proposed control methods in
biological and AOP-based wastewater treatment processes. Table 4 provides details of
recent studies on controlling biological and AOP-based wastewater treatment processes.
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Table 3. The studied and proposed control methods in biological and AOP-based wastewater
treatment processes.

Type of Control
Method Control Strategy Note

Linear control

P/PI/PID
[40,75,87–94]

Proportional control (P):
• The simplest control strategy;
• Control action proportional to the error signal;
• Applicable in on/off and continuous control;
• Providing stable control within a small-time delay;
• Oscillatory response with overshoot for large disturbances.

Proportional-Integral control (PI):
• Control action based on both current error and cumulative sum of past

errors;
• Integrating integral control for steady-state error elimination;
• Providing stable control within a moderate time delay;
• Oscillatory response for high values of integral gain;
• Slower response than P control.

Proportional-Integral-Derivative Control (PID):
• The most implemented control in WWTPs;
• Control action based on current error, cumulative sum of past errors, and

the rate of change in error over time;
• Integrating derivative control for overshoot elimination;
• Improved response time;
• Providing stable control within a larger time delay;
• Ability to reject more significant disturbances;
• Complex tuning in some cases;
• Precise if tuned based on an accurate process model;
• Low performance for highly nonlinear processes.

IMC
[88,95,96]

• Internal model control;
• A model-based control;
• Simple design and implementation if process model is achievable;
• Applicable for a wide range of systems;
• Control action based on model-based estimation;
• Beneficial for the processes with a long-time delay;
• Improper for nonlinear or time-varying systems.

Pole replacement
[97–99]

• A model-based control;
• Involving pole replacement to achieve a desired performance;
• Beneficial for unstable, poorly damped, high order, or large-delayed

systems;
• Improved response by reducing overshoot, settling, and rise time;
• Complex and knowledge-demanding control method.

Cascade
[12,87,88,100–106]

• A multi-loop control strategy;
• Adjusting subsequent controller setpoint based on primary controller

output;
• Improved control performance through problem decomposition;
• Fast and accurate process control performance;
• Requiring careful consideration of system dynamics;
• Requiring proper controllers’ tuning.
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Table 3. Cont.

Type of Control
Method Control Strategy Note

Linear control

FF
[107,108]

• Early disturbance indication and corrective action generation;
• Suitable for processes with prolonged delays and frequent disturbances;
• Applicable when the disturbance is measurable;
• Enhancing control performance through FB control integration.

Adaptive
[39,79,91,92,99,109]

• Self-tuning capability by changing process behaviour;
• Beneficial for systems with variable dynamics.

Optimal
[81,82]

• A model-based control approach;
• An optimization-based control strategy;
• Optimized control output;
• Better performance than conventional controls;
• Requiring excessive computations;
• Inefficient for real-time control of overly complex systems.

MPC
[73,79,80,99]

• A model-based control approach;
• Optimization of control actions for short time intervals using process

response prediction;
• Applicable for MIMO systems;
• Suitable for complex and interdependent processes;
• Robust control by constraining process variables;
• Requiring excessive computations;
• Inefficient for real-time control of overly complex systems.

Nonlinear
control

Geometric nonlinear
[110,111]

• Using invariant sets to capture nonlinear dynamics;
• Requiring excessive computations;
• Inefficient for real-time control of overly complex systems.

Gain scheduling
[99,110]

• Control of diverse operating regimes by adaptable control gains;
• Gain scheduling based on process models;
• Dynamic control by switching between sets of control gains.

NMPC [12,112] • MPC control for a nonlinear process.

NMC [113–115] • IMC control for a nonlinear process.

AI-based control

Expert system
(Knowledge-based)
[102,106]

• Intelligent-based control systems;
• Emulating human expert thinking for generating control action.

Fuzzy logic-based
[40,91,106,116]

• Implementing FLC or fuzzy-based process models in the structure of
other control methods such as MPC or IMC.

ANN-based
[75,76,79,95,96,112,117–120]

• Efficient in capturing the nonlinearity of the system;
• Used with model-based control approaches;
• The most common ANNs in wastewater treatment applications:

feedforward neural networks (FFNN), RBFNN, and recurrent neural
networks (RNN).

Nature-inspired
algorithm-based [121]

• Efficient in capturing the nonlinearity of the system;
• Problem-solving algorithms derived from natural processes such as

ANN, GA, PSO, and ant colony optimization (ACO);
• Integration into control schemes for process modelling or control action

optimization.

Hybrid AI-based
[93,122–125]

• Integration of diverse AI-based methods for enhanced benefits and
mitigation of individual limitations.
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Table 4. Recent studies on controlling biological and AOP-based wastewater treatment processes.

Wastewater
Treatment Process

Influent Wastewater
Data Origin Reactor Size Dynamic Process

Model Control Strategy Control Parameters Study Focus and Other
Information Reference

ASP Visakhapatnam
MWWTP, India

Full scale: two anoxic
tanks, 663 m3 each,
three aerobic tanks,
883 m3 each

ASM1 in BSM1

PI,
FPI,
MPC,
FLC

CVs: DOr,
[
NO−

3,

]
r
;

MVs: aeration rate,
internal recycling flow
rate

Simulation; controller tuning
methods:
iSIMC for PI, a proposed
method for FPI

[40]

ASP
Default data for
typical MWW data
embedded in BSM1

Full scale: two anoxic
tanks, three aerobic
tanks

BSM1
Data-driven iterative
adaptive critic (IAC)
control

CVs: DO,
[
NO−

3,

]
r
;

MVs: oxygen transfer
coefficient, internal
recycling flow rate

Simulation; outperformance
of IAC over PID [109]

ASP
Default data for
typical MWW data
embedded in BSM2

Full scale

System identification:
adaptive fuzzy
neural network
(AFNN) in BSM2

Data-driven MOPC
alongside TMOOA

CVs: DO, NO−
2,r;

MVs: oxygen transfer
coefficient, internal
recycle flow rate

Simulation [126]

ASP Făcăi WWTP,
Craiova, Romania

Full scale: anoxic tank,
3375 m3 and aerobic
tank, 15,000 m3

A modified ASM by
Nejjari et al. [127]

Adaptive
multivariable control

CVs: DO, inlet
wastewater
concentration; MVs:
aeration rate, RAS rate

Simulation [39]

ASP Toulouse City sewer
system, France

Pilot scale:
a bioreactor, 0.03 m3 ASM1 - - Simulation; sampling time:

20 min [41]

ASP IWW, unknown food
industry

Pilot scale: a bioreactor,
0.1 m3

System identification:
FOPTD-TF by
graphical method

Adaptive Gain
scheduling

CV: DO; MV: aeration
rate

Simulation and
implementation; controller
tuning method: pole-zero
allocation

[99]

ASP Unknown WWTP
Full scale: one anoxic
tank and two aerobic
tanks

ASM1 in SIMBA
toolbox, MATLAB Dual QFT loop CVs: DO,

[
NO−

3,

]
eff

;
MV: aeration rate

Simulation [128]
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Table 4. Cont.

Wastewater
Treatment Process

Influent Wastewater
Data Origin Reactor Size Dynamic Process

Model Control Strategy Control Parameters Study Focus and Other
Information Reference

ASP Kartuzy WWTP,
Northern Poland

Full scale: four aerobic
tanks

ASM2 in SIMBA
toolbox, MATLAB

Hierarchical
two-level NMPC

CV: DO; MV: aeration
rate

Simulation and
implementation; sampling
time: 5 min

[101]

ASP LNMIIT WWTP,
Jaipur, India

Pilot scale: Capacity of
125 KLD - PID implemented in

a PLC controller
CV: DO; MV: aeration
rate

Simulation and
implementation; aeration
rate regulation by installing
VFD

[129]

ABAC Nine Springs WWTP,
Madison, WI, USA

Pilot scale: five anoxic
and aerobic tanks,
2180 L total volume

ASM1 in BSM1 Cascade of PI-P
controllers

CV:
[
NH+

4
]

eff;
MV: aeration rate

Simulation and
implementation [87]

ABAC
Default data for
typical MWW data
embedded in BSM1

ASM1 in BSM1 Cascade of FLC-PI
controllers

CV: DO; MV: aeration
rate

Simulation; controller tuning
method:
IMC-based for PI,
sampling time: 15 min

[88]

SBR Swarzewo WWTP,
Poland

Full scale: three anoxic
tanks, 5000 m3, three
aerobic tanks, 6500 m3

ASM2 in SIMBA
toolbox, MATLAB

Cascade supervisory
sequential controller
(SSC)-NMPC

CV: DO; MV: aeration
rate

Simulation; sampling time:
2 min [12]

SBR
Unknown (data is
available in the
study)

Full scale ASM2d in MATLAB Fuzzy control CV: DO; MV: oxygen
transfer coefficient Simulation [130]

SBR Cerlà WWTP, Spain Pilot scale -
On/off, PID, fuzzy
control implemented
in Labwindows®

CV: DO; MV: aeration
rate

Simulation and
implementation;
outperformance of fuzzy
control

[131]
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Table 4. Cont.

Wastewater
Treatment Process

Influent Wastewater
Data Origin Reactor Size Dynamic Process

Model Control Strategy Control Parameters Study Focus and Other
Information Reference

Oxidation ditch Yumoto WWTP,
Japan Full scale ASM3 and ASM2d

in WEST
Combination of FB
and FF

CV: OR;
MV: aeration rate

Simulation and
implementation [108]

MBR Unknown WW Pilot scale FFNN, RBFNN,
NARXNN IMC

CVs: flux, TMP;
MV: permeate pump
voltage

Simulation [62]

Series of AD+MBR
Mixture of WW from
Palermo WWTP, Italy,
and synthetic WW

Pilot scale: anaerobic
tank, 62 L, anoxic tank,
102 L, aerobic tank,
211 L, MBR tank, 36 L

Integration of
modified ASM2d and
physical sub-model

Cascade of PI
controllers

CVs: DO,
[
NH+

4
]

eff,[
NO−

2,

]
eff

; MV:

aeration flow rate

Simulation [103,132]

Up-flow anaerobic
fixed bed reactor

Synthetic WW, COD
= 8300 mg/L

Lab scale: cylindrical
reactor, 1.8 L - Rule-based

supervisory control

CVs: pH, gas flow rate,
methane content; MV:
influent flow rate

Simulation and
implementation; sampling
time: 2.5 min for pH, 30 min
for gas flow rate

[102]

Up-flow sludge bed
filter

Synthetic
ethanol-contained
WW representing
winery WW

Pilot scale: 1150 L Modified ADM1 Cascade of PID
controllers

CVs: [VFAs]eff,
Qmethane, eff; MV:
influent flow rate

Simulation; controller tuning
method: ISE [104]

AnMBR Carraixet WWTP,
Valencia, Spain

Full scale: anaerobic
tank, 1300 L,
two membrane tanks,
800 L each

Resistance-in-series
filtration

Hierarchical control,
lower layer: PID and
on/off, upper layer:
fuzzy and rule-based
controllers

CVs: fouling rate, TMP,
membrane
permeability, SRF;
MVs: influent flow rate,
back-flushing initiation
and duration, etc.

Simulation; controller
tuning: trial and error for
PID, IAE for fuzzy

[106]

UV/H2O2
Synthetic
PVA-contained WW

Lab scale:
series of two
photoreactors, 0.92 L
total volume

System identification:
ARX, NARX, HW FB-PID CV: effluent pH; MV:

[H2O2]in

Simulation; controller tuning
method: IAE,
sampling time: 8 min

[74]
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Table 4. Cont.

Wastewater
Treatment Process

Influent Wastewater
Data Origin Reactor Size Dynamic Process

Model Control Strategy Control Parameters Study Focus and Other
Information Reference

UV/H2O2
Synthetic
PVA-contained WW

Lab scale: series of two
photoreactors 0.92 L
total volume

System identification:
ARX, ARMAX,
standard TF,
state-space

MPC

CVs: [TOC]eff,
[H2O2]residual; MVs:
[H2O2]in, feed flow
rate; Disturbance:
[PVA]feed

Simulation; sampling time:
30 s [73]

Catalytic ozonation

Synthetic WW:
paranitrophenol
solution,
COD = 500 mg/L

Lab scale: reactor, 19 L

Grey-box
identification:
combining
experimental data
with mass balance

-
CVs:

[
O3,gas

]
outlet,

UVA340,eff; MV:
ozonator power

Simulation; sampling time:
8 s [83]

Ozonation
disinfection

Xiangcheng WWTP
(XWTP), Suzhou,
China

Full scale
System identification:
RBFNN trained by
PSO

Adaptive MPC
CVs: ozone exposure,[
O3,gas

]
residual; MVs:

QO3,inlet,
[
O3,gas

]
inlet

Simulation and
implementation [79]

Catalytic ozonation

Synthetic WW:
paranitrophenol
solution,
COD = 500 mg/L

Pilot scale: Reactor,
19 L

System identification
TF method,
parameter estimation
by LM algorithm

Optimal linear
quadratic (LQ)
control

CVs:
[
O3,gas

]
outlet;

UVA340,outlet; MV:
ozonator power

Simulation [81,82]

UV and UV/TiO2
disinfection

Miao-Li City sewer
system, Taiwan Lab scale System identification:

BPFNN Manual control
CV: Total coliform
counts in the effluent,
MV: QWW,in

Simulation and
implementation [133]

Fenton

Synthetic textile WW
(PVA+ Reactive Blue
49 (RB49) and
Reactive Black B
(RBB) dyes)

Lab scale: initial pH
adjusting tank, 0.9 L,
main oxidation tank,
1.2 L, second pH
adjusting tank, 1.2 L,
settling tank, 0.9 L

System identification:
BPFNN ANN-based control

CVs: ORPoxidationtank,
pHoxidationtank; MVs:
F2+ dosage, H2O2
dosage

Simulation and
implementation; sampling
time: 30 min

[76]

Notes: MWW: municipal wastewater; IWW: industrial wastewater; MOPC: multi-objective predictive control; TMOOA: transfer multi-objective optimization algorithm; QFT: quantitative
feedback theory; LNMIIT: LNM institute of information technology; KLD: kilo liter per day; VFD: variable frequency drive; OR: oxygen requirement; NARXNN: nonlinear autoregressive
exogenous neural network; TMP: transmembrane pressure; VFA: volatile fatty acid; SRF: sludge recirculation flow; IAE: integral of absolute error; ARMAX: autoregressive moving
average with exogenous input; UVA: UV absorbance; WW: wastewater.
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3.1. Controlling Biological Treatment Processes—ASP

With respect to the control of ASP, numerous studies have focused on regulating
aeration to control DO, a key factor for maintaining high effluent quality while minimizing
energy consumption, which are two main concerns of ASPs. Aeration adjustment is per-
formed manually or automatically using on/off or deviation valves. These valves receive
their signals from the controller to minimize the DO deviation from its setpoint [130]. To
regulate DO and nitrate concentration in specific points of a biological WWTP, Tejaswini
et al. [40] designed and studied the performance of four different types of control ap-
proaches, including proportional–integral (PI), fractional order proportional–integral (FPI),
MPC, and fuzzy logic control (FLC). In their study, return activated sludge (RAS) and
aeration flow rates were manipulated to regulate the process. The performance of designed
controllers was evaluated using the BSM1 scheme. Simulation results showed the accept-
able performance of the PI controller. However, in the case of FPI, a reduced integral square
error (ISE) index, a statistical metric for assessing controller performance, was achieved.
Additionally, it was observed that the FLC can significantly decrease ammonia concentra-
tion compared to other control methods. The slightest fluctuations in total nitrogen (TN)
and ammonia in effluent were also observed for FLC and MPC. The best setpoint tracking
was observed for MPC. In fact, MPC can be concluded to be the best control approach
in their study because despite the significant influence of FLC on process performance,
implementing it can significantly increase the power cost of aeration. In addition, generally,
when advanced controllers were introduced, the effluent quality index (EQI) and opera-
tional cost index (OCI) decreased significantly by 19.89% and 5.24% for MPC and by 20.9%
and 4.63% for the FLC, respectively. Ammonia-based aeration control (ABAC) is a control
method in biological treatment. It controls DO in the aeration tank based on measured
ammonia in its effluent rather than keeping DO at a constant setpoint [117]. ABAC studies
are mainly performed using the BSM1 benchmark and have resulted in decreasing oxygen
consumption as well as increasing ammonia removal efficiency [83]. Husin et al. [117]
studied and developed an ANN-based ABAC. The BSM1 simulation results demonstrated
that, compared to PI-ABAC, ANN-ABAC led to the reduction in the aeration energy cost
index (AECI) by up to 23.86%. Additionally, it resulted in an enhancement of the EQI by
1.94% and the reduction in the OCI by 4.61%. Also, satisfactory results were observed in
decreasing the number of TN violations in effluent by 28.567% for dry and stormy weather
and 40% for rainy weather. Wang et al. [109] developed a control scheme for an MWWTP to
maintain the DO and nitrate concentration at their desired setpoints. The iterative adaptive
critic (IAC) method was applied in their study to cope with the process complexity. The
outcomes revealed a notably superior performance of the developed data-driven IAC
control compared to the conventional PID control.

An effective control strategy for simultaneously determining an appropriate setpoint
and tracking it is the two-layered hierarchical control (cascade) strategy. First, the developed
algorithm in the upper layer determines the lower layer setpoint, and subsequently, the
lower layer tracks the setpoint. It has been observed that a multi-loop control strategy
significantly increases the performance of WWTP processes [100]. In another study reported
by Petre et al. [39], ORP in each of the anoxic and aerobic tanks of the ASP was monitored as
a representative indicator of carbonaceous substance content. Their study aimed to achieve
a setpoint of 1.5 mg/L for DO in the aerobic basin by adjusting inlet wastewater and air
flow rates. Therefore, they designed and simulated an adaptive control to monitor DO and
concentration of wastewater in the aeration tank of a multivariable ASP in a real WWTP.
Petre et al. [39,87] compared the performance of continuous ABAC with intermittent
ABAC for a pilot-scale ASP. In intermittent mode, the setpoint for NH+

4 concentration
was defined in the range of 2–5 mg N/L. If the NH+

4 concentration was less than 2 mg
N/L, the aeration was turned off through a cascade-PI control loop. Alternatively, if the
measured concentration of ammonia was 5 mgN/L or higher, the aeration was kept on.
In addition, having a nitrite concentration of zero or less than 3.5 mgN/L was enough to
keep the process in air-on mode. During the aeration-on mode, DO was kept at 0.7 mg/L,
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which is a low-DO setpoint. The aim was to adjust microorganisms to operate in low-DO
conditions to save energy. The lower proportional controller adjusted the current DO
with a low-DO setpoint by manipulating the flow rate of inlet air. On the other hand, in
continuous mode, there was a solo setpoint of 5 mgN/L for ammonium concentration.
Also, DO in the inner loop was continuously adjusted between 0.1 and 0.6 mg/L to
achieve the ammonium setpoint. Both operational modes exhibited excellent efficiency
in ammonia degradation, TN removal, and total phosphorous (TP) removal, surpassing
90%, 60%, and 90%, respectively. However, the intermittent operating ABAC showed better
performance in nitrification–denitrification. Another study explored the implementation of
hierarchical FLC-PI control by employing BSM1. In that arrangement, the FLC supervised
the PI controller. The outcome showed a notable enhancement in DO setpoint tracking.
The proposed control improved the quality of ASP effluent by up to 20.3%. In addition,
effluent TN and ammonia concentration variations decreased considerably due to the DO
setpoint improvement. However, the proposed control scheme showed a minor increase
in aeration energy (AE) consumption [88]. A nonlinear model predictive control (NMPC)
was formulated in a separate study for DO regulation. This approach involved employing
a self-organizing fuzzy neural network (SOFNN) to model the dynamics of the ASP and
implementing an adaptive second-order LM algorithm for control of the process. The
effectiveness of the proposed control was validated for both varying and fixed set-point
scenarios using BSM1 and experimental data [112]. Further, Sadeghassadi et al. [33]
proved that employing ANN or fuzzy models as nonlinear predictive models in the MPC
structure enhances control performance. In another study, Smida et al. [134] exploited a
reduced ASM in the structure of an output feedback predictive control (OFPC) to control
nitrogen concentration in the effluent of the ASP. The simulation results demonstrated
a good estimation performance. Finally, according to Gu et al. [135], advanced control
methodologies, including ANN and fuzzy logic, as well as hybrid approaches such as
self-adaptive fuzzy PID control, demonstrated enhanced efficiency in aeration control.

3.2. Controlling Biological Treatment Processes—SBR

In SBRs, an optimal control system determines and adjusts the duration of the entire
treatment process, the duration of each cycle, and other operating conditions, including DO,
based on online measurements of relevant indicators [136]. In the following, a summary of
some recent studies on the control of the SBR is presented.

Piotrowski et al. [12] designed a two-layered hierarchical control scheme for an SBR
process. A supervisory sequential controller (SSC) controlled the required number and
duration of oxidation cycles in the SBR according to a dominant algorithm. In addition, the
second algorithm in the SSC, which was an NMPC, controlled the DO level in the SBR tank.
The DO level was controlled such that it coped with the fluctuations in the influent flow
rate, without altering the effluent quality. In their study, sequential quadratic programming
(SQP) was implemented to solve the NMPC optimization problem. Their study was an
attempt to improve the performance of the current SBR control system in a WWTP in
Poland. The results of their study showed that the performance of the proposed control
system was promising. In another study by Dries [31], aeration in an SBR was controlled
through an on/off method by monitoring DO in the system over time and maintaining it
at 2–3 mg/L. Also, the oxygen uptake rate (OUR) was determined online by calculating
the slope of the DO curve. After a minimum of 30 minutes of aeration, the duration of
the aerobic stage was determined based on the difference between the current OUR value
and its value at the past sampling time. Achieving OUR of 15 mg/L.h and a maximum
OUR difference of 1 mg/L.h between two sequential sampling times were determined
as the aeration ending point indicator. Monitoring ORP during the anoxic filling of an
SBR revealed crucial information. The point at which the slope of the ORP curve versus
time changed by −50% signified the termination of the anoxic denitrification stage. This
transition indicated the starting time for the aeration, which was the subsequent phase. It
should be considered that at the initial point of the anoxic filling phase, DO was less than



Bioengineering 2024, 11, 189 22 of 44

0.5 mg O2/L, and controlling the SBR through monitoring the reduction in the ORP slope
started right after filling the tank with a minimum amount of wastewater and continued to
the ending point of the anoxic phase. In addition to the ORP reduction trend, reaching the
maximum capacity of the SBR tank was another indicator for terminating the anoxic filling
stage [31]. In a study by Dries [31], the Nessler, cadmium reduction, and gravimetrically
methods were used to measure ammonium, nitrate, and MLSS, respectively. The results of
their study demonstrated that implementing the proposed SBR control system increased the
efficiency of the process and saved time and energy. The process was modified by adjusting
operation conditions, including the ratio of the fed wastewater to microorganisms, duration
of SBR phases, and rate of exchanging the volume. The adjustment was performed based
on the characteristics of activated sludge (AS). The results of that study have encouraged
industries to implement SBRs for treating high-ammonia wastewater. Furthermore, in
controlling the nitrification process in a lab-scale bioreactor, van Rooyen et al. [137] kept
the biological reaction rate at its maximum amount by monitoring and controlling the pH
of the process. The pH-based control system was used because of the importance of pH
in nitrification. Indeed, on converting each mole of ammonia to nitrate, one mole of H+

was produced. Consequently, it was concluded that pH is a reasonable indicator of process
activity. To control the pH in the system such that the process operated at its highest yield,
whenever a pH change was observed, hydroxide (through dosing potassium hydroxide
(KOH)) was added to the system to compensate for the pH drop. After a while, observing
a constant pH indicated ammonia extinction in the bioreactor and marked the proper time
to empty the tank and refill it with a new substrate. Hydroxide dosing in their study was
controlled by an FB-PI-control scheme after each pH reading at 30-min intervals.

3.3. Controlling other Biological Treatment Processes

Although exploring control of other biological treatment processes than ASPs and
SBRs is not the focus of this study, a brief mention of such processes is included in this
section and Table 4. The primary control objectives for most of the biological wastewater
treatment processes outlined in Figure 1 are to maintain the effluent quality and/or mini-
mize costs, energy consumption, and greenhouse gas (GHG) emissions. Effluent quality
control in biological filter or membrane-based processes, such as trickling filters, RBC,
MBRs, or AnMBRs, is more challenging compared to processes that only involve biological
treatment. The optimal control of these processes requires controlling both the filtration
and biological processes. Adjusting process parameters such as HRT, sludge retention time
(SRT), carbon-to-nitrogen ratio, alkalinity, pH, or temperature can regulate the biological
process [138,139]. On the other hand, fouling control can be achieved in an open-loop
or closed-loop manner by manipulating flux, initial time and duration of backwashing,
relaxation, and permeation stages or scouring gas/biogas purging [59,138,139]. Mahmod
et al. [62] explored several ANN-based structures to identify the most effective one in
capturing the dynamic behaviour of a pilot-scale MBR system. The results of their inves-
tigation revealed that RBFNN exhibited remarkable accuracy in predicting the process
output. Subsequently, the developed RBFNN model was integrated into an internal model
control (IMC) structure to regulate flux and transmembrane pressure (TMP) by adjusting
the voltage of the permeate pump. The implemented RBFNN-IMC system demonstrated ef-
ficient disturbance rejection and precise tracking of the setpoint trajectory. In another study,
Robles et al. [105] designed a multi-loop control system for an AnMBR by incorporating
both on/off and PID controllers. Throughout their investigation, each process parameter
was controlled by manipulating an appropriate input parameter in an FB-SISO loop. This
led to the formation of a closed multi-loop system capable of effectively regulating the
process. The performance of a laboratory-scale up-flow anaerobic fixed bed reactor was
controlled through a cascade of P controllers supervised by a rule-based controller. The pH,
gas flow rate, and methane content in the effluent were the CVs, while the MV was the inlet
wastewater flow rate [102]. Mannina et al. [103,132] designed a cascade of PI controllers to
regulate ammonia and nitrite concentration by manipulating aeration in a series of AD and
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MBR bioreactors. In another study, García-Diéguez et al. [104] designed a cascade of PID
controllers to control volatile fatty acid (VFA) concentration and methane flow rate at the
outlet of a pilot-scale up-flow sludge bed filter by manipulating the inlet feed flow rate. The
simulation results demonstrated the effectiveness of the proposed control, showcasing its
capability to successfully reject even severe disturbances. In conclusion, beyond addressing
effluent quality, the efficiency of biogas generation, and the control of fouling are essen-
tial considerations in the control of AD-based and filtration-based biological treatment
methods, respectively. Also, Klaus et al. [123] implemented a pH-based control for the
aeration of a deammonification moving bed biofilm reactor (MBBR) to enhance the process
performance. Indeed, by monitoring effluent NH+

4 concentration, conductivity, and pH,
it was observed that the pH is the best representative of the residual alkalinity, indicating
the activity of nitrifier bacteria. Conclusively, implementing pH-based aeration control
for deammonification MBBR prevented over-aeration and under-aeration. This improved
ammonia removal by up to 90%. Also, alkalinity depletion was effectively prevented.

3.4. Controlling AOP-Based Treatment Processes

The main challenges associated with implementing AOP-based processes in full-scale
include their high operating costs and the risk of effluent quality violation in the presence
of disturbances, which is attributable to their short time delay. As a result, reliable control
systems must be designed and implemented for these processes to maintain effluent quality
and reduce operating costs. Some studies regarding this matter are summarized in the
following paragraphs.

Hamad et al. [73] designed an MPC scheme to regulate the PVA degradation process in
two UV/H2O2 photoreactors in series, by integrating the state-space model of the process.
The results of their study demonstrated the effective performance of the proposed control
in achieving setpoint tracking for effluent TOC and residual H2O2. This was accomplished
through the regulation of inlet wastewater flow rate and inlet H2O2 concentration. Lin
et al. [75] developed dynamic models using system identification techniques to map the
nonlinearity of the UV/H2O2 process. Later, they employed the best-developed models
in designing controllers. Different controllers (P, PI, and PID) were tuned based on devel-
oped ARX and NARX-sigmoid models for two photoreactors in series. It was observed
that ARX-PID and ARX-sigmoid-PID have the best performance of all. However, the
response of the NARX-sigmoid-PID was sluggish, and the ARX-PID had a considerable
overshoot [36,37,75].

One crucial matter in water disinfection using ozonation is adjusting ozone dosing.
As a result of optimal ozone dosing, the disinfection performance is maintained at a
high level, and the probability of producing bromate by-products at high residual ozone
concentrations stays low. Additionally, this adjustment is cost-effective as it prevents
ozone wastage and conserves both oxygen and electricity. Wang et al. [79] designed an
adaptive NMPC control for the main ozonation step of the water disinfection process in
an XWTP, Suzhou, China. They utilized a developed RBFNN model in the structure of
NMPC. The control goal in their study was to maintain the residual ozone in the effluent
(mg/L) and ozone exposure (mg/L min) at their desired values by adjusting the inlet
ozone gas flow rate (L/min) and the concentration of ozone in the inlet gas (mg/L). In
the designed adaptive control, whenever the root mean square error (RMSE) was greater
than 0.2, weights of the RBFNN model were updated using the recursive least square
(RLS) algorithm. The performance of the adaptive RBFNN-MPC was compared with the
performance of a PI control scheme. Based on the MATLAB simulation results, the MPC
controller exhibited a smaller overshoot, shorter settling time, and reduced integral of
absolute error (IAE) compared to the PI controller. Also, they observed when the adaptive
RBFNN model was embedded in MPC control, closed-loop performance was much better
than embedding the fixed RBFNN in the MPC structure. Experimental data obtained
after the implementation of the proposed control strategy in XWTP verified the excellent
performance of adaptive RBFNN-MPC. In another study, Dongsheng et al. [96] deployed
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the same developed RBFNN model, describing the ozonation disinfection, in an IMC
scheme to control the constant contact time of ozone with the water by adjusting the ozone
dosage. Based on their study, determining a constant setpoint for ozone exposure is a
more efficient control strategy than defining a constant setpoint for ozone dosing or for
the concentration of residual ozone in the effluent. In another study, Dongsheng et al. [80]
implemented an MPC control based on a process model developed using the support vector
machine (SVM) method to describe the same ozonation disinfection process. In their study,
the ozone dosage was manipulated to maintain the contact time constant, in the presence
of fluctuations in influent water characteristics. Both IMC and MPC control outperformed
PI control in managing the ozonation disinfection process. The addition of a catalyst
to the ozonation process enhances its performance by increasing the efficiency of both
direct (reaction of organics with ozone) and indirect (reaction of organics with generated
ROS) ozonation reactions. Abouzlam et al. [81,82] implemented catalytic ozonation to
remove paranitrophenol from synthetic wastewater. The main problem in advance of
using catalytic ozonation for wastewater treatment is its high operating cost due to the
substantial electrical and oxygen consumption in the ozonator. To minimize the operating
cost and maximize the removal efficiency, the amount of generated ozone can be optimized
by manipulating the ozonator inlet power. Thus, Abouzlam et al. [81,82] proposed an FB
control scheme. The optimal gain values of controllers were calculated using the developed
TFs along with the linear quadratic (LQ) algorithm. The proposed optimal control showed
a good performance in regulating the process when positive or negative step changes were
applied to the inlet pollutant concentration.

Lin et al. [133] proposed a manual control scheme to monitor and control either UV
or UV/TiO2 processes in a lab-scale photoreactor to disinfect actual wastewater samples
obtained from the Miao-Li City sewer system in Taiwan. The MV and CV were the
inlet wastewater flow rate (ml/min) and the total coliform counts (CFU/100 ml) in the
effluent, respectively. The initial wastewater flow rate was estimated using the developed
relationship between UV dose (µW/cm2) and the desired decrease in total coliform count
(CFU/100 ml). By knowing the total coliform counts in influent (CFU/100 ml), contact time
(s), and by online monitoring of pH, ORP (mV), turbidity (NTU), temperature (°C), UV
intensity (W/m2), and colour (ADMI) in the photoreactor, coliform counts in the effluent
(CFU/100 ml) were predicted. The prediction model was developed using the BPFANN
method. The error was generated by comparing values of predicted coliform counts in
the effluent and its setpoint. If the error was negligible, the process was kept operating at
the current inlet flow rate. If the error was considerable, the inlet flow rate was adjusted
manually to push the CV toward its setpoint. By developing and utilizing the BPFANN
model in the control scheme, the energy demand decreased by 13.2–15.7 percent.

Despite the acknowledged advantages of all studies in the control domain, it is notewor-
thy that a substantial portion of them, except some [79,87,99,101,102,107,108,129,131,133],
are confined to simulation stages, lacking real-case implementation and verification. Conse-
quently, prevalent, applied control strategies in WWTPs primarily involve PID and MPC, with
the occasional integration of fuzzy logic, ANN, and adaptive control in specific instances.

Table 5 summarizes the motivations and limitations of developing process control
for biological and AOP-based treatment methods. It must be considered that achieving
reliable control requires accessing real-time process data. This matter is discussed in the
next section.
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Table 5. Motivations and limitations of process control implementation for biological and AOP-based
wastewater treatment processes.

Wastewater
Treatment Process Motivations for Implementing Process Control Limitations

Biological

• Essential effluent quality regulations;
• Necessity of optimizing the removal

performance;
• Necessity of optimizing biogas generation in

AD-based processes;
• Necessity of reducing operating costs;
• Necessity of decreasing GHGs emission;
• Variability in influent characteristics/load;
• Possible changes in environmental

regulations;
• Possibility of emerging new pollutants;
• Necessity of fouling control in

filtration-based processes.

• Insufficiently developed process models;
• Superior effluent quality but limited

cost-effectiveness with high aeration in aerobic
processes;

• Limited adjustability range for speed of air
compressor or mechanical aerator speed;

• Restricted aeration adjustment for turbulent
maintenance;

• Limited control in the case of sole focus on DO in
aerobic processes;

• Necessity of controlling multiple parameters to
optimize the process;

• Need for diverse indicators to ascertain optimal
SBR phase durations;

• Interaction of biological and filtration
mechanisms in combined processes;

• Need for real-time data, especially for CVs;
• Optimal sensor placement.

AOP-based

• Essential effluent quality regulations;
• Necessity of reducing operating costs;
• Variability in influent characteristics and load;
• Possible changes in environmental

regulations;
• High possibility of effluent quality alteration

by disturbances due to the short time delay.

• Insufficiently developed process models;
• Limited adjustability range for implemented

control valves, pumps, and motors;
• Limited adjustability range for UV dosage in the

case of UV-involved processes;
• Need for real-time data, especially for CVs;
• The necessity of implementing sensors with short

response time due to the short time delay of
processes;

• Toxic effect of some excess materials in the
effluent, such as H2O2;

• Possibility of formation of complex by-products
because of presence of excess reactants in the
effluent;

• Possibility of sluggish response or observing
overshoot after implementing controller;

• High possibility of human error in manual-based
control;

• Optimal sensor placement.

4. Monitoring Treatment Processes

Investigating the online measurability of process variables is crucial when designing a
reliable control system for a biological or AOP-based wastewater treatment unit. Real-time
data are essential for understanding the process status and enabling the control system to
promptly regulate processes as needed. When process variables are not measurable online,
surrogate variables or other correlated online measurable parameters could be utilized for
parameter estimation. Accordingly, measuring and monitoring process parameters can
be performed using hardware or software sensors. Apart from its role in process control,
data acquired from hardware or soft sensors are essential for calibrating and validating
ASMs and ADMs tailored to each specific application. In the following, hardware and soft
sensors will be discussed in detail.
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4.1. Hardware Sensors

Hardware sensors are devices that indicate a characteristic of a medium and report
it instantly via an understandable analog or digital output. Based on their operation,
generally, three classes of sensors are commonly used in WWTPs, including optical sensors,
biosensors, and ion-selective electrodes (ISEs) [13]. Employed sensors in the control system
should be highly reliable with the slightest noise, deviation, and drift [40]. The simplest
and most highly implemented hardware sensors in MWWTPs are thermometers, pressure
gauges, liquid level sensors, flowmeters, pH meters, electrical conductivity meters (EC),
ORP meters, and total suspended solids (TSS) probes to monitor the general properties of
the fluid and settleometers to monitor the settling properties of the sludge [13,140]. TSS
sensors are mostly used as an alternative method for measuring MLSS, replacing lengthy
laboratory analysis [13]. Additionally, the most common sensors/analyzers to monitor
the biological treatment processes are DO meters, UV spectrophotometers, fluorescence,
online COD meters, TOC analyzers, TN analyzers, and ISE sensors for measuring NH+

4 ,
NO−

3 , and NO−
2 concentrations [13,140]. Also, short-term biochemical oxygen demand

(BODst) can be measured by implementing biosensors or online respirometers, such as
RODTOX [140].

The innovative sensor-driven control strategies have improved nutrient removal in
WWTPs by 10% and resulted in energy savings [13]. A survey of 90 small and medium
enterprises (SMEs) operating their own WWTPs in Flanders, Belgium, showed that the
most employed sensors in IWWTPs were the DO meter and the pH meter, available in
96% and 69% of locations, respectively. Other sensors were rarely observed in surveyed
IWWTPs [141].

Depending on the location of the sensors, real-time data monitoring provides valuable
information about the influent characteristics, operating conditions in the reactor, or effluent
characteristics. This information can be interpreted and used in FF or FB control schemes
to control the wastewater treatment process. As a result, the effluent quality limits are
met, and the material, time, and energy consumption are decreased effectively. Also,
online monitoring offers a notable reduction in labour costs by obviating the necessity for
collecting and processing samples and associated manual work inherent in offline analyzer
tests. Additionally, it eliminates the need for dedicated offline analytical laboratories [142].

In aerobic biological treatment processes, the stage of biological reactions can be
determined by monitoring the concentration of nitrate, nitrite, or ammonium, using sensors.
The termination of the denitrification stage can be determined by finding the ‘nitrate knee’
through online monitoring of ORP or indicating the ‘ammonia valley’ by online monitoring
of pH. The ammonia valley is observed when the pH slope changes. Then, this obtained
information, along with DO monitoring, can be used in an FB control loop to regulate
the aeration rate [37]. The NH+

4 sensor has been especially used in ABAC to adjust the
aeration of ASP through monitoring and controlling the NH+

4 concentration [87]. Inventing
and implementing the nitrate, nitrite, and ammonium sensors in the biological treatment
stage to regulate aeration is considered the most remarkable achievement in recent years
regarding improving the quality and consistency of ASP effluent [13].

Also, the online respirometry data can be implemented for the purpose of aeration or
RAS rate regulation in the biological treatment process [12,143]. Respirometry rate repre-
sents the digesting bacteria OUR due to their metabolic processes. OUR can be monitored
using online respirometer probes [143]. However, to have a more effective control, knowing
the MLSS value of the AS and employing it to determine the specific oxygen uptake rate
(SOUR) is required. Also, by utilizing the data obtained from inline respirometry, various
parameters can be assessed based on the specific WWTP. These parameters include the
permissible maximum and minimum DO levels within the aeration tank. Moreover, the op-
timal utilization of tanks can be ascertained using the same data set. The other information
from respirometry is understanding the required time to reach the endogenous respiration
stage. Then, this information is used as an index to determine and control the required
HRT in the aeration tank [143]. One advantage of measuring respirometry in the ASP is its
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shorter analyzing time, which makes it more reliable compared to COD and BOD5 tests.
Also, respirometry represents the process much better by providing information on both
nutrient removal and microorganism growth [144]. Respirometry tests can be performed
in a batch system or a continuous liquid flow. In online respirometry, AS is sampled at
1.5–3 h intervals.

Due to the presence of a variety of compounds in wastewater, surrogate parameters
are usually measured to represent the strength of influent wastewater or the quality of the
effluent. These parameters include ultraviolet–visible (UV-VIS) spectroscopy, fluorescence
spectroscopy, TOC, COD, BOD5, TN, and TP. However, measuring the parameters through
conventional sensors/analyzing methods is both time and chemical demanding. Thus,
online TOC, COD, BOD5, and TP sensors have been developed, and efforts are being
directed toward their refinement to enhance their accuracy and cost-effectiveness [13].
Some challenges lie ahead for commonly used sensors in WWTPs include the limited
measuring range, restricted lifetime, the need for regular recalibration, and the possible
interference of other parameters with the measured value. Addressing these issues is
crucial for the effective functioning of wastewater treatment processes [145]. Consequently,
many continuing studies aim to address the problems regarding hardware sensors.

For instance, Duan et al. [146] have developed a thin-film electrochemical sensor by
incorporating a copper nanoparticle (Cu-NP)-modified carbon-silica (C/SiO2) for online
COD measurement of the MWWTPs influent. The acceptable performance of the proposed
electrochemical sensor was approved by comparing measured values using the sensor with
COD readings from the dichromate standard method. They claimed the proposed COD
sensor works accurately with low maintenance.

Despite the dramatic evolution of hardware sensors in terms of precision and en-
durance, the response time of some of them must be reduced to make them suitable for
real-time monitoring and control [145]. The short response time for a sensor is crucial,
particularly when monitoring and controlling AOP-based treatment processes. This is
because the inherent time delay of these processes is relatively short. For good reasons,
highly reliable, expensive sensors demanding high maintenance costs might be used in
a WWTP for calibration, optimization, or periodic audits. However, as a cost-effective
approach, real-time monitoring of the WWTPs process parameters for control purposes
is performed by implementing other inexpensive, simple, and reliable sensors [140]. For
instance, the high cost of available online UV-based nitrate and online ammonium sensors
justifies the ongoing use of affordable sensors such as pH, DO, and ORP for controlling
biological treatment units [31].

Some parameters discussed for the monitoring of aerobic processes, such as pH and
ammonia concentration, are also applicable for AD-based processes. However, monitor-
ing and controlling other parameters such as the quantity and composition of generated
biogas, and the concentration of specific products, such as VFAs, are crucial too. Thus, vari-
ous sensors, biosensors, and analyzers based on titration, chromatography, spectroscopy,
and electrochemistry methods have been proposed in various studies to address these
monitoring requirements [147]. Moreover, for fouling control in membrane-based bio-
logical processes, monitoring TMP through pressure gauges and pressure transducers
is advantageous.

Another recent development in real-time monitoring pertains to transmitting mea-
sured data through wireless sensor networks (WSNs) facilitated by the Internet of Things
(IoT). This technological innovation provides operators at diverse remote stations with
data that closely approximate real-time information [148]. This technology has undergone
examination in a developmental phase nearing market readiness. Upon its introduction to
the market, it is poised to augment the accessibility and convenience of real-time data.

In large WWTPs with large bioreactors and AOP reactors, another parameter that
influences the control system performance is the location of sensors. Sensors should be
located at suitable points so that the measuring is sufficient to represent the target parameter.
For instance, placing the respirometer at the inlet of the aeration tank represents the strength
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of the inlet wastewater. However, placing it at the inlet of RAS represents the viability of the
returned sludge to the tank [143]. In addition, fouling-sensitive sensors, such as DO meters,
should be installed in locations with the lowest fouling risk [140]. In addition, sensor
redundancy, wherever it is possible, can decrease the risk of mismeasurement resulting
from the malfunction or failure of inexpensive sensors such as pH meters [140]. Lastly,
regular maintenance and cleaning of sensors are required to obtain reliable data.

4.2. Soft Sensors

Sometimes, the rapid measurement of some process variables is limited to the lack
of online hardware sensors, the long measuring response time, noisy measurement, high
maintenance demand, or the high purchasing price of available hardware sensors [41]. Soft
sensors are implemented to overcome these limitations by indicating process variable value
through measuring state variable(s) using the cost-effective sensor(s). Essentially, the value
of a process property that cannot be directly measured is inferred by substituting the output
of one or several sensors into a mathematical estimation expression. This expression is
derived from various modelling approaches, including mechanistic, system identification,
or various AI-based DDM methods, describing the correlation of the desired variable with
other measurable parameters [13,145,149].

In the field of wastewater treatment, measuring the concentrations of pollutants to
evaluate the rate of abatement or to predict the required operating conditions to achieve
the desired removal is crucial. However, measuring the concentrations of most compounds
is carried out only offline. In such cases, the indirect estimation of organic concentrations
through the online measurable surrogate parameters is beneficial and necessary. The
main surrogate parameters are UV-VIS spectroscopy, fluorescence spectroscopy, and other
surrogates such as TOC, COD, and nitrate formation [150]. The last three are not online
measurable, or if so, their operating range is limited while their cost and maintenance are
significant. Thus, a good solution is to estimate the value of the parameters by using a
well-developed mathematical model describing their relationship with those correlated
parameters that are online measurable with cheap sensors such as pH, DO, and ORP [136].

Estimating certain parameters through validated models could also decrease the capi-
tal and maintenance costs of a WWTP by minimizing the number of implemented hardware
sensors. Even the relationship between surrogate parameter values at the process inlet
and their corresponding values at the outlet could be described by developing appropriate
mathematical expressions. In such circumstances, the process of measuring surrogate
parameters at specific points can be avoided to reduce expenses and minimize labour. For
instance, predictive models for effluent COD, BOD5, and TSS of the biological treatment of
the Doha West WWTP were developed using the ANN approach and based on measured
surrogate parameters in the plant influent [151]. Based on calculated MSE and R2 values for
each developed model, the best estimation for TSSeff, BOD5,eff, and CODeff were achieved
when they were modelled solely as dependents on CODin. Estimating CODeff as a function
of TSSin, BOD5,in, and CODin parameters also resulted in a high R2 and low MSE. Never-
theless, the prediction performance of the model did not significantly surpass the model
that correlated CODeff solely with CODin. Conclusively, TSSeff, BOD5,eff, and CODeff can
be accurately estimated only by monitoring CODin [151]. Some studies developed models
to estimate some process parameters in WWTPs based on other measured parameters data
are shown in Table 6.
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Table 6. Recent studies for estimation of some process parameters at WWTPs using data of other measured parameters.

Estimated Parameter Indicators Source of Dataset Modelling Method Highlights Reference

TSSeffCODeffTNeff

Combination of influent
parameters (Qin),
bioreactor parameters (DOr,[
NH+

4
]

r,
[
NO−

3
]

r, ALKr), effluent
parameters (

[
NH+

4
]

eff, ALKeff)

Biological treatment unit,
unknown WWTP ANN

Good model fitness for all parameters:
TSSeff: R2 = 0.9;
CODeff: R2 = 0.88;
TNeff: R2 = 0.91

[152]

TDSeffBOD5,effCODeff
TDSin, TSSin, BOD5,in, CODin,
pHin, TPin and TNin

Biological treatment unit,
Shokouhieh WWTP, Qom,
Iran

Ada Boost Regression (ABR),
Gradient Boost Regression (GBR),
and Random Forest Regression
(RFR)

Outperformance of GBR in predicting
target parameters:
TDSeff: CC = 0.962, RMSE = 30.3 mg/L;
BOD5,eff: CC = 0.9, RMSE = 4.6 mg/L;
CODeff: CC = 0.75, RMSE = 9.6 mg/L

[153]

BOD5,effCODeffTNeff
Sludge Volume Index (SVI)

Combination of influent
parameters (Vin, CODin, TSSin,
pHin,

[
Cl−

]
in), bioreactor

parameters (T, SRT,
[
NH+

4
]

r),
effluent parameters (TSSeff,[
NH+

4
]

eff, pHeff,
[
Cl−

]
eff)

Biological treatment unit,
Beijing WWTP, China

Multivariate Linear Regression
(MLR), Multivariate Relevant
Vector Machine (MRVM) and
Multivariate Gaussian Processes
Regression (MGPR) models

Multi-output soft sensor with good
performance [154]

CODeff

Combination of influent
parameters (Qin, CODin, BOD5,in,
TSSin, pHin,

[
NH+

4
]

in), bioreactor
parameters (DOr, ORPr, RAS flow
rate, recycling mixture flow rate)

Biological treatment unit,
unknown WWTP

Adaptive estimation:
Combination of Hammerstein
with wavelet neural networks,
adaptive weighted fusion, and
approximate linear dependence
(ALD) analysis

Outperformance of adaptive model
(error% = 6.41) [155]

CODeffTPeff
[
NH+

4
]

eff

Combination of CODin, TPin,[
NH+

4
]

in, reaction time, aeration
rate, SRT, MLVSS, filling time,
bioreactor parameters (T, SRT,[
NH+

4
]

r)

SBR, Ekbatan WWTP,
Tehran, Iran

RBFNN and multi-layer
perceptron artificial neural
networks (MLPANN)

Good performance of both models;
Superior accuracy of MLPANN for all
target parameters;
Higher R2 and lower RMSE in MLPANN
for both training and test data

[156]

TSSeffBOD5,effCODeff

Four different combinations:
-Only TSSin,
-Only BOD5,in,
-Only CODin,
-All TSSin, BOD5,in, and CODin.

Biological treatment unit;
Doha West WWTP ANN

The best performed input-output
models:
CODin-CODeff: R = 0.923, MSE = 0.014;
CODin-BOD5,eff: R = 0.951, MSE = 0.061;
CODin-TSSeff: R = 0.987, MSE = 0.021

[151]

Note: ALK: alkalinity; TDS: total dissolved solids; CC: correlation coefficient; MLVSS: mixed liquor volatile suspended solids; T: Temperature.
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Fluorescence and UV-VIS spectroscopy have been used in AOPs, particularly the
ozonation reaction, as real-time surrogate parameters to indicate the removal rate of trace
organic contaminants (TrOCs) from wastewater [150,157]. In wastewater, most dissolved
organic matters (DOMs) having multiple conjugated double bonds, particularly hydropho-
bic and aromatic matters having a C=C and a C=O bond, absorb UV light well at the
wavelength of 254 nm. The UV absorbance ratio for these compounds is proportional to the
concentration of organic compounds present in the medium. Therefore, the percentage of
organic removal in some AOP-based treatment reactions can be determined by comparing
the UV254 absorbance at reactor effluent with its amount at reactor influent. Depending
on the organic compounds, process, and operating conditions, ∆UVA254 correlates to
the amount of organic removal through a linear [158–167], S-shaped [168–171], logarith-
mic [172], exponential [172], linear biphasic [159,161,173], or other mathematic relation that
need to be developed experimentally. In addition, the optimal UV absorbance for some
organic compounds occurs at wavelengths other than 254 nm. This optimal wavelength can
be determined by referring to the open literature or by conducting preliminary experiments
to measure UV absorbance by the target component at different wavelengths to find the
wavelength at which the highest absorbance happens. For instance, Wert et al. [165] and
Miklos et al. [174] quantified the colour in their samples by measuring UV absorbance
at 455 nm and 436 nm, respectively. The treatment process in the conducted study by
Wert et al. [165] was ozonation, and in the conducted study by Miklos et al. [174], were
UV/H2O2, UV/PDS (peroxydisulfate), and UV/chlorine.

Si et al. [158] measured the UV absorbance of samples obtained from the effluent
of combined ozonation and ultrafiltration treatment reactors. These measurements were
conducted at various wavelengths, including 254, 258, 260, and 280 nm. The purpose
was to estimate the concentrations of substances with conjugated double bonds, aromatic
unsaturated organics, nucleic acids, and aromatics, respectively. Li et al. [169,175] measured
the UV absorbance of their samples at 280 nm and 366 nm to estimate the concentrations
of organics.

Furthermore, some researchers believe UV spectroscopy at a fixed light wavelength
does not give sufficient information about the reaction and converted chemicals compared
to UV spectroscopy at an interval of light wavelengths. To this end, differential absorbance
spectra (DAS) and absorbance slope index (ASI) were introduced [168,176]. These two
concepts are beneficial for estimating compound concentrations. Estimating compound
concentrations is achievable by substituting values of measured UV absorbance at different
wavelengths in verified empirical equations. Audenaert et al. [177] implemented the ASI
approach to estimate the molecular weight of natural organic matter (NOM) in the effluent
of ozonation and UV/H2O2 processes. UV-VIS spectroscopy was also implemented in a
study by Qin et al. [178]. They developed a relationship between each COD, TSS, and oil
and grease (O&G) concentration with UV-VIS absorbance and turbidity of the inlet and
outlet of an electrocoagulation–electroflotation unit. The method used in modelling was
boosting-iterative predictor weighting-partial least squares (Boosting-IPW-PLS). Their re-
sults demonstrated that the developed models are reliable. Consequently, they highlighted
the potential of using inline UV-VIS spectrophotometers and turbidity sensors alongside
the verified empirical estimation models to accurately estimate concentrations of COD, TSS,
and O&G in real time.

In addition to UV-VIS spectroscopy, to analyze a sample with low concentrations of
organic compounds, especially organic dyes and compounds containing aromatic groups,
fluorescence spectroscopy is applicable. The fluorescence even provides more accurate
information than UV-VIS spectroscopy in the case of substance identification. Estimating
the organic removal in some cases is achievable by evaluating the changes in integrated
volume under the excitation–emission matrix (EEM) through comparing the fluorescence
spectroscopy results of wastewater influent with the results of effluent [150]. This value is
called the difference of total fluorescence ( ∆TF). Studies on the TrOC removal by ozonation
show a linear [160,162], a linear biphasic [173], a logarithmic [172], and an exponential [172]
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correlation of ∆TF with the concentration of TrOC in the effluent. In addition to ∆TF,
other fluorescence spectroscopy-based methods, including fluorescence index (FI), peak
A, peak B, peak C, peak T, and parallel factor analysis (PARAFAC), are used to estimate
the fluorescent compound concentration in a matrix. These later methods have been used
in some ozonation [170,175,179] and UV/H2O2 [180] studies to measure the concentration
of specific organics in the reactor influent and effluent. Considering the main substances
that are removed in each step of a WWTP, during biological treatment and tertiary treat-
ment, the peak T and peak C fluorescence, respectively, decreased [181]. It has even been
observed that by knowing the information on the peak T fluorescence of the municipal
wastewater sample through developing proper statistical equations, BOD5 content can be
estimated [181].

Some studies have used a combination of UV-VIS and fluorescence spectroscopy to
determine the target parameter. For instance, Gerrity et al. [163] developed a correlation
between UV254/fluorescence absorbance and the pathogen concentration in the effluent of
an ozone disinfection unit. As a result, monitoring the efficiency of the process and quality
of the effluent was possible through the online measurement of UV254/fluorescence ab-
sorbance as representers of pollutant and pathogen concentrations. Depending on the target
pollutant, the same approach can be developed and calibrated to monitor the effluent qual-
ity of other AOP-based treatment processes. Also, for fouling control in membrane-based
biological treatment methods, considering that the primary cause of fouling is the accumu-
lation of SMPs and EPSs, it is beneficial to monitor and control their concentration using
established offline methods or through UV/fluorescence spectroscopy techniques [182].
The developed soft sensors can subsequently be deployed in the supervisory control and
data acquisition system (SCADA) of the WWTPs [149].

Finally, the response time of a soft sensor is a summation of the hardware sensor
response time and the model computation time. Hence, having a fast response time for a
hardware sensor becomes even more crucial when hardware sensors provide data for a
soft sensor model [145].

5. Conclusions

This review highlights the importance of designing control strategies for wastewater
treatment systems, focusing on selected biological and AOP-based methods, to improve
their operations. The aim is to continuously maintain desired effluent quality to meet
environmental regulations and minimize operating costs. In the second part, this study
emphasized the understanding of the dynamic behaviour of the processes, the first and
crucial step in designing and developing an effective control scheme. Challenges ahead
of dynamic modelling of biological and AOP-based wastewater treatment processes were
discussed. It was shown that dynamic models can be developed based on the mechanistic
aspects and the physicochemical knowledge of the process, known as mechanistic models,
or completely based on experimental data through system identification. It was discussed
that due to the longstanding and well-established nature of biological treatment methods,
IWA has developed standard models, including ASM1, ASM2, ASM2d, ASM3, ASM4,
ASM7, and ADM1, to describe the dynamical behaviour of aerobic and anaerobic biological
processes. Some processes, such as ASPs and SBRs, can be fully described based on these
standard models. However, to describe filtration-based biological processes, including
AnMBRs and MBRs, a more comprehensive model is required to cover both the biological
and physical aspects of the process. In addition, it was highlighted that standard models
must be calibrated for each WWTP using real data obtained from that specific WWTP.
Furthermore, it was outlined that for both biological and AOP-based treatment methods,
DDMs based on black-box system identification or AI-based models can result in precise
predictive models, particularly in instances where process dynamics exhibit significant
nonlinearity. Even though the black-box models may not describe the process mechanistic
behaviour in detail, they can accurately anticipate the response of a system to unexpected
disturbances. Finally, selecting calibrated mechanistic models or DDMs must be conducted
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according to the system complexity and control goal. It involves a trade-off between having
a comprehensive process description, which requires extensive knowledge, calibration, and
verification, or using DDMs that rely on substantial data but may lack specific meaning
as they are primarily mathematical representations of the process. Also, it must be con-
sidered that either mechanistic models or DDMs are valid for a limited operating range,
corresponding to the defined constraints during the model development phase.

Part three reviewed the most common process control strategies in WWTPs. Also, the
most recent studies and their findings on controlling biological, and AOP-based wastewater
treatment processes through different control strategies were discussed in detail. It was de-
bated that while numerous studies have demonstrated promising outcomes in controlling
treatment processes, their applicability remains primarily confined to the simulation stage.
This fact poses challenges in translating these achievements to full-scale implementation. A
notable impediment arises in the necessity to validate the performance of proposed control
strategies through the practical deployment of hardware controllers. Additionally, their
inherent complexity and associated cost hinder the widespread adoption of advanced con-
trol strategies, prompting many WWTPs to adhere to conventional PID controllers. Aside
from financial constraints, the proper selection of a control scheme for the validation and
implementation in a wastewater treatment process necessitates a deliberate consideration
of the desired control objectives. Contingent upon the specific control goals, the optimal
control strategy may diverge, ranging from linear conventional controllers to intricate
advanced, AI-based, hybrid, or hierarchical configurations. For instance, to have a control
scheme with high performance to ensure the least deviation in effluent quality for ASPs,
SBRs, MBRs, AnMBRs, or AD, a hierarchical (cascade) control scheme is recommended.
This approach entails monitoring and controlling additional parameters, such as ammonia
concentration, in conjunction with traditional DO. It utilizes advanced control methods as
supervisory controllers such as FLC, MPC, NMPC, rule-based or ANN to determine the
setpoint of the lower control loops. The lower controllers typically are simpler ones such as
on/off, P, PI or PID. Also, implementing an adaptive model with varying parameters in
the structure of the controller will yield better control performance while the dynamic of
the process is varying. Similarly, the choice of the control scheme for AOP-based treatment
processes is upon the control goal, ranging from linear approximations such as ARX-PID
to more sophisticated methods such as NMPC. Also, considering the short time delay of
AOP-based treatment processes and process uncertainties, a cascade of FF and FB controls
was discussed as a sufficient control strategy. Generally, by analyzing the results of other
studies, it was concluded that multi-loop hierarchical (cascade) control is the optimum
control design for most wastewater treatment processes and enhances their performance.
In addition, the limitations of controlling treatment processes, including insufficiently de-
veloped models, the presence of interactive processes, limitations in control final elements,
and limitations in the availability of real-time data and sensors, were discussed.

The necessity of the availability of real-time data to achieve reliable control was
discussed in part four. It was observed that this can be reached by either implementing
proper and accurate hardware sensors in suitable locations of the process or developing
and implementing soft sensors. Also, surrogate parameters such as TOC, COD, BOD5, TN,
TP, UV-VIS absorbance, and fluorescence absorbance can be considered as representatives
of substances concentration. Depending on the process and the characteristics of the
target wastewater to be treated, selecting the monitoring parameters must be performed
wisely. For instance, although photo spectroscopy provides real-time data, if the medium is
highly concentrated with variant temperature, the measured data might be subjected to a
considerable error, and sensor fouling will be a further problem. Addressing this issue is
possible by redirecting a small part of the effluent to a separate pipeline and mixing it with
clean water using an appropriate dilution factor before conducting spectroscopy. Also, the
mismeasurements caused by temperature violations can be resolved. This involves placing
thermometers at appropriate locations and adjusting the measurements to account for the
impact of the real-time temperature. Also, in the case of UV-spectroscopy, finding the
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best wavelength, especially when wastewater contains different pollutants, is a challenge.
The limited operating range or long response time of some new sensors are also some
challenges ahead of hardware sensor implementation in the process control system. On
the other hand, although soft sensors provide users with well-established mathematical
models, estimating the desired parameter, it must be considered that the response time of
a soft sensor is the summation of hardware sensor response time and computation time.
As a result, these two response times must be minimized. Another significant finding
underscores that despite the recent advancements in hardware sensor technology, further
endeavours are required to enhance their cost-effectiveness. This improvement is pivotal
for facilitating the widespread transition of WWTPs from conventional sensors to these
state-of-the-art alternatives. The last noteworthy discovery in real-time monitoring pertains
to the prospective integration of WSN and IoT as a future mechanism for transmitting and
controlling measured data through sensors.

To achieve a robust and reliable control in WWTPs, especially regarding biological
and AOP-based treatment approaches, it is recommended that another study be conducted
on available actuators, final elements, and the criteria for choosing the most appropriate
one. Also, planning proper maintenance and cleaning schedules for hardware sensors
should be considered. In the fourth section of this study, the potential surrogate parameters
for process monitoring in WWTPs were discussed. However, it is crucial to acquire a
thorough understanding of the latest technological advancements associated with analytical
techniques and devices for measuring each surrogate parameter. Such information is
beneficial in empowering decision-makers to select technologies that precisely align with
their needs. Consequently, conducting a comprehensive and up-to-date exploration of
the state of the art of surrogate parameter technologies is recommended. In addition,
further research is recommended to delve into the potential unique challenges associated
with the real-time monitoring of diverse organic and inorganic pollutants. Exploring the
classification and specific characteristics of each pollutant class and type can be beneficial
for addressing the distinct challenges posed in dynamic modelling, monitoring, and control
processes. Finally, although this manuscript, in addition to focusing on ASPs and SBRs
as selected biological wastewater treatment for this study, attempted to briefly discuss
some other biological methods, it is essential to acknowledge the wide range of biological
methods. Therefore, it is recommended to conduct a focused review on modelling, control,
and monitoring each of these processes in MWWTPs and IWWTPs.
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Acronyms

ABAC Ammonia-Based Aeration Control
ABR Ada Boost Regression
ACO Ant Colony Optimization
ACR Anaerobic Contact Reactor
AD Anaerobic Digestion
ADM Anaerobic Digestion Model
AE Aeration Energy
AECI Aeration Energy Cost Index
AFBR Anaerobic Fluidized-Bed Reactor
AFNN Adaptive Fuzzy Neural Network
AFR Anaerobic Filter Reactor
AI Artificial Intelligence
ALD Approximate Linear Dependence
ALK Alkalinity
AnMBR Anaerobic Membrane Bioreactor
ANN Artificial Neural Network
AOP Advanced Oxidation Process
ARMA Autoregressive Moving Average Stochastic Model
ARMAX AutoRegressive Moving Average with eXogenous input
ARX AutoRegressive with eXogenous input model
AS Activated Sludge
ASI Absorbance Slope Index
ASM Activated Sludge Model
ASP Activated Sludge Process
BAF Biological Aerated Filter
BN Bayesian Network
BOD5 5-Days Biochemical Oxygen Demand
BODst Short-Term Biochemical Oxygen Demand
Boosting-IPW-PLS Boosting–iterative predictor weighting–partial least square
BPFANN Backpropagation Function Artificial Neural Network
BSM Benchmark Simulation Model
CAS Conventional Activated Sludge
CC Correlation Coefficient
CDI Chronic Daily Intake
CNN Convolutional Neural Network
COD Chemical Oxygen Demand
Cu-NP Copper Nanoparticle
CV Controlled Variable
DAS Differential Absorbance Spectra
DDM Data-Driven Model
DenseNet Densely Connected Convolutional Network
DL Deep Learning
DO Dissolved Oxygen
DOM Dissolved Organic Matter
EB Electron Beam
EC Electrical Conductivity
EEM Excitation–Emission Matrix
EGSB Expanded Granular Sludge Bed
EPS Extracellular Polymeric Substance
EQI Effluent Quality Index
FB Feedback
FF Feedforward
FFNN Feedforward Neural Network
FI Fluorescence Index
FLC Fuzzy Logic Control
FOPTD First-Order Plus Time Delay
FPE Final Prediction Error
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FPI Fractional order Proportional Integral
FPLS Fuzzy Partial Least Square
FPLS-DBN Fuzzy Partial Least Square-Based Dynamic Bayesian Network
GA Genetic Algorithm
GBR Gradient Boost Regression
GD Gradient Descent
GHG Greenhouse Gas
HGO High Gain Observer
HQ Hazard Quotient
HRT Hydraulic Retention Time
HW Hammerstein–Wiener Model
IAC Iterative Adaptive Critic
IAE Integral of Absolute Error
IFAS Integrated Fixed Film Activated Sludge
IMC Internal Model Control
ISE Integral Square Error
ISE Ion-Selective Electrode
IWA International Water Association
IWW Industrial Wastewater
IWWTP Industrial Wastewater Treatment Plant
KLD Kilo Liter per Day
LM Levenberg–Marquardt algorithm
LNMIIT LNM Institute of Information Technology
LQ Linear Quadratic
MATLAB Matrix Laboratory
MBBR Moving Bed Biofilm Reactor
MBR Membrane Bioreactor
MGPR Multivariate Gaussian Processes Regression
MIMO Multi-Input Multi-Output
MLFCN Machine Learning Fully Connected Network
MLPANN Multi-Layer Perceptron Artificial Neural Network
MLR Multivariate Linear Regression
MLSS Mixed Liquor Suspended Solids
MLVSS Mixed Liquor Volatile Suspended Solids
MOPC Multi-Objective Predictive Control
MPC Model Predictive Control
MRVM Multivariate Relevant Vector Machine
MSE Mean Squared Error
MV Manipulated Variable
MWW Municipal Wastewater
MWWTP Municipal Wastewater Treatment Plant
NARX Nonlinear AutoRegressive with eXogenous input model
NARXNN Nonlinear AutoRegressive eXogenous Neural Network
NMC Nonlinear Internal Model Control
NMPC Nonlinear Model Predictive Control
NP Nanoparticle
NTP Non-Thermal Plasma
NOM Natural Organic Matter
O&G Oil and Grease
OCI Operational Cost Index
OFPC Output Feedback Predictive Control
OR Oxygen Requirement
ORP Oxidation-Reduction Potential
OUR Oxygen Uptake Rate
PARAFAC Parallel Factor Analysis
PDS Peroxydisulfate
PI Proportional Integral
PID Proportional Integral Derivative
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PMBC Process Model-Based Control
PRBS Pseudo-Random Binary Sequence
PRWWTP Petroleum Refinery Wastewater Treatment Plant
PSO Particle Swarm Optimization
PVA Polyvinyl Alcohol
RAS Return Activated Sludge
RB49 Reactive Blue 49
RBB Reactive Black B
RBC Rotating Biological Contactor
QFT Quantitative Feedback Theory
RBFNN Radial Basis Function Neural Network
RFR Random Forest Regression
RLS Recursive Least Square
RMSE Root Mean Square Error
RNN Recurrent Neural Network
ROS Reactive Oxygen Species
SAFF Submerged Aerobic Fixed Film
SBR Sequencing Batch Reactor
SCADA Supervisory Control and Data Acquisition
SIMO Single-Input Multi-Output
SISO Single-Input Single-Output
SME Small And Medium Enterprise
SMP Soluble Microbial Product
SOFNN Self-Organizing Fuzzy Neural Network
SOPTD Second-Order Plus Time Delay
SOUR Specific Oxygen Uptake Rate
SQP Sequential Quadratic Programming
SRF Sludge Recirculating Flow
SRT Sludge Retention Time
SS Suspended Solids
SSC Supervisory Sequential Controller
SVI Sludge Volume Index
SVM Support Vector Machine
T Temperature
TDS Total Dissolved Solids
TF Transfer Function
TMOOA Transfer Multi-Objective Optimization Algorithm
TMP Transmembrane Pressure
TN Total Nitrogen
TOC Total Organic Carbon
TP Total Phosphorous
TPANN Two-Part ANN
TrOC Trace Organic Contaminant
TSS Total Suspended Solids
UASB Up-flow Anaerobic Sludge Blanket
UI Unknown Input
UIS Unknown Input State
UV Ultraviolet
UVA Ultraviolet Absorbance
UV-VIS Ultraviolet–Visible
VFA Volatile Fatty Acid
VFD Variable Frequency Drive
WRBFNN Wavelet Radial Basis Function-Based Neural Network
WWTP Wastewater Treatment Plant
XWTP Xiangcheng Drinking Water Treatment Plant
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