Application of Adipose Stem Cells in 3D Nerve Guidance Conduit Prevents Muscle Atrophy and Improves Distal Muscle Compliance in a Peripheral Nerve Regeneration Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Three-Dimensional Nerve Guidance Conduits
2.3. Adipose Stem Cell Isolation and Culture
2.4. Cell Labeling
2.5. Surgical Procedure
- Group 1: 7 rats in which the 3D NGC was implanted into the gap between the proximal and distal stumps of the sciatic nerve. The guide was fixed in place with 10–0 nylon sutures. The ASCs (2 × 106 cells in 10 μL of PBS) were injected into the guide through one of the grooves.
- Group 2: 7 rats in which the 3D NGC was implanted into the gap between the proximal and distal stumps of the sciatic nerve. The guide was fixed in place with 10–0 nylon sutures without the use of ASCs.
- Group 3: 4 rats were used as a control group in which we only made a 10 mm defect at the level of the sciatic nerve without any reconstruction. We wanted to reduce the number of animals that were sacrificed unjustifiably. Additionally, based on published studies on PNI, four rats are often used for a control group [26,27,28].
2.6. Determination of Muscle Atrophy
2.7. Mechanical Testing
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiberg, M.; Terenghi, G. Will It Be Possible to Produce Peripheral Nerves? Surg. Technol. Int. 2003, 11, 303–310. [Google Scholar]
- Taylor, C.A.; Braza, D.; Rice, J.B.; Dillingham, T. The Incidence of Peripheral Nerve Injury in Extremity Trauma. Am. J. Phys. Med. Rehabil. 2008, 87, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Kouyoumdjian, J.A. Peripheral Nerve Injuries: A Retrospective Survey of 456 Cases. Muscle Nerve 2006, 34, 785–788. [Google Scholar] [CrossRef]
- Bhandari, P.S. Management of Peripheral Nerve Injury. J. Clin. Orthop. Trauma 2019, 10, 862. [Google Scholar] [CrossRef]
- Lee, S.K.; Wolfe, S.W. Peripheral Nerve Injury and Repair. J. Am. Acad. Orthop. Surg. 2000, 8, 243–252. [Google Scholar] [CrossRef]
- Rbia, N.; Bulstra, L.F.; Friedrich, P.F.; Bishop, A.T.; Nijhuis, T.H.J.; Shin, A.Y. Gene Expression and Growth Factor Analysis in Early Nerve Regeneration Following Segmental Nerve Defect Reconstruction with a Mesenchymal Stromal Cell-Enhanced Decellularized Nerve Allograft. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2579. [Google Scholar] [CrossRef] [PubMed]
- Chiono, V.; Tonda-Turo, C. Trends in the Design of Nerve Guidance Channels in Peripheral Nerve Tissue Engineering. Prog. Neurobiol. 2015, 131, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Eyisoylu, H.; Qin, X.-H.; Rubert, M.; Müller, R. 3D Bioprinting of Graphene Oxide-Incorporated Cell-Laden Bone Mimicking Scaffolds for Promoting Scaffold Fidelity, Osteogenic Differentiation and Mineralization. Acta Biomater. 2021, 121, 637–652. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, W.; Liu, H.; Chen, Y.; Li, B.; Gou, Z.; Li, X.; Gou, M. 3D Printing of Functional Nerve Guide Conduits. Burns Trauma 2021, 9, tkab011. [Google Scholar] [CrossRef]
- Gu, X.; Ding, F.; Williams, D.F. Neural Tissue Engineering Options for Peripheral Nerve Regeneration. Biomaterials 2014, 35, 6143–6156. [Google Scholar] [CrossRef]
- Zaszczyńska, A.; Moczulska-Heljak, M.; Gradys, A.; Sajkiewicz, P. Advances in 3D Printing for Tissue Engineering. Materials 2021, 14, 3149. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, T.; Li, Y. 3D Printing and Bioprinting Nerve Conduits for Neural Tissue Engineering. Polymers 2020, 12, 1637. [Google Scholar] [CrossRef] [PubMed]
- Joung, D.; Lavoie, N.S.; Guo, S.-Z.; Park, S.H.; Parr, A.M.; McAlpine, M.C. 3D Printed Neural Regeneration Devices. Adv. Funct. Mater. 2020, 30, 10. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Rezza, A.; Kulahci, Y.; Gorantla, V.S.; Zor, F.; Drzeniek, N.M. Implantable Biomaterials for Peripheral Nerve Regeneration–Technology Trends and Translational Tribulations. Front. Bioeng. Biotechnol. 2022, 10, 863969. [Google Scholar] [CrossRef]
- Ansari, M.; Eslami, H. Development of a Novel Poly (Lactic-Co-Glycolic Acid) Based Composite Scaffold for Bone Tissue Engineering. Inorg. Nano-Met. Chem. 2022, 52, 860–871. [Google Scholar] [CrossRef]
- Zolfaghari, D.; Tebyanian, H.; Soufdoost, R.S.; Emamgholi, A.; Barkhordari, A.; Herfedoost, G.R.; Kaka, G.R.; Rashidiani, J. Modified PLGA Nanofibers as a Nerve Regenerator with Schwann Cells. Cell. Mol. Biol. 2018, 64, 66–71. [Google Scholar] [CrossRef]
- Pozzobon, L.G.; Sperling, L.E.; Teixeira, C.E.; Malysz, T.; Pranke, P. Development of a Conduit of PLGA-Gelatin Aligned Nanofibers Produced by Electrospinning for Peripheral Nerve Regeneration. Chem. Biol. Interact. 2021, 348, 109621. [Google Scholar] [CrossRef]
- Mizner, R.L.; Petterson, S.C.; Stevens, J.E.; Vandenborne, K.; Snyder-Mackler, L. Early Quadriceps Strength Loss after Total Knee Arthroplasty. The Contributions of Muscle Atrophy and Failure of Voluntary Muscle Activation. J. Bone Jt. Surg. Am. 2005, 87, 1047–1053. [Google Scholar] [CrossRef]
- Thomas, A.C.; Wojtys, E.M.; Brandon, C.; Palmieri-Smith, R.M. Muscle Atrophy Contributes to Quadriceps Weakness after Anterior Cruciate Ligament Reconstruction. J. Sci. Med. Sport 2016, 19, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Tazerout, S.; Martinez, O.; Monsonis, B.; Millet, I.; Taourel, P.; Capdevila, X.; Charbit, J. Acute Post-Traumatic Muscle Atrophy on CT Scan Predicts Prolonged Mechanical Ventilation and a Worse Outcome in Severe Trauma Patients. Injury 2022, 53, 2501–2510. [Google Scholar] [CrossRef]
- Choe, M.-A.; Kim, K.H.; An, G.J.; Lee, K.-S.; Heitkemper, M. Hindlimb Muscle Atrophy Occurs from Peripheral Nerve Damage in a Rat Neuropathic Pain Model. Biol. Res. Nurs. 2011, 13, 44–54. [Google Scholar] [CrossRef]
- Trambitas, C.; Pop, A.M.; Trambitas Miron, A.D.; Dorobantu, D.C.; Tabaran, F.; Cordos, B.; Suciu, B.A.; Brinzaniuc, K. Regeneration of Bone Defects Using Bioactive Glass Combined with Adipose-Derived Mesenchymal Stem Cells. An Experimental in Vivo Study. Rev. Chim. 2019, 70, 1983–1987. [Google Scholar] [CrossRef]
- Pop, T.S.; Pop, A.M.; Miron, A.D.T.; Brinzaniuc, K.; Gurzu, S.; Trambitas, C. In Vivo Evaluation of a Collagen Scaffold Preconditioned with Adipose-Derived Mesenchymal Stem Cells Used for Bone Regeneration A Histological Study. Mater. Plast. 2018, 55, 691–695. [Google Scholar] [CrossRef]
- Dowdall, T.; Robinson, I.; Meert, T.F. Comparison of Five Different Rat Models of Peripheral Nerve Injury. Pharmacol. Biochem. Behav. 2005, 80, 93–108. [Google Scholar] [CrossRef]
- Gordon, T.; Borschel, G.H. The Use of the Rat as a Model for Studying Peripheral Nerve Regeneration and Sprouting after Complete and Partial Nerve Injuries. Exp. Neurol. 2017, 287, 331–347. [Google Scholar] [CrossRef]
- Bloanca, V.; Haragus, H.; Campean, A.-M.; Cosma, A.; Bratu, T.; Crainiceanu, Z. Assessment of Nerve Repair Augmented with Adipose-Derived Mast Cells in an Animal Model. Appl. Sci. 2021, 11, 9465. [Google Scholar] [CrossRef]
- Hou, B.; Ye, Z.; Ji, W.; Cai, M.; Ling, C.; Chen, C.; Guo, Y. Comparison of the Effects of BMSC-Derived Schwann Cells and Autologous Schwann Cells on Remyelination Using a Rat Sciatic Nerve Defect Model. Int. J. Biol. Sci. 2018, 14, 1910–1922. [Google Scholar] [CrossRef] [PubMed]
- Memari, E.; Hosseinian, M.-A.; Mirkheshti, A.; Arhami-Dolatabadi, A.; Mirabotalebi, M.; Khandaghy, M.; Daneshbod, Y.; Alizadeh, L.; Shirian, S. Comparison of Histopathological Effects of Perineural Administration of Bupivacaine and Bupivacaine-Dexmedetomidine in Rat Sciatic Nerve. Exp. Toxicol. Pathol. 2016, 68, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Arbănaşi, E.-M.; Suzuki, S.; Ciucanu, C.C.; Mureşan, A.V.; Coşarcă, C.M.; Chirilă, T.V.; Ion, A.P.; Arbănaşi, E.-M.; Harpa, M.M.; Russu, E. Ex-vivo Mechanical Augmentation of Human Saphenous Vein Graft By UV-A Irradiation in Emergency Vascular Reconstruction–Preliminary Results. J. Cardiovasc. Emerg. 2023, 9, 59–64. [Google Scholar] [CrossRef]
- Arbănaşi, E.-M.; Russu, E.; Arbănaşi, E.-M.; Ciucanu, C.C.; Mureșan, A.V.; Suzuki, S.; Chirilă, T.V. Effect of Ultraviolet Radiation on the Enzymolytic and Biomechanical Profiles of Abdominal Aortic Adventitia Tissue. J. Clin. Med. 2024, 13, 633. [Google Scholar] [CrossRef]
- Laurence, D.W.; Wang, S.; Xiao, R.; Qian, J.; Mir, A.; Burkhart, H.M.; Holzapfel, G.A.; Lee, C.-H. An Investigation of How Specimen Dimensions Affect Biaxial Mechanical Characterizations with CellScale BioTester and Constitutive Modeling of Porcine Tricuspid Valve Leaflets. J. Biomech. 2023, 160, 111829. [Google Scholar] [CrossRef] [PubMed]
- Corti, A.; Shameen, T.; Sharma, S.; De Paolis, A.; Cardoso, L. Biaxial Testing System for Characterization of Mechanical and Rupture Properties of Small Samples. HardwareX 2022, 12, e00333. [Google Scholar] [CrossRef] [PubMed]
- Miclescu, A.; Straatmann, A.; Gkatziani, P.; Butler, S.; Karlsten, R.; Gordh, T. Chronic Neuropathic Pain after Traumatic Peripheral Nerve Injuries in the Upper Extremity: Prevalence, Demographic and Surgical Determinants, Impact on Health and on Pain Medication. Scand. J. Pain 2019, 20, 95–108. [Google Scholar] [CrossRef]
- de Lange, J.W.D.; Duraku, L.S.; Power, D.M.; Rajaratnam, V.; van der Oest, M.J.W.; Selles, R.W.; Huygen, F.J.P.M.; Hundepool, C.A.; Zuidam, J.M. Prevalence of Post-Traumatic Neuropathic Pain after Digital Nerve Repair and Finger Amputation. J. Plast. Reconstr. Aesthetic Surg. JPRAS 2022, 75, 3242–3249. [Google Scholar] [CrossRef]
- Thorsén, F.; Rosberg, H.-E.; Steen Carlsson, K.; Dahlin, L.B. Digital Nerve Injuries: Epidemiology, Results, Costs, and Impact on Daily Life. J. Plast. Surg. Hand Surg. 2012, 46, 184–190. [Google Scholar] [CrossRef]
- Kornfeld, T.; Borger, A.; Radtke, C. Reconstruction of Critical Nerve Defects Using Allogenic Nerve Tissue: A Review of Current Approaches. Int. J. Mol. Sci. 2021, 22, 3515. [Google Scholar] [CrossRef]
- Hoben, G.M.; Ee, X.; Schellhardt, L.; Yan, Y.; Hunter, D.A.; Moore, A.M.; Snyder-Warwick, A.K.; Stewart, S.; Mackinnon, S.E.; Wood, M.D. Increasing Nerve Autograft Length Increases Senescence and Reduces Regeneration. Plast. Reconstr. Surg. 2018, 142, 952–961. [Google Scholar] [CrossRef]
- Singh, A.; Asikainen, S.; Teotia, A.K.; Shiekh, P.A.; Huotilainen, E.; Qayoom, I.; Partanen, J.; Seppälä, J.; Kumar, A. Biomimetic Photocurable Three-Dimensional Printed Nerve Guidance Channels with Aligned Cryomatrix Lumen for Peripheral Nerve Regeneration. ACS Appl. Mater. Interfaces 2018, 10, 43327–43342. [Google Scholar] [CrossRef]
- Frost, H.K.; Andersson, T.; Johansson, S.; Englund-Johansson, U.; Ekström, P.; Dahlin, L.B.; Johansson, F. Electrospun Nerve Guide Conduits Have the Potential to Bridge Peripheral Nerve Injuries In Vivo. Sci. Rep. 2018, 8, 16716. [Google Scholar] [CrossRef]
- Maiti, B.; Díaz Díaz, D. 3D Printed Polymeric Hydrogels for Nerve Regeneration. Polymers 2018, 10, 1041. [Google Scholar] [CrossRef]
- Ma, X.; Liu, J.; Zhu, W.; Tang, M.; Lawrence, N.; Yu, C.; Gou, M.; Chen, S. 3D Bioprinting of Functional Tissue Models for Personalized Drug Screening and in Vitro Disease Modeling. Adv. Drug Deliv. Rev. 2018, 132, 235–251. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.V.; Atala, A. 3D Bioprinting of Tissues and Organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Kang, H.-W.; Lee, S.J.; Ko, I.K.; Kengla, C.; Yoo, J.J.; Atala, A. A 3D Bioprinting System to Produce Human-Scale Tissue Constructs with Structural Integrity. Nat. Biotechnol. 2016, 34, 312–319. [Google Scholar] [CrossRef]
- Suo, H.; Li, L.; Zhang, C.; Yin, J.; Xu, K.; Liu, J.; Fu, J. Glucosamine-Grafted Methacrylated Gelatin Hydrogels as Potential Biomaterials for Cartilage Repair. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 990–999. [Google Scholar] [CrossRef]
- Grigoryan, B.; Paulsen, S.J.; Corbett, D.C.; Sazer, D.W.; Fortin, C.L.; Zaita, A.J.; Greenfield, P.T.; Calafat, N.J.; Gounley, J.P.; Ta, A.H.; et al. Multivascular Networks and Functional Intravascular Topologies within Biocompatible Hydrogels. Science 2019, 364, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Noor, N.; Shapira, A.; Edri, R.; Gal, I.; Wertheim, L.; Dvir, T. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Adv. Sci. 2019, 6, 1900344. [Google Scholar] [CrossRef]
- Rhode, S.C.; Beier, J.P.; Ruhl, T. Adipose Tissue Stem Cells in Peripheral Nerve Regeneration-In Vitro and In Vivo. J. Neurosci. Res. 2021, 99, 545–560. [Google Scholar] [CrossRef] [PubMed]
- Gordon, T.; Tyreman, N.; Raji, M.A. The Basis for Diminished Functional Recovery after Delayed Peripheral Nerve Repair. J. Neurosci. 2011, 31, 5325–5334. [Google Scholar] [CrossRef]
- Li, Q.T.; Zhang, P.X.; Yin, X.F.; Han, N.; Kou, Y.H.; Deng, J.X.; Jiang, B.G. Functional Recovery of Denervated Skeletal Muscle with Sensory or Mixed Nerve Protection: A Pilot Study. PLoS ONE 2013, 8, e79746. [Google Scholar] [CrossRef]
- Hao, Y.; Ma, Y.; Wang, X.; Jin, F.; Ge, S. Short-Term Muscle Atrophy Caused by Botulinum Toxin-A Local Injection Impairs Fracture Healing in the Rat Femur. J. Orthop. Res. 2012, 30, 574–580. [Google Scholar] [CrossRef]
- Locquet, M.; Beaudart, C.; Reginster, J.-Y.; Bruyère, O. Association Between the Decline in Muscle Health and the Decline in Bone Health in Older Individuals from the SarcoPhAge Cohort. Calcif. Tissue Int. 2019, 104, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Eken, G.; Misir, A.; Tangay, C.; Atici, T.; Demirhan, N.; Sener, N. Effect of Muscle Atrophy and Fatty Infiltration on Mid-Term Clinical, and Functional Outcomes after Achilles Tendon Repair. Foot Ankle Surg. 2021, 27, 730–735. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trâmbițaș, C.; Cordoș, B.A.; Dorobanțu, D.C.; Vintilă, C.; Ion, A.P.; Pap, T.; Camelia, D.; Puiac, C.; Arbănași, E.M.; Ciucanu, C.C.; et al. Application of Adipose Stem Cells in 3D Nerve Guidance Conduit Prevents Muscle Atrophy and Improves Distal Muscle Compliance in a Peripheral Nerve Regeneration Model. Bioengineering 2024, 11, 184. https://doi.org/10.3390/bioengineering11020184
Trâmbițaș C, Cordoș BA, Dorobanțu DC, Vintilă C, Ion AP, Pap T, Camelia D, Puiac C, Arbănași EM, Ciucanu CC, et al. Application of Adipose Stem Cells in 3D Nerve Guidance Conduit Prevents Muscle Atrophy and Improves Distal Muscle Compliance in a Peripheral Nerve Regeneration Model. Bioengineering. 2024; 11(2):184. https://doi.org/10.3390/bioengineering11020184
Chicago/Turabian StyleTrâmbițaș, Cristian, Bogdan Andrei Cordoș, Dorin Constantin Dorobanțu, Cristian Vintilă, Alexandru Petru Ion, Timea Pap, David Camelia, Claudiu Puiac, Emil Marian Arbănași, Claudiu Constantin Ciucanu, and et al. 2024. "Application of Adipose Stem Cells in 3D Nerve Guidance Conduit Prevents Muscle Atrophy and Improves Distal Muscle Compliance in a Peripheral Nerve Regeneration Model" Bioengineering 11, no. 2: 184. https://doi.org/10.3390/bioengineering11020184
APA StyleTrâmbițaș, C., Cordoș, B. A., Dorobanțu, D. C., Vintilă, C., Ion, A. P., Pap, T., Camelia, D., Puiac, C., Arbănași, E. M., Ciucanu, C. C., Mureșan, A. V., Arbănași, E. M., & Russu, E. (2024). Application of Adipose Stem Cells in 3D Nerve Guidance Conduit Prevents Muscle Atrophy and Improves Distal Muscle Compliance in a Peripheral Nerve Regeneration Model. Bioengineering, 11(2), 184. https://doi.org/10.3390/bioengineering11020184