Nerve Regeneration and Gait Function Recovery with Implantation of Glucose/Mannose Conduits Using a Rat Model: Efficacy of Glucose/Mannose as a New Neurological Guidance Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Glucose/Mannose Viscous Solution as a Filler
2.2. Fabrication of Hollow Glucose/Mannose Conduits
2.3. Characterization of Hollow Glucose/Mannose Conduits
2.4. In Vivo Evaluation of Nerve Regeneration Using Glucose/Mannose-Derived Nerve Guidance Conduits
2.4.1. Animal Experiment
Preparation for Animal Surgery
Application of Guidance Conduits through Animal Surgery
2.5. Histological Evaluation
2.6. Gait Function
2.7. Statistical Analysis
3. Results
3.1. Viscosity of Glucose/Mannose Aqueous Solution
3.2. Crystal Structure of Hollow Glucose/Mannose Conduits
3.3. Surface and Mechanical Properties of Hollow Glucose/Mannose Conduits
3.3.1. Surface Roughness
3.3.2. Wettability
3.3.3. Mechanical Property
3.4. Evaluation of Regenerated Nerve
3.5. Gait Function of Rats with the Postoperative Period
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braga Silva, J.; Marchese, G.M.; Cauduro, C.G.; Debiasi, M. Nerve conduits for treating peripheral nerve injuries: A systematic literature review. Hand Surg. Rehabil. 2017, 36, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Mackinnon, S.E.; Dellon, A.L. Nerve repair and nerve grafts. In Surgery of the Peripheral Nerve; Mackinnon, S.E., Ed.; Thieme: New York, NY, USA, 1988. [Google Scholar]
- Gerth, D.J.; Tashiro, J.; Thaller, S.R. Clinical outcomes for Conduits and Scaffolds in peripheral nerve repair. World J. Clin. Cases 2015, 3, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.A.; Breidenbach, W.C.; Brown, R.E.; Jabaley, M.E.; Mass, D.P. A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast. Reconstr. Surg. 2000, 106, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Lee, M.S.; Lim, J.; Park, S.; Kim, S.M.; Kim, D.I.; Tae, G.; Yang, H.S. Micro-grooved nerve guidance conduits combined with microfiber for rat sciatic nerve regeneration. J. Ind. Eng. Chem. 2020, 90, 214–223. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Wang, Q.Q.; Cao, X.D.; Gao, H.C. Piezoelectric conduit combined with multi-channel conductive scaffold for peripheral nerve regeneration. Chem. Eng. J. 2023, 452, 139424. [Google Scholar] [CrossRef]
- Choi, J.; Kim, J.H.; Jang, J.W.; Kim, H.J.; Choi, S.N.; Kwon, S.W. Decellularized sciatic nerve matrix as a biodegradable conduit for peripheral nerve regeneration. Neural Regen. Res. 2018, 13, 1796–1803. [Google Scholar] [PubMed]
- Shen, J.J.; Wang, J.Y.; Liu, X.Z.; Sun, Y.; Yin, A.L.; Chai, Y.M.; Zhang, K.H.; Wang, C.Y.; Zheng, X.Y. In Situ Prevascularization Strategy with Three-Dimensional Porous Conduits for Neural Tissue Engineering. ACS Appl. Mater. Interfaces 2021, 13, 50785–50801. [Google Scholar] [CrossRef] [PubMed]
- Dubey, N.; Letourneau, P.C.; Tranquillo, R.T. Guided Neurite Elongation and Schwann Cell Invasion into Magnetically Aligned Collagen in Simulated Peripheral Nerve Regeneration. Exp. Neurol. 1999, 158, 338–350. [Google Scholar] [CrossRef]
- Keilhoffa, G.; Stang, F.; Wolf, G.; Fansa, H. Bio-compatibility of type I/III collagen matrix for peripheral nerve reconstruction. Biomaterials 2003, 24, 2779–2787. [Google Scholar] [CrossRef]
- Saeki, M.; Tanaka, K.; Imatani, J.; Okamoto, H.; Watanabe, K.; Nakamura, T.; Gotani, H.; Ohi, H.; Nakamura, R.; Hirata, H. Efficacy and safety of novel collagen conduits filled with collagen filaments to treat patients with peripheral nerve injury: A multicenter, controlled, open-label clinical trial. Inj. Int. J. Care Inj. 2018, 49, 766–774. [Google Scholar] [CrossRef]
- Asai, R.; Ishii, S.; Mikoshiba, I.; Kazama, T.; Matsuzaki, H.; Oshima, T.; Matsumoto, T. Functional recurrent laryngeal nerve regeneration using a silicon tube containing a collagen gel in a rat model. PLoS ONE 2020, 15, e0237231. [Google Scholar] [CrossRef]
- Lewis, M.; David, G.; Jacobs, D.; Kuczwara, P.; Woessner, A.E.; Kim, J.-W.; Quinn, K.P.; Song, Y. Neuro-regenerative behavior of adipose-derived stem cells in aligned collagen I hydrogels. Mater. Today Bio 2023, 22, 100762. [Google Scholar] [CrossRef]
- Madison, R.D.; Da Silva, C.F.; Dikkes, P.; Sidman, R.L.; Chiu, T.H. Peripheral nerve regeneration with entubulation repair: Comparison of biodegradable nerve guide versus polyethylene tubes and the effects of a laminin-containing gel. Exp. Neurol. 1987, 95, 378–390. [Google Scholar] [CrossRef]
- Zeng, L.; Worseg, A.; Albrecht, G.; Öhlinger, W.; Redl, H.; Grisold, W.; Zatloukal, K.; Schlag, G. Bridging of peripheral nerve defects with exogenous laminin-fibrin matrix in silicone tubes in a rat model. Restor. Neurol. Neurosci. 1995, 8, 107–111. [Google Scholar] [CrossRef]
- Matsumoto, K.; Ohnishi, K.; Kiyotani, T.; Sekine, T.; Ueda, H.; Nakamura, T.; Endo, K.; Shimizu, Y. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)–collagen tube filled with laminin-coated collagen fibers: A histological and electrophysiological evaluation of regenerated nerves. Brain Res. 2000, 868, 315–328. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Hsieh, C.-L.; Tsai, C.-C.; Chen, T.-H.; Cheng, W.-C.; Hu, C.-L.; Yao, C.-H. Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin and fibronectin. Biomaterials 2000, 21, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhu, J.; Xue, C.; Li, Z.; Ding, F.; Yang, Y.; Gu, X. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials 2014, 35, 2253–2263. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Chen, K.C.; He, T.; Yu, W.; Huang, S.; Xu, K. Scaffolds from block polyurethanes based on poly(e-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration. Biomaterials 2014, 35, 4266–4277. [Google Scholar] [CrossRef] [PubMed]
- Gomez, T.M.; Letourneau, P.C. Actin dynamics in growth cone motility and navigation. J. Neurochem. 2014, 129, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Vijayavenkataraman, S.S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater. 2020, 106, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.; French, A.D.; Condon, B.D.; Concha, M. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr. Polym. 2016, 135, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Li, J.; Chen, J.; Li, B. Effect of degree of deacetylation on physicochemical and gelation properties of konjac glucomannan. Food Res. Int. 2012, 46, 270–278. [Google Scholar] [CrossRef]
- Yoshimura, M.; Nishinari, K. Dynamic viscoelastic study on the gelation of konjac glucomannan with different molecular weights. Food Hydrocoll. 1999, 13, 227–233. [Google Scholar] [CrossRef]
- Williams, M.A.K.; Foster, T.J.; Martin, D.R.; Norton, I.T.; Yoshimura, M.; Nishinari, K. A Molecular Description of the Gelation Mechanism of Konjac Mannan. Biomacromolecules 2000, 1, 440–450. [Google Scholar] [CrossRef]
- Wong, C.C.Q.; Tomura, K.; Yamamoto, O. Wound Healing Performance in a Moist Environment of Crystalline Glucose/Mannose Film as a New Dressing Material Using a Rat Model: Comparing with Medical-Grade Wound Dressing and Alginate. Pharmaceuticals 2023, 16, 1532. [Google Scholar] [CrossRef]
- Xiao, M.; Dai, S.; Wang, L.; Ni, X.; Yan, W.; Fang, Y.; Corke, H.; Jiang, F. Carboxymethyl modification of konjac glucomannan affects water binding properties. Carbohydr. Polym. 2015, 130, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Denny-Brown, D.D.; Doherty, M.M. Effects of transient stretching of peripheral nerve. Arch. Neurol. Psychiatry 1945, 54, 116–129. [Google Scholar] [CrossRef]
- Bora, F.W.; Richardson, S.; Black, J. The biomechanical responses to tension in a peripheral nerve. J. Hand Surg. Am. 1980, 5, 21–25. [Google Scholar] [CrossRef]
- Farrell, C.M.; Springer, B.D.; Haidukewych, G.J.; Morrey, B.F. Motor nerve palsy following primary total hip arthroplasty. J. Bone Jt. Surg. Am. 2005, 87, 2619–2625. [Google Scholar] [CrossRef]
- Bianchi, F.; Sedgwick, R.; Ye, H.; Thompson, M.S. Strain partitioning between nerve and axons: Estimating axonal strain using sodium channel staining in intact peripheral nerve. J. Neurosci. Methods 2018, 309, 1–5. [Google Scholar] [CrossRef]
- Kerns, J.; Piponov, H.; Helder, C.; Amirouche, F.; Solitro, G.; Gonzalez, M. Mechanical Properties of the Human Tibial and Peroneal Nerves Following Stretch with Histological Correlations. Anat. Rec. 2019, 302, 2030–2039. [Google Scholar] [CrossRef] [PubMed]
- Lowery, L.A.; Van Vactor, D. The trip of the tip: Understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol. 2009, 10, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Vitriol, E.A.; Zheng, J.Q. Growth cone travel in space and time: The cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 2012, 73, 1068–1081. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.W.; Gertler, F.B. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 2003, 40, 209–227. [Google Scholar] [CrossRef] [PubMed]
- Romero, S.; Le Clainche, C.; Didry, D.; Egile, C.; Pantaloni, D.; Carlier, M.F. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 2004, 119, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Kovar, D.R.; Harris, E.S.; Mahaffy, R.; Higgs, H.N.; Pollard, T.D. Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 2006, 124, 423–435. [Google Scholar] [CrossRef]
- Duan, G.; Li, C.; Yan, X.; Yang, S.; Wang, S.; Sun, X.; Zhao, L.; Song, T.; Pan, Y.; Wang, X. Construction of a mineralized collagen nerve conduit for peripheral nerve injury repair. Regen. Biomater. 2023, 10, rbac089. [Google Scholar] [CrossRef]
- Takeya, H.; Itai, S.; Kimura, H.; Kurashina, Y.; Amemiya, T.; Nagoshi, N.; Iwamoto, T.; Sato, K.; Shibata, S.; Matsumoto, M.; et al. Schwann cell-encapsulated chitosan-collagen hydrogel nerve conduit promotes peripheral nerve regeneration in rodent sciatic nerve defect models. Sci. Rep. 2023, 13, 11932. [Google Scholar] [CrossRef]
Safety Standard Value | Inspection Results | |
---|---|---|
pH value | 5~7 | 6.83 |
Protein | ≤1.2% | 0.2% |
Lipid | ≤0.2% | 0.0% |
Arsenic | No detection | No detection |
Heavy metals | No detection | No detection |
Sulfites | No detection | No detection |
General bacteria | Negative | Negative |
Coliform bacteria | Negative | Negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamoto, O.; Saito, R.; Ohseki, Y.; Hoshino, A. Nerve Regeneration and Gait Function Recovery with Implantation of Glucose/Mannose Conduits Using a Rat Model: Efficacy of Glucose/Mannose as a New Neurological Guidance Material. Bioengineering 2024, 11, 157. https://doi.org/10.3390/bioengineering11020157
Yamamoto O, Saito R, Ohseki Y, Hoshino A. Nerve Regeneration and Gait Function Recovery with Implantation of Glucose/Mannose Conduits Using a Rat Model: Efficacy of Glucose/Mannose as a New Neurological Guidance Material. Bioengineering. 2024; 11(2):157. https://doi.org/10.3390/bioengineering11020157
Chicago/Turabian StyleYamamoto, Osamu, Risa Saito, Yuta Ohseki, and Asami Hoshino. 2024. "Nerve Regeneration and Gait Function Recovery with Implantation of Glucose/Mannose Conduits Using a Rat Model: Efficacy of Glucose/Mannose as a New Neurological Guidance Material" Bioengineering 11, no. 2: 157. https://doi.org/10.3390/bioengineering11020157
APA StyleYamamoto, O., Saito, R., Ohseki, Y., & Hoshino, A. (2024). Nerve Regeneration and Gait Function Recovery with Implantation of Glucose/Mannose Conduits Using a Rat Model: Efficacy of Glucose/Mannose as a New Neurological Guidance Material. Bioengineering, 11(2), 157. https://doi.org/10.3390/bioengineering11020157