Performance Assessment of an Electrostatic Filter-Diverter Stent Cerebrovascular Protection Device: Evaluation of a Range of Potential Electrostatic Fields Focusing on Small Particles
Abstract
:1. Introduction
2. Objectives and Methods
2.1. Objectives
2.2. Aortic Arch Geometry
- Inlet: Aortic root
- Outlets:
- −
- Brachiocephalic Trunk (BCT),
- −
- Left Carotid Common Artery (LCCA),
- −
- Left Subclavian Artery (LSA), and
- −
- Descending Aorta (DAO).
2.3. Device Design
Third Stage
3. Results
3.1. Healthy Patient(HP)/TAVI
Comparison Between 4 Intensities of Electric Field Repulsion and No-Charged Device
- Figure 5 Scenario Field 1 (based on a device superficial charge of −24 k statC/m2). This figure represents the global histograms en each artery showing the number of counted particles going through each of them (a) and histograms comparing neutral and charged scenarious in each artery, (b), (c) and (d).
- Figure 6 Scenario Field 2 (based on a device superficial charge of −48 k statC/m2). This figure represents the global histograms en each artery showing the number of counted particles going through each of them (a) and histograms comparing neutral and charged scenarious in each artery, (b), (c) and (d).
- Figure 7 Scenario Field 3 (based on a device superficial charge of −75 k statC/m2). This figure represents the global histograms en each artery showing the number of counted particles going through each of them (a) and histograms comparing neutral and charged scenarious in each artery, (b), (c) and (d).
- Figure 8 Scenario Field 4 (based on a device superficial charge of −100 k statC/m2). This figure represents the global histograms en each artery showing the number of counted particles going through each of them (a) and histograms comparing neutral and charged scenarious in each artery, (b), (c) and (d).
3.2. Atrial Fibrialtion Patient
Comparison Between 4 Intensities of Electric Field Repulsion and No-Charged Device
- Figure 10 Scenario Field 1. This figure represents the global histograms en each artery showing the number of counted particles going through each of them (a) and histograms comparing neutral and charged scenarious in each artery, (b), (c) and (d).
- Figure 11 Scenario Field 2. This figure represents the global histograms en each artery showing the number of counted particles going through each of them (a) and histograms comparing neutral and charged scenarious in each artery, (b), (c) and (d).
- Figure 12 Scenario Field 3. This figure represents the global histograms en each artery showing the number of counted particles going through each of them (a) and histograms comparing neutral and charged scenarious in each artery, (b), (c) and (d).
- Figure 13 Scenario Field 4. This figure represents the global histograms en each artery showing the number of counted particles going through each of them (a) and histograms comparing neutral and charged scenarious in each artery, (b), (c) and (d).
3.3. Discussion
3.3.1. Main Conclusions
- Its action as a diverter, considering its effect of repelling microparticles (10 to 600 microns) due to the electronegative charge of the device, is demonstrated in the comparative tables of the different supra-aortic trunks (see Figure 4 and Figure 9. We explored microparticles’ sizes of 10, 25, 50, 75, 100, 250, 500 and 600 µm. Considering the charge/mass ratio, as the mass increases, the effectiveness decreases. We obtained more than 75% efficiency for the most dangerous ones, in the LCCA and the LSA.
- The second action of the device, as a filter, is demonstrated by the design characteristics (strut thickness of or 750 microns and the distance between them of 750 microns combined with the convexity) thanks to the Coanda and other hydrodynamic effects. This allows a change in the flow waves and adds an antifouling washing effect due to the high velocity of aortic flow. According to the values obtained from the computational model, the so-called large cerebral vessel occlusion (LCVO), observed both in atrial fibrillation (AF) and TAVI, could theoretically be reduced in 100% of cases, offering elderly fibrillated patients the possibility of not needing anticoagulants by preventing stroke.
- Finally, we could infer an additional approach for anticoagulated AF patients who suffer a disabling stroke episode with the finding of cerebral micro-bleeds (MB) on MRI [8]. The therapeutic dilemma lies in the timing of resuming anticoagulant treatment, with the risk of exacerbating the hemorrhage or increasing the likelihood of a new embolic event. Perhaps a solution would be using the device and the total suppression of anticoagulation.
3.3.2. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassel, M.; Nijveldt, R.; Roos, Y.B.W.; Hamon, M.; Piek, J.; Delewi, R. Silent cerebral infarcts associated with cardiac disease and procedures. Nat. Rev. Cardiol. 2013, 10, 696–706. [Google Scholar] [CrossRef]
- Zenger, B.; Rizzi, S.; Steinberg, B.; Ranjan, R.; Bunch, T. This is Your Brain, and This is Your Brain on Atrial Fibrillation: The Roles of Cardiac Malperfusion Events and Vascular Dysfunction in Cognitive Impairment. Arrhythmia Electrophysiol. Rev. 2023, 12, e01. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Debette, S.; Jokinen, H.; de Leeuw, F.E.; Pantoni, L. ESO Guideline on covert cerebral small vessel disease. Eur. Stroke 2021, 6, CXI–CLXII. [Google Scholar] [CrossRef]
- Regenhardt, R.W.; Das, A.S.; Lo, E.H.; Caplan, L.R. Advances in Understanding the Pathophysiology of Lacunar Stroke: A Review. JAMA Neurol. 2018, 75, 1273–1281. [Google Scholar] [CrossRef]
- Agrawal, A.; Isogai, T.; Shekhar, S.; Kapadia, S. Cerebral Embolic Protection Devices: Current State of the Art. Cardiol. Rev. 2023, 17, e02. [Google Scholar] [CrossRef]
- Bathla, G.; Ajmera, P.; Mehta, P.; Benson, J.; Derdeyn, C.; Lanzino, G.; Agarwal, A.; Brinjikji, W. Advances in Acute Ischemic Stroke Treatment: Current Status and Future Directions. Am. J. Neuroradiol. 2023, 44, 750–758. [Google Scholar] [CrossRef]
- Tsushima, Y.; Tanizaki, Y.; Aoki, J.; Endo, K. MR Detection of microhemorrhages in neurologically healthy adults. Neuroradiology 2002, 44, 31–36. [Google Scholar] [CrossRef]
- Greenberg, S.; Vernooij, M.; Cordonnie, C.; Viswanathan, A.; Salman, R.A.S.; Warach, S.; Launer, L.; Van Buchem, M.; Breteler, M.M.; Group, M.S. Cerebral microbleeds a guide to detection and interpretation. Lancet Neurol. 2009, 8, 165–174. [Google Scholar] [CrossRef]
- Jeerakathil, T.; Wolf, P.; Beiser, A.; Hald, J.; Au, R.; Kase, C.; Massaro, J.; DeCarli, C. Cerebral Microbleeds. Stroke 2004, 35, 1831–1835. [Google Scholar] [CrossRef]
- Sousanidou, A.; Tsiptsios, D.; Christidi, F.; Karatzetzou, S.; Kokkotis, C.; Gkantzios, A.; Bairaktaris, C.; Karapepera, V.; Bebeletsi, P.; Karagiannakidou, I.; et al. Exploring the Impact of Cerebral Microbleeds on Stroke Management. Neurol. Int. 2023, 15, 188–224. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Go, A.; Hylek, E.M.; Phillips, K.A.; Chang, Y.; Henault, L.E.; Selby, J.V.; Singer, D.E. Prevalence of Diagnosed Atrial Fibrillation in AdultsNational Implications for Rhythm Management and Stroke Prevention: The AnTicoagulation and Risk Factors In Atrial Fibrillation (ATRIA) Study. J. Am. Med. Assoc. 2001, 285, 2370–2375. [Google Scholar] [CrossRef]
- Miki, K.; Nakano, M.; Aizawa, K.; Hasebe, Y.; Kimura, Y.; Morosawa, S.; Akashi, T.; Morishita, Y.; Miyata, S.; Fukuda, K.; et al. Risk factors and localization of silent cerebral infarction in patients with atrial fibrillation. Focus Issue: Atrial Fibrillation. Heart Rhythm. 2019, 16, 1305–1313. [Google Scholar] [CrossRef]
- Kühne, M.; Krisai, P.; Coslovsky, M.; Rodondi, N.; Müller, A.; Beer, J.H.; Ammann, P.; Auricchio, A.; Moschovitis, G.; Hayoz, D.; et al. Silent brain infarcts impact on cognitive function in atrial fibrillation. Eur. Heart J. 2022, 43, 2127–2135. [Google Scholar] [CrossRef]
- Terrosu, P. Association between heart and dementia keep an eye on the left atrium. Eur. Heart J. Suppl. 2022, 24, I186–I189. [Google Scholar] [CrossRef]
- Iskander, M.; Jamil, Y.; Forrest, J.; Madhavan, M.; Makkar, R.; Leon, M.B.; Lansky, A.; Ahmad, Y. Cerebral Embolic Protection in Transcatheter Aortic Valve Replacement. Struct. Heart 2023, 7, 100169. [Google Scholar] [CrossRef]
- Tan, N.; Fei, G.; Rizwan, A.; Lim, S.; Abdul, A.Z.; Govindasamy, S.; Chao, V.; Ewe, S.; Ho, K.; Yap, J. Safety and efficacy of cerebral embolic protection in transcatheter aortic valve implantation: An updated meta-analysis. AsiaIntervention 2024, 10, 51. [Google Scholar] [CrossRef]
- Kawakami, R.; Gada, H.; Rinaldi, M.; Nazif, T.; Leon, M.; Kapadia, S.; Krishnaswamy, A.; Sakamoto, A.; Sato, Y.; Mori, M.; et al. Characterization of Cerebral Embolic Capture Using the SENTINEL Device During Transcatheter Aortic Valve Implantation in Low to Intermediate-Risk Patients: The SENTINEL-LIR Study. Circ. Cardiovasc. Interv. 2022, 15, e011358. [Google Scholar] [CrossRef]
- Cai, B.; Hu, K.; Li, C.; Jin, J.; Hu, W. Bovine serum albumin bioconjugated graphene oxide: Red blood cell adhesion and hemolysis studied by QCM-D. Appl. Surf. Sci. 2015, 356, 844–851. [Google Scholar] [CrossRef]
- Sivaselvam, S.; Mohankumar, A.; Thiruppathi, G.; Sundararaj, P.; Viswanathan, C.; Ponpandian, N. Engineering the surface of graphene oxide with bovine serum albumin for improved biocompatibility in Caenorhabditis elegans. Nanoscale Adv. 2020, 2, 5219–5230. [Google Scholar] [CrossRef]
- Prisco, A.; Aguado-Sierra, J.; Butakoff, C.; Vázquez, M.; Houzeaux, G.; Eguzkitza, B.; Bartos, J.; Yannopoulos, D.; Raveendran, G.; Holm, M.; et al. Concomitant Respiratory Failure Can Impair Myocardial Oxygenation in Patients with Acute Cardiogenic Shock Supported by VA-ECMO. J. Cardiovasc. Transl. Res. 2022, 15, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Eguzkitza, B.; Oks, D.; Navia, J.A.; Houzeaux, G.; Butakoff, C.; Fisa, M.; Campoy Millán, A.; Vázquez, M. Performance assessment of an electrostatic filter-diverter stent cerebrovascular protection device. Is it possible not to use anticoagulants in atrial fibrilation elderly patients? Front. Cardiovasc. Med. 2023, 10, 1233712. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.S.; Chen, T.; Iwasa, S.N.; Volpatti, M.; Popovic, M.R.; Morshead, C.M. A novel ex vivo assay to define charge-balanced electrical stimulation parameters for neural precursor cell activation in vivo. Brain Res. 2023, 1804, 148263. [Google Scholar] [CrossRef] [PubMed]
- Alpert, J.; Petersen, P.; Godtfredsen, J. Atrial fibrillation: Natural history, complications, and management. Annu. Rev. Med. 1988, 39, 41–52. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eguzkitza, B.; Navia, J.A.; Houzeaux, G.; Butakoff, C.; Vázquez, M. Performance Assessment of an Electrostatic Filter-Diverter Stent Cerebrovascular Protection Device: Evaluation of a Range of Potential Electrostatic Fields Focusing on Small Particles. Bioengineering 2024, 11, 1127. https://doi.org/10.3390/bioengineering11111127
Eguzkitza B, Navia JA, Houzeaux G, Butakoff C, Vázquez M. Performance Assessment of an Electrostatic Filter-Diverter Stent Cerebrovascular Protection Device: Evaluation of a Range of Potential Electrostatic Fields Focusing on Small Particles. Bioengineering. 2024; 11(11):1127. https://doi.org/10.3390/bioengineering11111127
Chicago/Turabian StyleEguzkitza, Beatriz, José A. Navia, Guillaume Houzeaux, Constantine Butakoff, and Mariano Vázquez. 2024. "Performance Assessment of an Electrostatic Filter-Diverter Stent Cerebrovascular Protection Device: Evaluation of a Range of Potential Electrostatic Fields Focusing on Small Particles" Bioengineering 11, no. 11: 1127. https://doi.org/10.3390/bioengineering11111127
APA StyleEguzkitza, B., Navia, J. A., Houzeaux, G., Butakoff, C., & Vázquez, M. (2024). Performance Assessment of an Electrostatic Filter-Diverter Stent Cerebrovascular Protection Device: Evaluation of a Range of Potential Electrostatic Fields Focusing on Small Particles. Bioengineering, 11(11), 1127. https://doi.org/10.3390/bioengineering11111127