Unbiased Method to Determine Articular Cartilage Thickness Using a Three-Dimensional Model Derived from Laser Scanning: Demonstration on the Distal Femur
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eckhoff, D.G.; Bach, J.M.; Spitzer, V.M.; Reinig, K.D.; Bagur, M.M.; Baldini, T.H.; Rubinstein, D.; Humphries, S. Three-dimensional morphology and kinematics of the distal part of the femur viewed in virtual reality. Part II J. Bone Jt. Surg. Am. 2003, 85-A (Suppl. S4), 97–104. [Google Scholar] [CrossRef] [PubMed]
- Iranpour, F.; Merican, A.M.; Dandachli, W.; Amis, A.A.; Cobb, J.P. The geometry of the trochlear groove. Clin. Orthop. Relat. Res. 2010, 468, 782–788. [Google Scholar] [CrossRef]
- Guess, T.M.; Liu, H.; Bhashyam, S.; Thiagarajan, G. A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics. Comput. Methods Biomech. Biomed. Eng. 2013, 16, 256–270. [Google Scholar] [CrossRef]
- Baldwin, M.A.; Langenderfer, J.E.; Rullkoetter, P.J.; Laz, P.J. Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach. Comput. Methods Biomech. Biomed. Eng. 2010, 97, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Eckhoff, D.G.; Bach, J.M.; Spitzer, V.M.; Reinig, K.D.; Bagur, M.M.; Baldini, T.H.; Flannery, N.M. Three-dimensional mechanics, kinematics, and morphology of the knee viewed in virtual reality. J. Bone Jt. Surg. Am. 2005, 87 (Suppl. S2), 71–80. [Google Scholar]
- Hollister, A.M.; Jatana, S.; Singh, A.K.; Sullivan, W.W.; Lupichuk, A.G. The axes of rotation of the knee. Clin. Orthop. Relat. Res. 1993, 290, 259–268. [Google Scholar] [CrossRef]
- Iranpour, F.; Merican, A.M.; Baena, F.R.; Cobb, J.P.; Amis, A.A. Patellofemoral joint kinematics: The circular path of the patella around the trochlear axis. J. Orthop. Res. 2010, 28, 589–594. [Google Scholar] [CrossRef]
- Iwaki, H.; Pinskerova, V.; Freeman, M.A. Tibiofemoral movement 1: The shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J. Bone Jt. Surg. Br. 2000, 82, 1189–1195. [Google Scholar] [CrossRef]
- Pinskerova, V.; Iwaki, H.; Freeman, M.A. The shapes and relative movements of the femur and tibia at the knee. Orthopade 2000, 29 (Suppl. S1), S3–S5. [Google Scholar] [CrossRef]
- Howell, S.M.; Hull, M.L.; Mahfouz, M.R. Kinematically Aligned Total Knee Arthroplasty. In Insall & Scott: Surgery of the Knee; Scott, W.N., Ed.; Elsevier: Philadelphia, PA, USA, 2018. [Google Scholar]
- Howell, S.M.; Papadopoulos, S.; Kuznik, K.T.; Hull, M.L. Accurate alignment and high function after kinematically aligned TKA performed with generic instruments. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 2271–2280. [Google Scholar] [CrossRef]
- Argentieri, E.C.; Sturnick, D.R.; DeSarno, M.J.; Gardner-Morse, M.G.; Slauterbeck, J.R.; Johnson, R.J.; Beynnon, B.D. Changes to the articular cartilage thickness profile of the tibia following anterior cruciate ligament injury. Osteoarthr. Cartil. 2014, 22, 1453–1460. [Google Scholar] [CrossRef]
- Eckstein, F.; Heudorfer, L.; Faber, S.C.; Burgkart, R.; Englmeier, K.H.; Reiser, M. Long-term and resegmentation precision of quantitative cartilage MR imaging (qMRI). Osteoarthr. Cartil. 2002, 10, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Koo, S.; Giori, N.J.; Gold, G.E.; Dyrby, C.O.; Andriacchi, T.P. Accuracy of 3D cartilage models generated from MR images is dependent on cartilage thickness: Laser scanner based validation of in vivo cartilage. J. Biomech. Eng. 2009, 131, 121004. [Google Scholar] [CrossRef] [PubMed]
- Kornaat, P.R.; Koo, S.; Andriacchi, T.P.; Bloem, J.L.; Gold, G.E. Comparison of quantitative cartilage measurements acquired on two 3.0T MRI systems from different manufacturers. J. Magn. Reson. Imaging 2006, 23, 770–773. [Google Scholar] [CrossRef]
- Li, G.; Park, S.E.; DeFrate, L.E.; Schutzer, M.E.; Ji, L.; Gill, T.J.; Rubash, H.E. The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clin. Biomech. 2005, 20, 736–744. [Google Scholar] [CrossRef]
- Shah, R.F.; Martinez, A.M.; Pedoia, V.; Majumdar, S.; Vail, T.P.; Bini, S.A. Variation in the thickness of knee cartilage. The use of a novel machine learning algorithm for cartilage segmentation of magnetic resonance images. J. Arthroplast. 2019, 34, 2210–2215. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Z.A.; McCarthy, D.M.; Kwak, S.D.; Legrand, P.; Fogarasi, F.; Ciaccio, E.J.; Ateshian, G.A. Knee cartilage topography, thickness, and contact areas from MRI: In-vitro calibration and in-vivo measurements. Osteoarthr. Cartil. 1999, 7, 95–109. [Google Scholar] [CrossRef]
- Omoumi, P.; Michoux, N.; Roemer, F.W.; Thienpont, E.; Vande Berg, B.C. Cartilage thickness at the posterior medial femoral condyle is increased in femorotibial knee osteoarthritis: A cross-sectional CT arthrography study (Part 2). Osteoarthr. Cartil. 2015, 23, 224–231. [Google Scholar] [CrossRef]
- Schmitz, R.J.; Wang, H.M.; Polprasert, D.R.; Kraft, R.A.; Pietrosimone, B.G. Evaluation of knee cartilage thickness: A comparison between ultrasound and magnetic resonance imaging methods. Knee 2017, 24, 217–223. [Google Scholar] [CrossRef]
- Naredo, E.; Acebes, C.; Moller, I.; Canillas, F.; de Agustin, J.J.; de Miguel, E.; Filippucci, E.; Iagnocco, A.; Moragues, C.; Tuneu, R.; et al. Ultrasound validity in the measurement of knee cartilage thickness. Ann. Rheum. Dis. 2009, 68, 1322–1327. [Google Scholar] [CrossRef]
- Ateshian, G.A.; Soslowsky, L.J.; Mow, V.C. Quantitation of articular surface topography and cartilage thickness in knee joints using stereophotogrammetry. J. Biomech. 1991, 24, 761–776. [Google Scholar] [CrossRef] [PubMed]
- Bowers, M.E.; Trinh, N.; Tung, G.A.; Crisco, J.J.; Kimia, B.B.; Fleming, B.C. Quantitative MR imaging using “LiveWire” to measure tibiofemoral articular cartilage thickness. Osteoarthr. Cartil. 2008, 16, 1167–1173. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chang, M.C.; Trinh, N.H.; Fleming, B.C.; Kimia, B.B. Reliable fusion of knee bone laser scans to establish ground truth for cartilage thickness measurement. In Proceedings of SPIE, Medical Imaging 2010: Image Processing; Dawant, B.M., Haynor, D.R., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; pp. 76232M-76231–76232M-76238. [Google Scholar]
- Trinh, N.H.; Lester, J.; Fleming, B.C.; Tung, G.; Kimia, B.B. Accurate measurement of cartilage morphology using a 3D laser scanner. In CVAMIA 2006, LNCS 4241; Beichel, R.R., Sonka, M., Eds.; Springer-Verlag: Berlin, Germany, 2006; pp. 37–48. [Google Scholar]
- Jurvelin, J.S.; Rasanen, T.; Kolmonen, P.; Lyyra, T. Comparison of optical, needle probe and ultrasonic techniques for the measurement of articular cartilage thickness. J. Biomech. 1995, 28, 231–235. [Google Scholar] [CrossRef]
- Campanelli, V.; Howell, S.M.; Hull, M.L. Accuracy evaluation of a lower-cost and four higher-cost laser scanners. J. Biomech. 2016, 49, 127–131. [Google Scholar] [CrossRef]
- ASTM International—Standards Worldwide. Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods; ASTM International: Philadelphia, PA, USA, 2013. [Google Scholar]
- Van den Broeck, J.; Vereecke, E.; Wirix-Speetjens, R.; Vander Sloten, J. Segmentation accuracy of long bones. Med. Eng. Phys. 2014, 36, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Gelaude, F.; Vander Sloten, J.; Lauwers, B. Accuracy assessment of CT-based outer surface femur meshes. Comput. Aided Surg. 2008, 13, 188–199. [Google Scholar] [CrossRef]
- Fenton, T.W.; Birkby, W.H.; Cornelison, J. A fast and safe non-bleaching method for forensic skeletal preparations. J. Forensic Sci. 2003, 48, 274–276. [Google Scholar] [CrossRef]
- Lander, S.L.; Brits, D.; Hosie, M. The effects of freezing, boiling and degreasing on the microstructure of bone. Homo 2014, 65, 131–142. [Google Scholar] [CrossRef]
- Hall, E.R.; Russell, W.C. Dermestid beetles as an aid in cleaning bones. J. Mammal. 1933, 14, 372–374. [Google Scholar] [CrossRef]
- Hefti, E.; Trechsel, U.; Rufenacht, H.; Fleisch, H. Use of dermestid beetles for cleaning bones. Calcif. Tissue Int. 1980, 31, 45–47. [Google Scholar] [CrossRef]




| 0° of Flexion | 90° of Flexion | |||
|---|---|---|---|---|
| Specimen | Medial | Lateral | Medial | Lateral |
| Specimen 1 | 2.0 (0.4) | 2.0 (0.3) | 1.9 (0.3) | 2.0 (0.1) |
| Specimen 2 | 2.2 (0.3) | 1.5 (0.3) | 1.6 (0.1) | 1.9 (0.1) |
| Specimen 3 | 1.5 (0.4) | 2.8 (0.2) | 1.2 (0.3) | 2.3 (0.3) |
| Mean Average | 1.9 | 2.1 | 1.6 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campanelli, V.; Hull, M.L. Unbiased Method to Determine Articular Cartilage Thickness Using a Three-Dimensional Model Derived from Laser Scanning: Demonstration on the Distal Femur. Bioengineering 2024, 11, 1118. https://doi.org/10.3390/bioengineering11111118
Campanelli V, Hull ML. Unbiased Method to Determine Articular Cartilage Thickness Using a Three-Dimensional Model Derived from Laser Scanning: Demonstration on the Distal Femur. Bioengineering. 2024; 11(11):1118. https://doi.org/10.3390/bioengineering11111118
Chicago/Turabian StyleCampanelli, Valentina, and Maury L. Hull. 2024. "Unbiased Method to Determine Articular Cartilage Thickness Using a Three-Dimensional Model Derived from Laser Scanning: Demonstration on the Distal Femur" Bioengineering 11, no. 11: 1118. https://doi.org/10.3390/bioengineering11111118
APA StyleCampanelli, V., & Hull, M. L. (2024). Unbiased Method to Determine Articular Cartilage Thickness Using a Three-Dimensional Model Derived from Laser Scanning: Demonstration on the Distal Femur. Bioengineering, 11(11), 1118. https://doi.org/10.3390/bioengineering11111118

