Effect of Structure on Osteogenesis of Bone Scaffold: Simulation Analysis Based on Mechanobiology and Animal Experiment Verification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling of the Different Unit Cell Geometries
2.2. Modeling of the Scaffold and Granulation Tissue System
2.3. Tissue Regeneration Algorithm
2.4. Three Approaches to the Description of Bone Volume Fraction
2.5. In Vivo Animal Experiments
2.5.1. Surgical Procedure
2.5.2. Micro-CT Analysis and Histological Evaluation
2.6. Statistical Analysis
3. Results
3.1. Effect of Manner of Calculation on the Tissue Volume Fraction
3.2. Comparison of Tissue Volume Fraction in Different Scaffolds
3.3. Visualized Bone Formation
3.3.1. Bone Formation in Simulation
3.3.2. Bone Formation Analyzed by Micro-CT
3.3.3. Bone Formation Analyzed by Tissue Staining
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wildemann, B.; Ignatius, A.; Leung, F.; Taitsman, L.A.; Smith, R.M.; Pesantez, R.; Stoddart, M.J.; Richards, R.G.; Jupiter, J.B. Non-union bone fractures. Nat. Rev. Dis. Primers 2021, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, X.; Zhou, Y.; Ji, X.; Cheng, S.; Bian, D.; Fan, L.; Zhou, L.; Ning, C.; Zhang, Y. Biomimetic Ti-6Al-4V alloy/gelatin methacrylate hybrid scaffold with enhanced osteogenic and angiogenic capabilities for large bone defect restoration. Bioact. Mater. 2021, 6, 3437–3448. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Lian, R.; Liu, L.; Liu, T.; Bi, C.; Hong, K.; Zhang, S.; Ren, J.; Wang, H.; Ouyang, N.; et al. Biomimetic Hydroxyapatite Nanorods Promote Bone Regeneration via Accelerating Osteogenesis of BMSCs through T Cell-Derived IL-22. ACS Nano 2022, 16, 755–770. [Google Scholar] [CrossRef] [PubMed]
- Swanson, W.B.; Omi, M.; Zhang, Z.; Nam, H.K.; Jung, Y.; Wang, G.; Ma, P.X.; Hatch, N.E.; Mishina, Y. Macropore design of tissue engineering scaffolds regulates mesenchymal stem cell differentiation fate. Biomaterials 2021, 272, 120769. [Google Scholar] [CrossRef] [PubMed]
- Gomez, S.; Vlad, M.D.; Lopez, J.; Fernandez, E. Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater. 2016, 42, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.; Wu, L.; Zhou, C.; Fan, H.; Gou, M.; Li, Z.; Zhang, B.; Lei, H.; Sun, H.; Liang, J.; et al. 3D printed titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment and its bone regeneration study. Biofabrication 2020, 13, 015008. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, Y.; Sun, Z.; Peng, K.; Liu, K.; Xu, P.; Li, J.; Wei, X.; He, X. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis. Mater. Today Bio 2024, 24, 100934. [Google Scholar] [CrossRef] [PubMed]
- Timercan, A.; Sheremetyev, V.; Brailovski, V. Mechanical properties and fluid permeability of gyroid and diamond lattice structures for intervertebral devices: Functional requirements and comparative analysis. Sci. Technol. Adv. Mater. 2021, 22, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Meenashisundaram, G.K.; Kandilya, D.; Fuh, J.Y.H.; Dheen, S.T.; Kumar, A.S. A biomechanical evaluation on Cubic, Octet, and TPMS gyroid Ti6Al4V lattice structures fabricated by selective laser melting and the effects of their debris on human osteoblast-like cells. Biomater. Adv. 2022, 137, 212829. [Google Scholar] [CrossRef]
- Nath, S.C.; Day, B.; Harper, L.; Yee, J.; Hsu, C.Y.; Larijani, L.; Rohani, L.; Duan, N.; Kallos, M.S.; Rancourt, D.E. Fluid shear stress promotes embryonic stem cell pluripotency via interplay between β-catenin and vinculin in bioreactor culture. Stem Cells 2021, 39, 1166–1177. [Google Scholar] [CrossRef]
- Li, W.; Dai, F.; Zhang, S.; Xu, F.; Xu, Z.; Liao, S.; Zeng, L.; Song, L.; Ai, F. Pore Size of 3D-Printed Polycaprolactone/Polyethylene Glycol/Hydroxyapatite Scaffolds Affects Bone Regeneration by Modulating Macrophage Polarization and the Foreign Body Response. ACS Appl. Mater. Interfaces 2022, 14, 20693–20707. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.N.; Wang, T.; Crowley, J.; Wills, D.; Pelletier, M.H.; Westrick, E.R.; Adams, S.B.; Gall, K.; Walsh, W.R. High-strength, porous additively manufactured implants with optimized mechanical osseointegration. Biomaterials 2021, 279, 121206. [Google Scholar] [CrossRef]
- Abbasi, N.; Ivanovski, S.; Gulati, K.; Love, R.M.; Hamlet, S. Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater. Res. 2020, 24, 2. [Google Scholar] [CrossRef]
- Seeman, E.; Delmas, P.D. Mechanisms of disease—Bone quality—The material and structural basis of bone strength and fragility. N. Engl. J. Med. 2006, 354, 2250–2261. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Montano, O.L.; Cortes-Rodriguez, C.J.; Uva, A.E.; Fiorentino, M.; Gattullo, M.; Monno, G.; Boccaccio, A. Comparison of the mechanobiological performance of bone tissue scaffolds based on different unit cell geometries. J. Mech. Behav. Biomed. Mater. 2018, 83, 28–45. [Google Scholar] [CrossRef]
- Byrne, D.P.; Lacroix, D.; Planell, J.A.; Kelly, D.J.; Prendergast, P.J. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: Application of mechanobiological models in tissue engineering. Biomaterials 2007, 28, 5544–5554. [Google Scholar] [CrossRef] [PubMed]
- Boccaccio, A.; Fiorentino, M.; Uva, A.E.; Laghetti, L.N.; Monno, G. Rhombicuboctahedron unit cell based scaffolds for bone regeneration: Geometry optimization with a mechanobiology—Driven algorithm. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 83, 51–66. [Google Scholar] [CrossRef]
- Iamsamang, J.; Naiyanetr, P. Computational method and program for generating a porous scaffold based on implicit surfaces. Comput. Methods Programs Biomed. 2021, 205, 106088. [Google Scholar] [CrossRef] [PubMed]
- Melchels, F.P.; Bertoldi, K.; Gabbrielli, R.; Velders, A.H.; Feijen, J.; Grijpma, D.W. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 2010, 31, 6909–6916. [Google Scholar] [CrossRef]
- Afshar, M.; Pourkamali Anaraki, A.; Montazerian, H. Compressive characteristics of radially graded porosity scaffolds architectured with minimal surfaces. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 92, 254–267. [Google Scholar] [CrossRef]
- Duda, G.N.; Geissler, S.; Checa, S.; Tsitsilonis, S.; Petersen, A.; Schmidt-Bleek, K. The decisive early phase of bone regeneration. Nat. Rev. Rheumatol. 2023, 19, 78–95. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Echenique, A.; Bashkuev, M.; Reitmaier, S.; Perez-Del Palomar, A.; Schmidt, H. Numerical simulations of bone remodelling and formation following nucleotomy. J. Biomech. 2019, 88, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Postigo, S.; Schmidt, H.; Rohlmann, A.; Putzier, M.; Simon, A.; Duda, G.; Checa, S. Investigation of different cage designs and mechano-regulation algorithms in the lumbar interbody fusion process—A finite element analysis. J. Biomech. 2014, 47, 1514–1519. [Google Scholar] [CrossRef] [PubMed]
- Shefelbine, S.J.; Augat, P.; Claes, L.; Simon, U. Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J. Biomech. 2005, 38, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, D.; Li, J.; Wei, X.; Sun, Z.; Yang, B.; Lu, T.; Ouyang, P.; Chang, S.E.; Liu, W.; et al. Irregular pore size of degradable bioceramic Voronoi scaffolds prepared by stereolithography: Osteogenesis and computational fluid dynamics analysis. Mater. Des. 2022, 224, 111414. [Google Scholar] [CrossRef]
- Calore, A.R.; Srinivas, V.; Groenendijk, L.; Serafim, A.; Stancu, I.C.; Wilbers, A.; Leoné, N.; Sanchez, A.A.; Auhl, D.; Mota, C.; et al. Manufacturing of scaffolds with interconnected internal open porosity and surface roughness. Acta Biomater. 2022, 156, 158–176. [Google Scholar] [CrossRef]
- Carluccio, D.; Xu, C.; Venezuela, J.; Cao, Y.; Kent, D.; Bermingham, M.; Demir, A.G.; Previtali, B.; Ye, Q.; Dargusch, M. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Acta Biomater. 2020, 103, 346–360. [Google Scholar] [CrossRef]
- Discher, D.E.; Janmey, P.; Wang, Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310, 1139–1143. [Google Scholar] [CrossRef]
- Olivares, A.L.; Marsal, E.; Planell, J.A.; Lacroix, D. Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 2009, 30, 6142–6149. [Google Scholar] [CrossRef]
- Thiel, A.; Reumann, M.K.; Boskey, A.; Wischmann, J.; von Eisenhart-Rothe, R.; Mayer-Kuckuk, P. Osteoblast migration in vertebrate bone. Biol. Rev. Camb. Philos. Soc. 2018, 93, 350–363. [Google Scholar] [CrossRef]
- Lauridsen, T.; Feidenhans’l, R.; Pinholt, E.M. Virtual histology uncertainty in synchrotron X-ray micro-computed tomography evaluation. J. Cranio-Maxillofac. Surg. 2018, 46, 1569–1575. [Google Scholar] [CrossRef]
- Arnsdorf, E.J.; Tummala, P.; Kwon, R.Y.; Jacobs, C.R. Mechanically induced osteogenic differentiation—The role of RhoA, ROCKII and cytoskeletal dynamics. J. Cell Sci. 2009, 122 Pt 4, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Braig, Z.V.; Tagliero, A.J.; Rose, P.S.; Elhassan, B.T.; Barlow, J.D.; Wagner, E.R.; Sanchez-Sotelo, J.; Houdek, M.T. Humeral stress shielding following cemented endoprosthetic reconstruction: An under-reported complication? J. Surg. Oncol. 2021, 123, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Ali, D. Effect of scaffold architecture on cell seeding efficiency: A discrete phase model CFD analysis. Comput. Biol. Med. 2019, 109, 62–69. [Google Scholar] [CrossRef]
- Lu, T.; Sun, Z.; Jia, C.; Ren, J.; Li, J.; Ma, Z.; Zhang, J.; Li, J.; Zhang, T.; Zang, Q.; et al. Roles of irregularity of pore morphology in osteogenesis of Voronoi scaffolds: From the perspectives of MSC adhesion and mechano-regulated osteoblast differentiation. J. Biomech. 2023, 151, 111542. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Sang, L.; Zhang, Z.; Lai, S.; Zhao, Y. Compression Performance and Deformation Behavior of 3D-Printed PLA-Based Lattice Structures. Polymers 2022, 14, 1062. [Google Scholar] [CrossRef] [PubMed]
- Noroozi, R.; Tatar, F.; Zolfagharian, A.; Brighenti, R.; Shamekhi, M.A.; Rastgoo, A.; Hadi, A.; Bodaghi, M. Additively Manufactured Multi-Morphology Bone-like Porous Scaffolds: Experiments and Micro-Computed Tomography-Based Finite Element Modeling Approaches. Int. J. Bioprint. 2022, 8, 556. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xu, D.; Lin, L.; Li, S.; Hou, W.; He, Y.; Sheng, L.; Yi, C.; Zhang, X.; Li, H.; et al. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 131, 112499. [Google Scholar] [CrossRef]
- Deng, H.; Min, E.; Baeyens, N.; Coon, B.G.; Hu, R.; Zhuang, Z.W.; Chen, M.; Huang, B.; Afolabi, T.; Zarkada, G.; et al. Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling. Proc. Natl. Acad. Sci. USA 2021, 118, e2105339118. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Li, Y.; Lu, F.; Gou, Y.; Zhong, C.; He, S.; Zhao, C.; Yang, G.; Zhang, L.; Yang, X.; et al. Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration. Bioact. Mater. 2023, 25, 374–386. [Google Scholar] [CrossRef]
- Gu, P.Z.; Wen, Z.J.; Bao, L.F.; Wang, Y.B.; Ouyang, P.R.; Lu, T.; Li, J.L.; Li, J.X.; Jiang, M.; Li, N.; et al. New synthetic PEKK/bioceramic hybrids and their surface sulfonation counterparts have increased cellular osteogenic capacity and promoted osseointegration. Mater. Des. 2022, 224, 111283. [Google Scholar] [CrossRef]
- Wang, X.; Han, X.; Li, C.; Chen, Z.; Huang, H.; Chen, J.; Wu, C.; Fan, T.; Li, T.; Huang, W.; et al. 2D materials for bone therapy. Adv. Drug Deliv. Rev. 2021, 178, 113970. [Google Scholar] [CrossRef] [PubMed]
Material | Yong Modulus (MPa) | Poisson’s Ratio |
---|---|---|
Bone endplates | 10,000 | 0.325 |
Scaffold | 1000 | 0.2 |
Side bone | 0.01 | 0.325 |
Granular tissue | 0.2 [16] | 0.167 [16] |
Fibrous tissue | 2 [16] | 0.167 [16] |
Cartilage | 10 [16] | 0.167 [16] |
New bone | 1000 | 0.325 |
Event | Stimuli | Additional Rules | Rates |
---|---|---|---|
Tissue destruction | εH > 5% OR εd > 15% | N.A. | Return to granular tissue |
Fibrous tissue formation | (−1% < εh < 5% AND 5% < εd < 15%) OR (1% < εh< 5% AND εd < 15%) | N.A. | 0.2 |
Cartilage tissue formation | (−5% < εh < −1% AND 5% < εd < 15%) | (Cartilage fraction < 25% AND bone fraction < 75%) | 0.1 |
Endochondral ossification | (−5% < εh < −0.1% AND εd < 5%) | Tissue vascularized AND bone fraction in neighbouring elements > 25% AND cartilage fraction > 25% | 0.1 (Based on the fraction of cartilage bone) |
Intramembranous ossification | (−0.1% < εh < 1% AND 1% < εd < 5%) OR (0.1% < εh < 1% AND εd < 1%) | Tissue vascularized AND bone fraction in neighbouring elements > 25% AND cartilage fraction < 25% | 0.1 (Precursor cell to osteoblasts) |
Tissue resorption | (−0.1% < εh < 0.1% AND εd < 1%) | N.A. | 0.05 (Based on the fraction of bone) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Sun, Z.; Wei, X.; Tan, Q.; He, X. Effect of Structure on Osteogenesis of Bone Scaffold: Simulation Analysis Based on Mechanobiology and Animal Experiment Verification. Bioengineering 2024, 11, 1120. https://doi.org/10.3390/bioengineering11111120
Li J, Sun Z, Wei X, Tan Q, He X. Effect of Structure on Osteogenesis of Bone Scaffold: Simulation Analysis Based on Mechanobiology and Animal Experiment Verification. Bioengineering. 2024; 11(11):1120. https://doi.org/10.3390/bioengineering11111120
Chicago/Turabian StyleLi, Jialiang, Zhongwei Sun, Xinyu Wei, Qinghua Tan, and Xijing He. 2024. "Effect of Structure on Osteogenesis of Bone Scaffold: Simulation Analysis Based on Mechanobiology and Animal Experiment Verification" Bioengineering 11, no. 11: 1120. https://doi.org/10.3390/bioengineering11111120
APA StyleLi, J., Sun, Z., Wei, X., Tan, Q., & He, X. (2024). Effect of Structure on Osteogenesis of Bone Scaffold: Simulation Analysis Based on Mechanobiology and Animal Experiment Verification. Bioengineering, 11(11), 1120. https://doi.org/10.3390/bioengineering11111120