Association Between Cognitive Function and the Autonomic Nervous System by Photoplethysmography
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Seoul Neuropsychological Screening Battery–Dementia Version
2.3. Group Classification
2.4. Data Analysis
2.4.1. PPG Analysis
Screening
Preprocessing
Time Domain Feature Extraction
Frequency Domain Feature Extraction
2.4.2. Statistical Analysis
Crude Analysis
Adjusted Analysis
3. Results
3.1. Feature Extraction
3.2. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jung, M.-H. A Study for the Countermeasures on Korea’s Low Birth Rate and Aging Society. J. Econ. Mark. Manag. 2017, 5, 1–9. [Google Scholar]
- Murman, D. The Impact of Age on Cognition. Semin. Hear. 2015, 36, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Arevalo-Rodriguez, I.; Smailagic, N.; Figuls, M.R.I.; Ciapponi, A.; Sanchez-Perez, E.; Giannakou, A.; Pedraza, O.L.; Cosp, X.B.; Cullum, S. Mini-Mental State Examination (MMSE) for the Detection of Alzheimer’s Disease and Other Dementias in People with Mild Cognitive Impairment (MCI). Cochrane Database Syst. Rev. 2015, CD010783. [Google Scholar] [CrossRef]
- Ryu, H.J.; Yang, D.W. The Seoul Neuropsychological Screening Battery (SNSB) for Comprehensive Neuropsychological Assessment. Dement. Neurocognitive Disord. 2023, 22, 1. [Google Scholar] [CrossRef]
- Scazufca, M.; Almeida, O.P.; Vallada, H.P.; Tasse, W.A.; Menezes, P.R. Limitations of the Mini-Mental State Examination for Screening Dementia in a Community with Low Socioeconomic Status: Results from the Sao Paulo Ageing & Health Study. Eur. Arch. Psychiatry Clin. Neurosci. 2009, 259, 8–15. [Google Scholar]
- Ismail, L.E.; Karwowski, W. Applications of EEG Indices for the Quantification of Human Cognitive Performance: A Systematic Review and Bibliometric Analysis. PLoS ONE 2020, 15, e0242857. [Google Scholar] [CrossRef]
- Marino, F.R.; Wu, H.-T.; Etzkorn, L.; Rooney, M.R.; Soliman, E.Z.; Deal, J.A.; Crainiceanu, C.; Spira, A.P.; Wanigatunga, A.A.; Schrack, J.A. Associations of Physical Activity and Heart Rate Variability from a Two-Week ECG Monitor with Cognitive Function and Dementia: The ARIC Neurocognitive Study. Sensors 2024, 24, 4060. [Google Scholar] [CrossRef]
- Rykov, Y.G.; Patterson, M.D.; Gangwar, B.A.; Jabar, S.B.; Leonardo, J.; Ng, K.P.; Kandiah, N. Predicting Cognitive Scores from Wearable-Based Digital Physiological Features Using Machine Learning: Data from a Clinical Trial in Mild Cognitive Impairment. BMC Med. 2024, 22, 36. [Google Scholar] [CrossRef]
- Moraes, J.L.; Rocha, M.X.; Vasconcelos, G.G.; Vasconcelos Filho, J.E.; de Albuquerque, V.H.C.; Alexandria, A.R. Advances in Photopletysmography Signal Analysis for Biomedical Applications. Sensors 2018, 18, 1894. [Google Scholar] [CrossRef]
- Gwak, M.; Sarrafzadeh, M.; Woo, E. Support for a Clinical Diagnosis of Mild Cognitive Impairment Using Photoplethysmography and Gait Sensors. In Proceedings of the APSIPA Annual Summit and Conference, Honolulu, HI, USA, 12–15 November 2018; Volume 2018, pp. 12–15. [Google Scholar]
- Ahn, H.-J.; Chin, J.; Park, A.; Lee, B.H.; Suh, M.K.; Seo, S.W.; Na, D.L. Seoul Neuropsychological Screening Battery-Dementia Version (SNSB-D): A Useful Tool for Assessing and Monitoring Cognitive Impairments in Dementia Patients. J. Korean Med. Sci. 2010, 25, 1071–1076. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, S.; Vullings, R.; Biswas, D.; Simões-Capela, N.; Van Helleputte, N.; van Hoof, C.; Groenendaal, W. Motion Artifact Reduction for Wrist-Worn Photoplethysmograph Sensors Based on Different Wavelengths. Sensors 2019, 19, 673. [Google Scholar] [CrossRef] [PubMed]
- Akar, S.A.; Kara, S.; Latifoğlu, F.; Bilgic, V. Spectral Analysis of Photoplethysmographic Signals: The Importance of Preprocessing. Biomed. Signal Process. Control. 2013, 8, 16–22. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Delacre, M.; Lakens, D.; Leys, C. Why Psychologists Should by Default Use Welch’s t-Test Instead of Student’s t-Test. Int. Rev. Soc. Psychol. 2017, 30, 92–101. [Google Scholar] [CrossRef]
- Marigold, J.R.G.; Arias, M.; Vassallo, M.; Allen, S.C.; Kwan, J.S. Autonomic Dysfunction in Older People. Rev. Clin. Gerontol. 2011, 21, 28–44. [Google Scholar] [CrossRef]
- Lövdén, M.; Fratiglioni, L.; Glymour, M.M.; Lindenberger, U.; Tucker-Drob, E.M. Education and Cognitive Functioning Across the Life Span. Psychol. Sci. Public Interest 2020, 21, 6–41. [Google Scholar] [CrossRef]
- Burton, A.L. OLS (Linear) Regression. In The Encyclopedia of Research Methods in Criminology and Criminal Justice; Barnes, J.C., Forde, D.R., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 509–514. [Google Scholar]
- Mullen, T.R.; Kothe, C.A.; Chi, Y.M.; Ojeda, A.; Kerth, T.; Makeig, S.; Jung, T.-P.; Cauwenberghs, G. Real-Time Neuroimaging and Cognitive Monitoring Using Wearable Dry EEG. IEEE Trans. Biomed. Eng. 2015, 62, 2553–2567. [Google Scholar] [CrossRef] [PubMed]
- Blair, R.J.R.; Veroude, K.; Buitelaar, J.K. Neuro-Cognitive System Dysfunction and Symptom Sets: A Review of fMRI Studies in Youth with Conduct Problems. Neurosci. Biobehav. Rev. 2018, 91, 69–90. [Google Scholar] [CrossRef]
- Borghini, G.; Aricò, P.; Graziani, I.; Salinari, S.; Sun, Y.; Taya, F.; Bezerianos, A.; Thakor, N.V.; Babiloni, F. Quantitative Assessment of the Training Improvement in a Motor-Cognitive Task by Using EEG, ECG and EOG Signals. Brain Topogr. 2016, 29, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Dyer, A.R.; Stamler, J.; Shekelle, R.B.; Schoenberger, J. The Relationship of Education to Blood Pressure: Findings on 40,000 Employed Chicagoans. Circulation 1976, 54, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Mackersie, C.L.; Calderon-Moultrie, N. Autonomic Nervous System Reactivity during Speech Repetition Tasks: Heart Rate Variability and Skin Conductance. Ear Hear. 2016, 37, 118S–125S. [Google Scholar] [CrossRef]
- Demareva, V.A.; Bovykina, D.V.; Edeleva, Y.A. Autonomic Factors of Successful Foreign Language Acquisition by Students and Schoolchildren. Mod. Technol. Med. 2019, 11, 177–181. [Google Scholar] [CrossRef]
- Stein, P.K.; Domitrovich, P.P.; Hui, N.; Rautaharju, P.; Gottdiener, J. Sometimes Higher Heart Rate Variability Is Not Better Heart Rate Variability: Results of Graphical and Nonlinear Analyses. Cardiovasc. Electrophysiol. 2005, 16, 954–959. [Google Scholar] [CrossRef]
- Brugnera, A.; Zarbo, C.; Adorni, R.; Tasca, G.A.; Rabboni, M.; Bondi, E.; Compare, A.; Sakatani, K. Cortical and Cardiovascular Responses to Acute Stressors and Their Relations with Psychological Distress. Int. J. Psychophysiol. 2017, 114, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Brugnera, A.; Zarbo, C.; Tarvainen, M.P.; Carlucci, S.; Tasca, G.A.; Adorni, R.; Auteri, A.; Compare, A. Higher Levels of Depressive Symptoms Are Associated with Increased Resting-State Heart Rate Variability and Blunted Reactivity to a Laboratory Stress Task among Healthy Adults. Appl. Psychophysiol. Biofeedback 2019, 44, 221–234. [Google Scholar] [CrossRef]
- Borson, S.; Barnes, R.F.; Veith, R.C.; Halter, J.B.; Raskind, M.A. Impaired Sympathetic Nervous System Response to Cognitive Effort in Early Alzheimer’s Disease. J. Gerontol. 1989, 44, M8–M12. [Google Scholar] [CrossRef]
- Dalise, A.M.; Prestano, R.; Fasano, R.; Gambardella, A.; Barbieri, M.; Rizzo, M.R. Autonomic nervous system and cognitive impairment in older patients: Evidence from long-term heart rate variability in real-life setting. Front. Aging Neurosci. 2020, 12, 40. [Google Scholar] [CrossRef]
- Jang, E.H.; Kim, A.Y.; Yu, H.Y. Relationships of Psychological Factors to Stress and Heart Rate Variability as Stress Responses Induced by Cognitive Stressors. Sci. Emot. Sensib. 2018, 21, 71–82. [Google Scholar] [CrossRef]
Characteristic | Value (Mean ± SD) |
---|---|
Age (year) | 71.5 ± 6.26 |
Education (year) | 9.12 ± 4.27 |
Height (cm) | 153.14 ± 5.47 |
Weight (kg) | 59.18 ± 20.75 |
Domain (Cut Off Score) | Attention (9) | Language and Related Function (23) | Visuospatial Function (30) | Memory (73) | Frontal/ Executive Function (51) | GCF (200) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group | HCP | LCP | HCP | LCP | HCP | LCP | HCP | LCP | HCP | LCP | HCP | LCP |
Subject | 299 | 274 | 253 | 291 | 480 | 99 | 337 | 210 | 302 | 237 | 247 | 258 |
Score | 10.68 ± 1.65 | 7.11 ± 0.85 | 24.35 ± 1.11 | 18.70 ± 3.29 | 34.27 ± 1.75 | 23.84 ± 6.07 | 91.30 ± 12.77 | 58.66 ± 10.64 | 58.81 ± 5.44 | 43.49 ± 5.76 | 222.96 ± 6.40 | 172.50 ± 8.91 |
Age (year) | *** 69.81 ± 6.10 | *** 72.97 ± 5.83 | *** 69.24 ± 5.92 | *** 72.71 ± 3.63 | *** 70.85 ± 6.28 | *** 74.39 ± 5.29 | *** 69.93 ± 6.01 | *** 73.07 ± 5.91 | *** 69.34 ± 6.06 | *** 73.15 ± 5.39 | *** 68.83 ± 5.90 | *** 72.65 ± 5.66 |
Education (year) | *** 10.90 ± 3.66 | *** 7.25 ± 3.78 | *** 11.45 ± 3.33 | *** 7.78 ± 3.63 | *** 9.90 ± 3.80 | *** 5.22 ± 3.72 | *** 10.46 ± 3.90 | *** 7.35 ± 3.65 | *** 11.04 ± 3.56 | *** 7.43 ± 3.66 | *** 11.47 ± 3.45 | *** 8.05 ± 3.44 |
Height (cm) | 153.97 ± 5.47 | 152.40 ± 5.45 | 154.25 ± 5.39 | 152.63 ± 5.44 | 153.59 ± 5.47 | 150.92 ± 5.34 | 153.95 ± 5.36 | 152.16 ± 5.64 | 154.50 ± 5.22 | 151.80 ± 5.42 | 154.69 ± 5.36 | 152.22 ± 5.31 |
Weight (kg) | 58.13 ± 8.27 | 58.84 ± 7.89 | 58.47 ± 7.82 | 58.34 ± 8.42 | 58.42 ± 8.12 | 58.18 ± 8.13 | 59.06 ± 7.89 | 57.73 ± 8.45 | 58.47 ± 7.52 | 58.29 ± 8.77 | 58.95 ± 7.57 | 57.87 ± 8.58 |
Features | Description | Unit |
---|---|---|
SDNN | Standard deviation of NN intervals | ms |
RMSSD | Root mean square of successive RR interval differences | ms |
SDSS | Standard deviation of the average NN intervals for each 5 min segment of a 24 h HRV recording | ms |
NN50 | The number of adjacent NN intervals that differ from each other by more than 50 ms | |
pNN50 | Percentage of successive RR intervals that differ by more than 50 ms | % |
Total Power | The signal energy found within a frequency band | ≤0.4 Hz |
LF | Absolute power of the low frequency band | 0.04–0.15 Hz |
HF | Absolute power of the high frequency band | 0.15–0.4 Hz |
LF/HF | Ratio of LF to HF power | % |
SD1 | Poincare plot standard deviation perpendicular to the line of identity | ms |
SD2 | Poincare plot standard deviation along the line of identity | ms |
SD2/SD1 | Ratio of SD2 to SD1 | % |
Domain | Attention | Language and Related Function | Visuospatial Function | Memory | Frontal/ Executive Function | GCF | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group | HCP | LCP | HCP | LCP | HCP | LCP | HCP | LCP | HCP | LCP | HCP | LCP |
Avg Systolic-to-Systolic Time (ms) | 0.86 ± 0.09 | 0.87 ± 0.09 | 0.85 ± 0.09 | 0.84 ± 0.09 | 0.84 ± 0.09 | 0.85 ± 0.10 | 0.86 ± 0.09 | 0.85 ± 0.09 | 0.87 ± 0.09 | 0.87 ± 0.10 | 0.86 ± 0.09 | 0.86 ± 0.09 |
SDNN (s) | 0.03 ± 0.07 | 0.03 ± 0.07 | 0.02 ± 0.07 | 0.02 ± 0.07 | * 0.02 ± 0.07 | * 0.03 ± 0.08 | 0.02 ± 0.07 | 0.02 ± 0.07 | * 0.03 ± 0.07 | * 0.04 ± 0.08 | 0.03 ± 0.06 | 0.04 ± 0.08 |
HR (beat/min) | 70.14 ± 7.96 | 69.07 ± 7.62 | 71.01 ± 7.71 | 72.03 ± 7.84 | 71.30 ± 7.77 | 70.59 ± 7.98 | 70.11 ± 7.41 | 71.40 ± 8.14 | 69.72 ± 7.66 | 69.14 ± 7.85 | 69.94 ± 7.71 | 70.42 ± 7.70 |
SD_HR (beat/min) | 1.63 ± 4.14 | 1.95 ± 4.29 | 0.92 ± 3.95 | 1.08 ± 4.43 | * 1.01 ± 4.04 | * 1.95 ± 5.04 | 1.01 ± 4.10 | 0.95 ± 4.41 | * 1.61 ± 3.96 | * 2.38 ± 4.52 | 1.57 ± 3.75 | 2.25 ± 4.51 |
RMSSD | 857.05 ± 99.04 | 869.24 ± 99.12 | 843.54 ± 97.41 | 832.10 ± 100.09 | 840.05 ± 97.88 | 852.18 ± 105.94 | 857.52 ± 96.38 | 843.69 ± 99.50 | 863.48 ± 95.19 | 872.95 ± 101.15 | 861.80 ± 97.91 | 857.38 ± 96.85 |
NN50 | 61.78 ± 88.66 | 68.14 ± 87.30 | 53.62 ± 86.30 | 62.03 ± 92.25 | 47.81 ± 89.30 | 44.88 ± 84.23 | 47.80 ± 85.14 | 51.43 ± 92.71 | 67.29 ± 88.61 | 79.83 ± 89.67 | * 68.62 ± 78.70 | * 88.31 ± 97.89 |
pNN50 | 18.23 ± 20.20 | 19.49 ± 19.88 | 15.71 ± 19.35 | 17.91 ± 21.30 | 14.14 ± 20.44 | 13.13 ± 18.95 | 14.66 ± 19.33 | 15.33 ± 21.25 | 19.68 ± 20.20 | 22.20 ± 20.36 | * 19.79 ± 18.03 | * 23.79 ± 22.13 |
Peak_value | 859.65 ± 94.12 | 871.35 ± 94.32 | 848.32 ± 92.81 | 836.06 ± 94.71 | 844.42 ± 93.29 | 853.69 ± 99.75 | 861.92 ± 91.48 | 847.81 ± 94.73 | 866.05 ± 90.89 | 873.82 ± 95.49 | 864.38 ± 93.61 | 857.85 ± 91.68 |
Power | 1055.25 ± 324.42 | 1098.79 ± 340.92 | 993.75 ± 322.22 | 981.90 ± 339.44 | * 1011.57 ± 317.78 | * 1095.22 ± 397.23 | 1044.88 ± 332.44 | 1012.72 ± 329.31 | * 1062.70 ± 318.90 | * 1120.80 ± 347.03 | 1050.38 ± 313.98 | 1074.24 ± 337.35 |
PW_LF | 79.33 ± 74.58 | 88.48 ± 77.90 | 65.97 ± 76.17 | 62.34 ± 72.65 | ** 76.04 ± 70.63 | ** 101.34 ± 96.30 | 84.08 ± 80.13 | 74.20 ± 68.30 | * 77.84 ± 74.08 | * 92.15 ± 78.68 | 72.74 ± 72.02 | 78.86 ± 75.91 |
PW_HF | 72.18 ± 137.99 | 85.80 ± 150.14 | 45.41 ± 131.40 | 59.22 ± 156.07 | 43.78 ± 140.30 | 68.05 ± 168.66 | 43.65 ± 140.56 | 49.27 ± 154.12 | 80.30 ± 137.41 | 104.86 ± 153.81 | * 73.42 ± 129.47 | * 98.74 ± 53.47 |
LF/HF | 0.81 ± 0.27 | 0.81 ± 0.28 | * 0.79 ± 0.27 | * 0.74 ± 0.28 | * 0.84 ± 0.28 | * 0.87 ± 0.28 | * 0.85 ± 0.27 | * 0.79 ± 0.29 | 0.73 ± 0.27 | 0.73 ± 0.28 | * 0.72 ± 0.27 | * 0.66 ± 0.28 |
SD1 | −0.01 ± 0.06 | −0.01 ± 0.06 | −0.02 ± 0.05 | −0.01 ± 0.06 | −0.02 ± 0.06 | −0.02 ± 0.07 | * −0.03 ± 0.05 | * −0.018 ± 0.07 | −0.01 ± 0.05 | 0.00 ± 0.06 | ** −0.01 ± 0.04 | ** 0.01 ± 0.07 |
SD2 | 0.04 ± 0.09 | 0.05 ± 0.09 | 0.03 ± 0.08 | 0.03 ± 0.09 | * 0.04 ± 0.08 | * 0.06 ± 0.10 | 0.04 ± 0.09 | 0.03 ± 0.08 | * 0.04 ± 0.08 | * 0.06 ± 0.09 | 0.04 ± 0.08 | 0.05 ± 0.09 |
SD2/SD1 | 4.95 ± 2.28 | 5.18 ± 2.50 | 4.65 ± 2.42 | 4.47 ± 2.33 | * 5.11 ± 2.32 | * 5.65 ± 2.60 | ** 4.96 ± 2.63 | ** 4.39 ± 1.89 | 4.33 ± 2.19 | 4.49 ± 2.56 | 4.20 ± 2.27 | 4.01 ± 2.50 |
SDSS | 0.02 ± 0.07 | 0.03 ± 0.07 | 0.016 ± 0.07 | 0.02 ± 0.07 | * 0.02 ± 0.07 | * 0.03 ± 0.08 | 0.02 ± 0.07 | 0.02 ± 0.07 | * 0.03 ± 0.07 | * 0.04 ± 0.08 | 0.027 ± 0.06 | 0.04 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, J.; Kim, K.; Lee, K.; Seo, J.-W.; Kim, J.U. Association Between Cognitive Function and the Autonomic Nervous System by Photoplethysmography. Bioengineering 2024, 11, 1099. https://doi.org/10.3390/bioengineering11111099
Jin J, Kim K, Lee K, Seo J-W, Kim JU. Association Between Cognitive Function and the Autonomic Nervous System by Photoplethysmography. Bioengineering. 2024; 11(11):1099. https://doi.org/10.3390/bioengineering11111099
Chicago/Turabian StyleJin, Jaewook, Kahye Kim, KunHo Lee, Jeong-Woo Seo, and Jaeuk U. Kim. 2024. "Association Between Cognitive Function and the Autonomic Nervous System by Photoplethysmography" Bioengineering 11, no. 11: 1099. https://doi.org/10.3390/bioengineering11111099
APA StyleJin, J., Kim, K., Lee, K., Seo, J.-W., & Kim, J. U. (2024). Association Between Cognitive Function and the Autonomic Nervous System by Photoplethysmography. Bioengineering, 11(11), 1099. https://doi.org/10.3390/bioengineering11111099