Radiation Exposure to the Brains of Interventional Radiology Staff: A Phantom Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICRP | International Commission on Radiological Protection |
IR | interventional radiology |
QA | quality assurance |
QC | quality control |
RPLD | radiophotoluminescence dosimeter |
SD | standard deviation |
References
- Bratschitsch, G.; Leitner, L.; Stücklschweiger, G.; Guss, H.; Sadoghi, P.; Puchwein, P.; Leithner, A.; Radl, R. Radiation exposure of patient and operating room personnel by fluoroscopy and navigation during spinal surgery. Sci. Rep. 2019, 9, 17652. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Chida, K.; Ishida, T.; Sasaki, F.; Toyoshima, H.; Oosaka, H.; Terata, K.; Abe, Y.; Kinoshita, T. Occupational radiation exposure dose of the eye in department of cardiac arrhythmia physician. Radiat. Prot. Dosim. 2019, 187, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Daneault, B.; Balter, S.; Kodali, S.K.; Williams, M.R.; Généreux, P.; Reiss, G.R.; Paradis, J.M.; Green, P.; Kirtane, A.J.; Smith, C.; et al. Patient radiation exposure during transcatheter aortic valve replacement procedures. EuroIntervention 2012, 8, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Tsushima, Y.; Taketomi-Takahashi, A.; Takei, H.; Otake, H.; Endo, K. Radiation exposure from CT examinations in Japan. BMC Med. Imag. 2010, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Inaba, Y.; Jingu, K.; Fujisawa, M.; Otomo, K.; Ishii, H.; Kato, T.; Murabayashi, Y.; Suzuki, M.; Zuguchi, M.; Chida, K. Evaluation of radiation doses received by physicians during permanent 198Au grain implant brachytherapy for oral cancer. Appl. Sci. 2024, 14, 6010. [Google Scholar] [CrossRef]
- Perisinakis, K.; Damilakis, J.; Theocharopoulos, N.; Manios, E.; Vardas, P.; Gourtsoyiannis, N. Accurate assessment of patient effective radiation dose and associated detriment risk from radiofrequency catheter ablation procedures. Circulation 2001, 104, 58–62. [Google Scholar] [CrossRef]
- Matsunaga, Y.; Kawaguchi, A.; Kobayashi, K.; Kobayashi, M.; Asada, Y.; Minami, K.; Suzuki, S.; Chida, K. Effective radiation doses of CT examinations in Japan: A nationwide questionnaire-based study. Br. J. Radiol. 2016, 89, 1058. [Google Scholar] [CrossRef]
- Ishii, H.; Chida, K.; Inaba, Y.; Abe, K.; Onodera, S.; Zuguchi, M. Fundamental study on diagnostic reference level quantities for endoscopic retrograde cholangiopancreatography using a C-arm fluoroscopy system. J. Radiol. Prot. 2023, 43, 041510. [Google Scholar] [CrossRef]
- Matsunaga, Y.; Chida, K.; Kondo, Y.; Kobayashi, K.; Kobayashi, M.; Minami, K.; Suzuki, S.; Asada, Y. Diagnostic reference levels and achievable doses for common computed tomography examinations: Results from the Japanese nationwide dose survey. Br. J. Radiol. 2019, 92, 20180290. [Google Scholar] [CrossRef]
- Chida, K.; Inaba, Y.; Masuyama, H.; Yanagawa, I.; Mori, I.; Saito, H.; Maruoka, S.; Zuguchi, M. Evaluating the performance of a MOSFET dosimeter at diagnostic x-ray energies for interventional radiology. Radiol. Phys. Technol. 2009, 2, 58–61. [Google Scholar] [CrossRef]
- Chida, K.; Inaba, Y.; Saito, H.; Ishibashi, T.; Takahashi, S.; Kohzuki, M.; Zuguchi, M. Radiation dose of interventional radiology system using a flat-panel detector. Am. J. Roentgenol. 2009, 193, 1680–1685. [Google Scholar] [CrossRef] [PubMed]
- Chida, K. What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel? Radiol. Phys. Technol. 2022, 15, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Ishii, H.; Chida, K.; Satsurai, K.; Haga, Y.; Kaga, Y.; Abe, M.; Inaba, Y.; Zuguchi, M. Occupational eye dose correlation with neck dose and patient-related quantities in interventional cardiology procedures. Radiol. Phys. Technol. 2022, 15, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Haga, Y.; Chida, K.; Kaga, Y.; Sota, M.; Meguro, T.; Zuguchi, M. Occupational eye dose in interventional cardiology procedures. Sci. Rep. 2017, 7, 569. [Google Scholar] [CrossRef] [PubMed]
- Chida, K.; Kaga, Y.; Haga, Y.; Kataoka, N.; Kumasaka, E.; Meguro, T.; Zuguchi, M. Occupational dose in interventional radiology procedures. Am. J. Roentgenol. 2013, 200, 138–141. [Google Scholar] [CrossRef]
- Chida, K.; Takahashi, T.; Ito, D.; Shimura, H.; Takeda, K.; Zuguchi, M. Clarifying and visualizing sources of staff-received scattered radiation in interventional procedures. Am. J. Roentgenol. 2011, 197, W900–W903. [Google Scholar] [CrossRef]
- Koenig, T.R.; Wolff, D.; Mettler, F.A.; Wagner, L.K. Skin injuries from fluoroscopically guided procedures: Part 1, characteristics of radiation injury. Am. J. Roentgenol. 2001, 177, 3–11. [Google Scholar] [CrossRef]
- Koenig, T.R.; Mettler, F.A.; Wagner, L.K. Skin injuries from fluoroscopically guided procedures: Part 2, review of 73 cases and recommendations for minimizing dose delivered to patient. Am. J. Roentgenol. 2001, 177, 13–20. [Google Scholar] [CrossRef]
- Kato, M.; Chida, K.; Sato, T.; Oosaka, H.; Tosa, T.; Munehisa, M.; Kadowaki, K. The necessity of follow-up for radiation skin injuries in patients after percutaneous coronary interventions: Radiation skin injuries will often be overlooked clinically. Acta Radiol. 2012, 53, 1040–1044. [Google Scholar] [CrossRef]
- Blettner, M.; Schlehofer, B.; Samkange-Zeeb, F.; Berg, G.; Schlaefer, K.; Schüz, J. Medical exposure to ionising radiation and the risk of brain tumours: Interphone study group, Germany. Eur. J. Cancer 2007, 43, 1990–1998. [Google Scholar] [CrossRef]
- Phillips, L.E.; Frankenfeld, C.L.; Drangsholt, M.; Koepsell, T.D.; van Belle, G.; Longstreth, W.T. Intracranial meningioma and ionizing radiation in medical and occupational settings. Neurology 2005, 64, 350–352. [Google Scholar] [CrossRef] [PubMed]
- Chida, K.; Morishima, Y.; Inaba, Y.; Taura, M.; Ebata, A.; Takeda, K.; Shimura, H.; Zuguchi, M. Physician-received scatter radiation with angiography systems used for interventional radiology: Comparison among many X-ray systems. Radiat. Prot. Dosim. 2011, 149, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Ko, S.; Bang, Y.J.; Choe, S.; Choi, Y.; Preston, D.L. Occupational radiation exposure and cancer incidence in a cohort of diagnostic medical radiation workers in South Korea. Occup. Environ. Med. 2021, 78, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Boice, J.D.; Cohen, S.S.; Mumma, M.T.; Howard, S.C.; Yoder, R.C.; Dauer, L.T. Mortality among medical radiation workers in the United States, 1965–2016. Int. J. Radiat. Biol. 2023, 99, 183–207. [Google Scholar] [CrossRef]
- Ko, S.; Kang, S.; Ha, M.; Kim, J.; Jun, J.K.; Kong, K.A.; Lee, W.J. Health Effects from Occupational Radiation Exposure among Fluoroscopy-Guided Interventional Medical Workers: A Systematic Review. J. Vasc. Interv. Radiol. 2018, 29, 353–366. [Google Scholar] [CrossRef]
- Karatasakis, A.; Brilakis, H.S.; Danek, B.A.; Karacsonyi, J.; Martinez-Parachini, J.R.; Nguyen-Trong, P.J.; Alame, A.J.; Roesle, M.K.; Rangan, B.V.; Rosenfield, K.; et al. Radiation-associated lens changes in the cardiac catheterization laboratory: Results from the IC-CATARACT (CATaracts Attributed to RAdiation in the CaTh lab) study. Catheter Cardiovasc. Interv. 2018, 91, 647–654. [Google Scholar] [CrossRef]
- Velazquez-Kronen, R.; Borrego, D.; Gilbert, E.S.; Miller, D.L.; Moysich, K.B.; Freudenheim, J.L.; Wactawski-Wende, J.; Cahoon, E.K.; Little, M.P.; Millen, A.E.; et al. Cataract risk in US radiologic technologists assisting with fluoroscopically guided interventional procedures: A retrospective cohort study. Occup. Environ. Med. 2019, 76, 317–325. [Google Scholar] [CrossRef]
- Kitahara, C.M.; Linet, M.S.; Balter, S.; Miller, D.L.; Rajaraman, P.; Cahoon, E.K.; Velazquez-Kronen, R.; Simon, S.L.; Little, M.P.; Doody, M.M.; et al. Occupational Radiation Exposure and Deaths From Malignant Intracranial Neoplasms of the Brain and CNS in U.S. Radiologic Technologists, 1983–2012. AJR Am. J. Roentgenol. 2017, 208, 1278–1284. [Google Scholar] [CrossRef]
- Rajaraman, P.; Doody, M.M.; Yu, C.L.; Preston, D.L.; Miller, J.S.; Sigurdson, A.J.; Freedman, D.M.; Alexander, B.H.; Little, M.P.; Miller, D.L.; et al. Cancer risks in U.S. radiologic technologists working with fluoroscopically guided interventional procedures, 1994-2008. Am. J. Roentgenol. 2016, 206, 1101–1109. [Google Scholar] [CrossRef]
- Roguin, A.; Goldstein, J.; Bar, O.; Goldstein, J.A. Brain and neck tumors among physicians performing interventional procedures. Am. J. Cardiol. 2013, 111, 1368–1372. [Google Scholar] [CrossRef]
- Roguin, A.; Goldstein, J.; Bar, O. Brain tumours among interventional cardiologists: A cause for alarm? Report of four new cases from two cities and a review of the literature. EuroIntervention 2012, 7, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Stewart, F.A.; Akleyev, A.V.; Hauer-Jensen, M.; Hendry, J.H.; Kleiman, N.J.; Macvittie, T.J.; Aleman, B.M.; Edgar, A.B.; Mabuchi, K.; Muirhead, C.R.; et al. ICRP Publication 118: ICRP Statement on Tissue Reactions/Early and Late Effects of Radiation in Normal Tissues and Organs—Threshold Doses for Tissue Reactions in a Radiation Protection Context. Ann. ICRP 2012, 41, 1–322. [Google Scholar] [CrossRef] [PubMed]
- Hirata, Y.; Fujibuchi, T.; Fujita, K.; Igarashi, T.; Nishimaru, E.; Horita, S.; Sakurai, R.; Ono, K. Angular dependence of shielding effect of radiation protective eyewear for radiation protection of crystalline lens. Radiol. Phys. Technol. 2019, 12, 401–408. [Google Scholar] [CrossRef]
- Gangl, A.; Deutschmann, H.A.; Portugaller, R.H.; Stücklschweiger, G. Influence of safety glasses, body height and magnification on the occupational eye lens dose during pelvic vascular interventions: A phantom study. Eur. Radiol. 2022, 32, 1688–1696. [Google Scholar] [CrossRef]
- Jia, Q.; Chen, Z.; Jiang, X.; Zhao, Z.; Huang, M.; Li, J.; Zhuang, J.; Liu, X.; Hu, T.; Liang, W. Operator radiation and the efficacy of ceiling-suspended lead screen shielding during coronary angiography: An anthropomorphic phantom study using real-time dosimeters. Sci. Rep. 2017, 7, 42077. [Google Scholar] [CrossRef] [PubMed]
- Domienik, J.; Brodecki, M. The effectiveness of lead glasses in reducing the doses to eye lenses during cardiac implantation procedures performed using x-ray tubes above the patient table. J. Radiol. Prot. 2016, 36, N19. [Google Scholar] [CrossRef]
- Magee, J.S.; Martin, C.J.; Sandblom, V.; Carter, M.J.; Almén, A.; Cederblad, Å.; Jonasson, P.; Lundh, C. Derivation and application of dose reduction factors for protective eyewear worn in interventional radiology and cardiology. J. Radiol. Prot. 2014, 34, 811–823. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, H.K.; Clements, W.; Phan, T.; Wang, S.; Goh, G.S. Occupational radiation exposure to the lens of the eye in interventional radiology. J. Med. Imag. Radiat. Oncol. 2022, 66, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Endo, M.; Haga, Y.; Sota, M.; Tanaka, A.; Otomo, K.; Murabayashi, Y.; Abe, M.; Kaga, Y.; Inaba, Y.; Suzuki, M.; et al. Evaluation of novel x-ray protective eyewear in reducing the eye dose to interventional radiology physicians. J. Radiat. Res. 2021, 62, 414–419. [Google Scholar] [CrossRef]
- van Rooijen, B.D.; de Haan, M.W.; Das, M.; Arnoldussen, C.W.K.P.; de Graaf, R.; van Zwam, W.H.; Backes, W.H.; Jeukens, C.R.L.P.N. Efficacy of radiation safety glasses in interventional radiology Cardiovasc. Intervent. Radiol. 2014, 37, 1149–1155. [Google Scholar] [CrossRef]
- Morishima, Y.; Chida, K.; Ito, O. New radioprotective device that can be used for fluoroscopic exam: Possibility to contribute to staff exposure protection during VFSS. Dysphagia 2022, 37, 1519–1524. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Chida, K.; Munehisa, M.; Sato, T.; Inaba, Y.; Suzuki, M.; Zuguchi, M. Non-lead protective aprons for the protection of interventional radiology physicians from radiation exposure in clinical settings: An initial study. Diagnostics 2021, 11, 1613. [Google Scholar] [CrossRef] [PubMed]
- Zuguchi, M.; Chida, K.; Taura, M.; Inaba, Y.; Ebata, A.; Yamada, S. Usefulness of non-lead aprons in radiation protection for physicians performing interventional procedures. Radiat. Prot. Dosim. 2008, 131, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Eguchi, Y.; Yamazaki, C.; Hino, T.; Saida, T.; Chida, K. Development of a New Radiation Shield for the Face and Neck of IVR Physicians. Bioengineering 2022, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Alazzoni, A.; Gordon, C.L.; Syed, J.; Natarajan, M.K.; Rokoss, M.; Schwalm, J.D.; Mehta, S.R.; Sheth, T.; Valettas, N.; Velianou, J.; et al. Randomized controlled trial of radiation protection with a patient lead shield and a novel, nonlead surgical cap for operators performing coronary angiography or intervention. Circ.-Cardiovasc. Interv. 2015, 8, e002384. [Google Scholar] [CrossRef]
- Reeves, R.R.; Ang, L.; Bahadorani, J.; Naghi, J.; Dominguez, A.; Palakodeti, V.; Tsimikas, S.; Patel, M.; Mahmud, E. Invasive cardiologists are exposed to greater left sided cranial radiation. JACC-Cardiovasc. Interv. 2015, 8, 1197–1206. [Google Scholar] [CrossRef]
- Grabowicz, W.; Masiarek, K.; Górnik, T.; Grycewicz, T.; Brodecki, M.; Dabin, J.; Huet, C.; Vanhavere, F.; Domienik-Andrzejewska, J. The effect of lead free cap on the doses of ionizing radiation to the head of interventional cardiologists working in haemodynamic room. Int. J. Occup. Med. Environ. Health 2022, 35, 549–560. [Google Scholar] [CrossRef]
- Kirkwood, M.L.; Arbique, G.M.; Guild, J.B.; Zeng, K.; Xi, Y.; Rectenwald, J.; Anderson, J.A.; Timaran, C. Radiation brain dose to vascular surgeons during fluoroscopically guided interventions is not effectively reduced by wearing lead equivalent surgical caps. J. Vasc. Surg. 2018, 68, 567–571. [Google Scholar] [CrossRef]
- Fetterly, K.; Schueler, B.; Grams, M.; Sturchio, G.; Bell, M.; Gulati, R. Head and neck radiation dose and radiation safety for interventional physicians. JACC-Cardiovasc. Interv. 2017, 10, 520–528. [Google Scholar] [CrossRef]
- Nihon Hoshasen Gijutsu Gakkai. Textbook of Medical Dosimetry: Patient Exposures and Dosimetry for X-Ray Procedures, 2nd ed.; Nihon Hoshasen Gijutsu Gakkai: Kyoto, Japan, 2012; p. 22. [Google Scholar]
- Harui, S.; Matsumoto, M.; Ogata, Y. Energy characteristics and examination of the dose correction of each element type in small size radiophotoluminescence glass dosimetry element system. Nihon Hoshasen Gijutsu Gakkai Zasshi 2010, 66, 509–514. [Google Scholar] [CrossRef]
- Yamada, A.; Haga, Y.; Sota, M.; Abe, M.; Kaga, Y.; Inaba, Y.; Suzuki, M.; Tada, N.; Zuguchi, M.; Chida, K. Eye lens radiation dose to nurses during cardiac interventional radiology: An initial study. Diagnostics 2023, 13, 3003. [Google Scholar] [CrossRef] [PubMed]
- Otomo, K.; Inaba, Y.; Abe, K.; Onodera, M.; Suzuki, T.; Sota, M.; Haga, Y.; Suzuki, M.; Zuguchi, M.; Chida, K. Spatial scattering radiation to the radiological technologist during medical mobile radiography. Bioengineering 2023, 10, 259. [Google Scholar] [CrossRef]
- Kato, M.; Chida, K.; Ishida, T.; Toyoshima, H.; Yoshida, Y.; Yoshioka, S.; Moroi, J.; Kinoshita, T. Occupational radiation exposure of the eye in neurovascular interventional physician. Radiat. Prot. Dosim. 2019, 185, 151–156. [Google Scholar] [CrossRef]
- Chida, K.; Ohno, T.; Kakizaki, S.; Takegawa, M.; Yuuki, H.; Nakada, M.; Takahashi, S.; Zuguchi, M. Radiation dose to the pediatric cardiac catheterization and intervention patient. Am. J. Roentgenol. 2010, 195, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Chida, K.; Saito, H.; Otani, H.; Kohzuki, M.; Takahashi, S.; Yamada, S.; Shirato, K.; Zuguchi, M. Relationship between fluoroscopic time, dose-area product, body weight, and maximum radiation skin dose in cardiac interventional procedures. Am. J. Roentgenol. 2006, 186, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Chida, K.; Saito, H.; Zuguchi, M.; Shirotori, K.; Kumagai, S.; Nakayama, H.; Matsubara, K.; Kohzuki, M. Does digital acquisition reduce patients’ skin dose in cardiac interventional procedures? An experimental study. Am. J. Roentgenol. 2004, 183, 1111–1114. [Google Scholar] [CrossRef]
- Shindo, R.; Ohno, S.; Yamamoto, K.; Konta, S.; Inaba, Y.; Suzuki, M.; Zuguchi, M.; Chida, K. Comparison of shielding effects of over-glasses-type and regular eyewear in terms of occupational eye dose reduction. J. Radiol. Prot. 2024, 44, 023501. [Google Scholar] [CrossRef]
- Ohno, S.; Konta, S.; Shindo, R.; Yamamoto, K.; Isobe, R.; Inaba, Y.; Suzuki, M.; Zuguchi, M.; Chida, K. Effect of backscatter radiation on the occupational eye-lens dose. J. Radiat. Res. 2024, 65, 450–458. [Google Scholar] [CrossRef]
- Curtin, B.M.; Armstrong, L.C.; Bucker, B.T.; Odum, S.M.; Jiranek, W.A. Patient radiation exposure during fluoro-assisted direct anterior approach total hip arthroplasty. J. Arthroplast. 2016, 31, 1218–1221. [Google Scholar] [CrossRef]
- Kinnin, J.; Hanna, T.N.; Jutras, M.; Hasan, B.; Bhatia, R.; Khosa, F. Top 100 cited articles on radiation exposure in medical imaging: A bibliometric analysis. Curr. Probl. Diagn. Radiol. 2019, 48, 368–378. [Google Scholar] [CrossRef]
- Sharkey, A.R.; Gambhir, P.; Saraskani, S.; Walker, R.; Hajilou, A.; Bassett, P.; Sandhu, N.; Croasdale, P.; Honey, I.; Diamantopoulos, A.; et al. Occupational radiation exposure in doctors: An analysis of exposure rates over 25 years. Br. J. Radiol. 2021, 94, 20210602. [Google Scholar] [CrossRef]
- Inaba, Y.; Hitachi, S.; Watanuki, M.; Chida, K. Occupational Radiation Dose to Eye Lenses in CT-Guided Interventions Using MDCT-Fluoroscopy. Diagnostics 2021, 11, 646. [Google Scholar] [CrossRef]
- Hattori, K.; Inaba, Y.; Kato, T.; Fujisawa, M.; Yasuno, H.; Yamada, A.; Haga, Y.; Suzuki, M.; Zuguchi, M.; Chida, K. Evaluation of a New Real-Time Dosimeter Sensor for Interventional Radiology Staff. Sensors 2023, 23, 512. [Google Scholar] [CrossRef]
- Fujisawa, M.; Haga, Y.; Sota, M.; Abe, M.; Kaga, Y.; Inaba, Y.; Suzuki, M.; Meguro, T.; Hosoi, Y.; Chida, K. Evaluation of Lens Doses among Medical Staff Involved in Nuclear Medicine: Current Eye Radiation Exposure among Nuclear-Medicine Staff. Appl. Sci. 2023, 13, 9182. [Google Scholar] [CrossRef]
- Sagehashi, K.; Haga, Y.; Takahira, S.; Tanabe, M.; Nakamura, M.; Sota, M.; Kaga, Y.; Abe, M.; Tada, N.; Chida, K. Evaluation of radiation dose to the lens in interventional cardiology physicians before and after dose limit regulation changes. J. Radiol. Prot. 2024, 44, 031512. [Google Scholar] [CrossRef]
- Finkelstein, M.M. Is brain cancer an occupational disease of cardiologists? Can. J. Cardiol. 1998, 14, 1385–1388. [Google Scholar] [PubMed]
- ICRP. Occupational radiological protection in interventional procedures. ICRP Publication 139. Ann. ICRP 2018, 47, 1–118. [Google Scholar] [CrossRef] [PubMed]
- Marsh, R.M. Fluoroscopy operator’s brains and radiation. JACC-Cardiovasc. Interv. 2016, 9, 301. [Google Scholar] [CrossRef]
- Mainegra, E.; Shen, H.; McEwen, M. Shielding Factors of Protective Eyewear, Ionizing Radiation Standards, Report PIRS-2350, CNSC Report Designation RSP-651.1. 2017. Available online: https://api.cnsc-ccsn.gc.ca/dms/digital-medias/RSP-651-1-final-report.pdf/object (accessed on 21 October 2024).
- Lemesre, C.; Graf, D.; Bisch, L.; Carroz, P.; Cherbuin, N.; Cherbuin, N.; Desorgher, L.; Siklody, C.H.; Le Bloa, M.; Pascale, P.; et al. Efficiency of the RADPAD surgical cap in reducing brain exposure during pacemaker and defibrillator implantation. JACC-Clin. Electrophysiol. 2021, 7, 161–170. [Google Scholar] [CrossRef]
- Golovko, V.V.; Kamaev, O.; Sun, J.; Jillings, C.J.; Gorel, P.; Vázquez-Jáuregui, E. Ambient Dose and Dose Rate Measurement in SNOLAB Underground Laboratory at Sudbury, Ontario, Canada. Sensors 2023, 23, 1945. [Google Scholar] [CrossRef]
- Canadian Nuclear Safety Commission. REGDOC-2.7.2, Dosimetry, Volume II: Technical and Management System Requirements for Dosimetry Services; Canadian Nuclear Safety Commission: Ottawa, ON, Canada, 2018; Available online: http://nuclearsafety.gc.ca/eng/acts-and-regulations/regulatory-documents/published/html/regdoc2-7-2-v2/index.cfm (accessed on 21 October 2024).
- Regulatory Standard S-106 Revision 1; Technical and Quality Assurance Requirements for Dosimetry Services. Canadian Nuclear Safety Commission: Ottawa, ON, Canada, 2006. Available online: https://api.cnsc-ccsn.gc.ca/dms/digital-medias/S106R1_e.pdf/object (accessed on 21 October 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohno, S.; Shindo, R.; Konta, S.; Yamamoto, K.; Inaba, Y.; Chida, K. Radiation Exposure to the Brains of Interventional Radiology Staff: A Phantom Study. Bioengineering 2024, 11, 1083. https://doi.org/10.3390/bioengineering11111083
Ohno S, Shindo R, Konta S, Yamamoto K, Inaba Y, Chida K. Radiation Exposure to the Brains of Interventional Radiology Staff: A Phantom Study. Bioengineering. 2024; 11(11):1083. https://doi.org/10.3390/bioengineering11111083
Chicago/Turabian StyleOhno, Saya, Ryota Shindo, Satoe Konta, Keisuke Yamamoto, Yohei Inaba, and Koichi Chida. 2024. "Radiation Exposure to the Brains of Interventional Radiology Staff: A Phantom Study" Bioengineering 11, no. 11: 1083. https://doi.org/10.3390/bioengineering11111083
APA StyleOhno, S., Shindo, R., Konta, S., Yamamoto, K., Inaba, Y., & Chida, K. (2024). Radiation Exposure to the Brains of Interventional Radiology Staff: A Phantom Study. Bioengineering, 11(11), 1083. https://doi.org/10.3390/bioengineering11111083