CT-Derived Features as Predictors of Clot Burden and Resolution
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. CT Image Features Obtained with AI Algorithms
- (1)
- PE characteristics. Our novel AI algorithm automatically identified and segmented isolated PE regions depicted on the CTPA scans [21]. This algorithm was trained on the RSNA Pulmonary Embolism CT Dataset (RSNA-PE) (7279 scans) [21] and validated with 91 independently manually annotated CTPA scans. Based on the segmentation of PE regions, we analyzed clot volumes and their distribution across lung segments and lobes [22,28]. The PE volumes were consolidated at the lobes and the entire lung levels to serve as an index of total clot burden. Figure 1 shows an example of clot locations;
- (2)
- Body composition tissues. We developed a 3-D convolutional neural network (CNN) [25] to automatically segment five body tissues depicted on CT images: visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), intermuscular adipose tissue (IMAT), skeletal muscle (SM), and bones. Unlike most existing algorithms focusing on abdominal CT scans that typically segment 1–3 types of body tissues based on the cross-sectional area of only a single or a few image slices [29,30,31,32,33], such as at the third cervical (C3) vertebra or the third or fourth lumbar (L3 or L4) vertebra, our AI algorithm volumetrically segments these tissues across various body regions. This algorithm was used to segment and quantify volume, mass, and density of these five tissues from CTPA scans [34];
- (3)
- Cardiopulmonary characteristics. We developed algorithms to outline the pulmonary vascular tree and cardiac silhouette depicted on CT scans [26,35]. Using lung volume segmentation [27], we subclassified the pulmonary vasculature into extra- and intrapulmonary arteries and veins. This allowed us to quantify and compare the individual volumes and densities of these anatomical segments, providing a descriptive ratio between arterial and venous volumes. We calculated vascular volumes at various scales based on cross-sectional area, specifically <5 mm2 (BV5) and between 5 and 10 mm2 (BV10). By leveraging automated algorithms for lung and airway segmentation [27,36], we computed lung and airway volumes and derived the airway-to-lung volume ratio. Additionally, we quantified emphysematous changes using the density mask method [37] and measured portal vein (PV) diameter, aorta (A) diameter, and their ratio (PV/A).
2.3. Statistical Analyses
3. Results
3.1. CT-Derived Features
3.2. Clot Burden Analysis
3.3. Resolution Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Essien, E.-O.; Rali, P.; Mathai, S.C. Pulmonary Embolism. Med. Clin. N. Am. 2019, 103, 549–564. [Google Scholar] [CrossRef] [PubMed]
- Beckman, M.G.; Hooper, W.C.; Critchley, S.E.; Ortel, T.L. Venous Thromboembolism. Am. J. Prev. Med. 2010, 38, S495–S501. [Google Scholar] [CrossRef]
- Doğan, H.; de Roos, A.; Geleijins, J.; Huisman, M.; Kroft, L. The role of computed tomography in the diagnosis of acute and chronic pulmonary embolism. Diagn. Interv. Radiol. 2015, 21, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Office of the Surgeon General; National Heart, Lung, and Blood Institute. The Surgeon General’s Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism; Publications and Reports of the Surgeon General; Office of the Surgeon General (US): Rockville, MD, USA, 2008. [Google Scholar]
- Vyas, V.; Goyal, A. Acute Pulmonary Embolism, in StatPearls; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Pulmonary Embolism and CTEPH. Available online: https://www.uofmhealth.org/conditions-treatments/pulmonary-embolism-and-cteph (accessed on 20 October 2024).
- Liu, M.; Tao, X.C.; Zhai, Z.; Ma, Z.; Zhu, L.; Luo, J. The filling defect of pulmonary artery, an imaging finding what we should know. Pulm. Circ. 2020, 10, 2045894020910687. [Google Scholar] [CrossRef] [PubMed]
- Witkin, A.S. Acute and chronic pulmonary embolism: The role of the pulmonary embolism response team. Curr. Opin. Cardiol. 2017, 32, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Mos, I.C.; van Kralingen, K.W.; Vahl, J.E.; Huisman, M.V. Chronic Pulmonary Embolism and Pulmonary Hypertension. Semin. Respir. Crit. Care Med. 2012, 33, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Nijkeuter, M.; Hovens, M.M.C.; Davidson, B.L.; Huisman, M.V. Resolution of Thromboemboli in Patients with Acute Pulmonary Embolism. Chest 2006, 129, 192–197. [Google Scholar] [CrossRef]
- Stein, P.D.; Yaekoub, A.Y.; Matta, F. Resolution of pulmonary embolism on CT pulmonary angiography. Am. J. Roentgenol. 2010, 194, 1263–1268. [Google Scholar] [CrossRef]
- Miniati, M.; Monti, S.; Bottai, M. Survival and restoration of pulmonary perfusion in a long-term follow-up of patients after acute pulmonary embolism. Medicine 2006, 85, 253–262. [Google Scholar] [CrossRef]
- Ak, M.; Gumus, S.; Aghayev, A.; Chang, C.; Fu, B.; Roberts, M.; Woodard, P.; Bae, K. The Resolution Rate of Pulmonary Embolism on CT Pulmonary Angiography: A Prospective Study. Eur. J. Radiol. 2022, 155, 110466. [Google Scholar] [CrossRef]
- Rivera-Lebron, B.N.; Rali, P.M.; Tapson, V.F. The PERT Concept. Chest 2021, 159, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; Becattini, C. Treatment of DVT: How long is enough and how do you predict recurrence. J. Thromb. Thrombolysis 2008, 25, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Aranda, C.; Gonzalez, P.; Gagliardi, L.; Peralta, L.; Jimenez, A. Prognostic factors of clot resolution on follow-up computed tomography angiography and recurrence after a first acute pulmonary embolism. Clin. Respir. J. 2021, 15, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Chassagnon, G.; Vakalopoulou, M.; Paragios, N.; Revel, M.P. Artificial intelligence applications for thoracic imaging. Eur. J. Radiol. 2020, 123, 108774. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, M.; Guo, X.; Zhang, P.; Zhang, L.; Zhang, R.; Kang, H.; Zhai, Z.; Tao, X.; Wan, J.; et al. Evaluation of acute pulmonary embolism and clot burden on CTPA with deep learning. Eur. Radiol. 2020, 30, 3567–3575. [Google Scholar] [CrossRef]
- Xi, L.; Xu, F.; Kang, H.; Deng, M.; Xu, W.; Wang, D.; Zhang, Y.; Xie, W.; Zhang, R.; Liu, M.; et al. Clot ratio, new clot burden score with deep learning, correlates with the risk stratification of patients with acute pulmonary embolism. Quant. Imaging Med. Surg. 2024, 14, 86–97. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, Y.; Chen, Z.; Cong, X.; Kang, H.; Zhang, R.; Guo, X.; Liu, M. Clot burden of acute pulmonary thromboembolism: Comparison of two deep learning algorithms, Qanadli score, and Mastora score. Quant. Imaging Med. Surg. 2022, 12, 66–79. [Google Scholar] [CrossRef]
- Pu, J.; Gezer, N.S.; Ren, S.; Alpaydin, A.O.; Avci, E.R.; Risbano, M.G.; Rivera-Lebron, B.; Chan, S.Y.-W.; Leader, J.K. Automated detection and segmentation of pulmonary embolisms on computed tomography pulmonary angiography (CTPA) using deep learning but without manual outlining. Med. Image Anal. 2023, 89, 102882. [Google Scholar] [CrossRef]
- Pu, J.; Zheng, B.; Leader, J.K.; Fuhrman, C.; Knollmann, F.; Klym, A.; Gur, D. Pulmonary lobe segmentation in CT examinations using implicit surface fitting. IEEE Trans. Med. Imaging 2009, 28, 1986–1996. [Google Scholar]
- Pu, J.; Leader, J.K.; Bandos, A.; Ke, S.; Wang, J.; Shi, J.; Du, P.; Guo, Y.; Wenzel, S.E.; Fuhrman, C.R.; et al. Automated quantification of COVID-19 severity and progression using chest CT images. Eur. Radiol. 2020, 31, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Wang, Z.; Gu, S.; Fuhrman, C.; Leader, J.K.; Meng, X.; Tedrow, J.; Sciurba, F.C. Pulmonary fissure integrity and collateral ventilation in COPD patients. PLoS ONE 2014, 9, e96631. [Google Scholar] [CrossRef]
- Pu, L.; Gezer, N.S.; Ashraf, S.F.; Ocak, I.; Dresser, D.E.; Dhupar, R. Automated segmentation of five different body tissues on computed tomography using deep learning. Med. Phys. 2023, 50, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Leader, J.K.; Sechrist, J.; Beeche, C.A.; Singh, J.P.; Ocak, I.K.; Risbano, M.G. Automated identification of pulmonary arteries and veins depicted in non-contrast chest CT scans. Med. Image. Anal. 2022, 77, 102367. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Roos, J.; Yi, C.A.; Napel, S.; Rubin, G.D.; Paik, D.S. Adaptive border marching algorithm: Automatic lung segmentation on chest CT images. Comput. Med. Imaging Graph. 2008, 32, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.G.; Landreneau, J.R.; Schuchert, M.J.; Odell, D.D.; Gu, S.; Pu, J.; Luketich, J.D.; Landreneau, R.J. Preoperative (3-dimensional) computed tomography lung reconstruction before anatomic segmentectomy or lobectomy for stage I non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2015, 150, 523–528. [Google Scholar] [CrossRef]
- Shen, W.; Punyanitya, M.; Wang, Z.; Gallagher, D.; St.-Onge, M.-P.; Albu, J.; Heymsfield, S.B.; Heshka, S. Total body skeletal muscle and adipose tissue volumes: Estimation from a single abdominal cross-sectional image. J. Appl. Physiol. 2004, 97, 2333–2338. [Google Scholar] [CrossRef]
- Kim, E.Y.; Kim, Y.S.; Kim, K.W.; Jeon, J.Y.; Kim, K.G. Prognostic significance of radiodensity-based skeletal muscle quantification using preoperative CT in resected non-small cell lung cancer. J. Thorac. Dis. 2021, 13, 754–761. [Google Scholar] [CrossRef]
- Dijksterhuis, W.P.; Pruijt, M.J.; van der Woude, S.O.; Klaassen, R.; Kurk, S.A.; van Oijen, M.G.; van Laarhoven, H.W. Association between body composition, survival, and toxicity in advanced esophagogastric cancer patients receiving palliative chemotherapy. J. Cachexia Sarcopenia Muscle 2019, 10, 199–206. [Google Scholar] [CrossRef]
- Muresan, B.T.; Juan, C.S.; Artero, A.; Machancoses, A.H.; Almendros-Blanco, P.; Montoro, A.; Ferrando, J.R.; Valdenebro, R.; Ríos, J.R.; del Castillo, J.M.S.; et al. Measurement of body composition in cancer patients using CT planning scan at the third lumbar vertebra. Nutr. Hosp. 2019, 36, 1307–1314. [Google Scholar]
- Gronberg, B.H.; Sjøblom, B.; Wentzel-Larsen, T.; Baracos, V.E.; Hjermstad, M.J.; Aass, N.; Bremnes, R.M.; Fløtten, Ø.; Bye, A.; Jordhøy, M. A comparison of CT based measures of skeletal muscle mass and density from the Th4 and L3 levels in patients with advanced non-small-cell lung cancer. Eur. J. Clin. Nutr. 2019, 73, 1069–1076. [Google Scholar] [CrossRef]
- Pu, L.; Ashraf, S.F.; Gezer, N.S.; Ocak, I.; Dresser, D.E.; Leader, J.K.; Dhupar, R. Estimating 3-D whole-body composition from a chest CT scan. Med. Phys. 2022, 49, 7108–7117. [Google Scholar] [CrossRef] [PubMed]
- Pu, L.; Leader, J.K.; Ali, A.; Geng, Z.; Wilson, D.O. Predicting left/right lung volumes, thoracic cavity volume, and heart volume from subject demographics to improve lung transplant. J. Med. Imaging 2023, 10, 051806. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Fuhrman, C.; Good, W.F.; Sciurba, F.C.; Gur, D. A differential geometric approach to automated segmentation of human airway tree. IEEE Trans. Med. Imaging 2011, 30, 266–278. [Google Scholar] [PubMed]
- Wang, Z.; Gu, S.; Leader, J.K.; Kundu, S.; Tedrow, J.R.; Sciurba, F.C.; Gur, D.; Siegfried, J.M.; Pu, J. Optimal threshold in CT quantification of emphysema. Eur. Radiol. 2013, 23, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Meinshausen, N. Relaxed Lasso. Comput. Stat. Data Anal. 2007, 52, 374–393. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Tibshirani, R. Best Subset, Forward Stepwise or Lasso? Analysis and Recommendations Based on Extensive Comparisons. Stat. Sci. 2020, 35, 579–592. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Nishiyama, K.H.; Saboo, S.S.; Tanabe, Y.; Jasinowodolinski, D.; Landay, M.J.; Kay, F.U. Chronic pulmonary embolism: Diagnosis. Cardiovasc. Diagn. Ther. 2018, 8, 253–271. [Google Scholar] [CrossRef]
- An, J.; Nam, Y.; Cho, H.; Chang, J.; Kim, D.K.; Lee, K.S. Acute Pulmonary Embolism and Chronic Thromboembolic Pulmonary Hypertension: Clinical and Serial CT Pulmonary Angiographic Features. J. Korean Med. Sci. 2022, 37, e76. [Google Scholar] [CrossRef]
- Hedenmalm, K.; Samuelsson, E.; Spigset, O. Pulmonary embolism associated with combined oral contraceptives: Reporting incidences and potential risk factors for a fatal outcome. Acta Obstet. Gynecol. Scand. 2004, 83, 576–585. [Google Scholar] [CrossRef]
- Mackman, N. New insights into the mechanisms of venous thrombosis. J. Clin. Investig. 2012, 122, 2331–2336. [Google Scholar] [CrossRef] [PubMed]
- Jarman, A.F.; Mumma, B.E.; Singh, K.S.; Nowadly, C.D.; Maughan, B.C. Crucial considerations: Sex differences in the epidemiology, diagnosis, treatment, and outcomes of acute pulmonary embolism in non-pregnant adult patients. J. Am. Coll. Emerg. Physicians Open 2021, 2, e12378. [Google Scholar] [CrossRef] [PubMed]
- Thachil, R.; Nagraj, S.; Kharawala, A.; Sokol, S.I. Pulmonary Embolism in Women: A Systematic Review of the Current Literature. J. Cardiovasc. Dev. Dis. 2022, 9, 234. [Google Scholar] [CrossRef] [PubMed]
- Barrios, D.; Morillo, R.; Guerassimova, I.; Barbero, E.; Escobar-Morreale, H.; Cohen, A.T.; Becattini, C.; Tapson, V.; Yusen, R.; Jimenez, D. Sex differences in the characteristics and short-term prognosis of patients presenting with acute symptomatic pulmonary embolism. PLoS ONE 2017, 12, e0187648. [Google Scholar] [CrossRef]
- McHugh, K.B.; Visani, L.; DeRosa, M.; Covezzoli, A.; Rossi, E.; Goldhaber, S.Z. Gender comparisons in pulmonary embolism (results from the International Cooperative Pulmonary Embolism Registry [ICOPER]). Am. J. Cardiol. 2002, 89, 616–619. [Google Scholar] [CrossRef]
- Concato, J.; Peduzzi, P.; Holford, T.R.; Feinstein, A.R. Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. J. Clin. Epidemiol. 1995, 48, 1495–1501. [Google Scholar] [CrossRef]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Peduzzi, P.; Concato, J.; Feinstein, A.R.; Holford, T.R. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J. Clin. Epidemiol. 1995, 48, 1503–1510. [Google Scholar] [CrossRef]
Feature | Resolved (n = 16) | Chronic (n = 29) | All (n = 45) | p-Value |
---|---|---|---|---|
Demographic | ||||
Age | 60.4 (3.1) | 48.5 (2.9) | 52.8 (2.3) | 0.02 |
Race (white) | 16 (100.0%) | 24 (82.8%) | 40 (88.9%) | 0.21 |
Gender (female) | 5 (31.3%) | 21 (72.4%) | 26 (57.8%) | 0.02 |
Clot Burden | ||||
Right Superior Lobe | 1.19 (0.29) | 0.95 (0.19) | 1.04 (0.16) | 0.69 |
Left Superior Lobe | 0.77 (0.23) | 1.14 (0.34) | 1.01 (0.24) | 0.99 |
Right Middle Lobe | 0.37 (0.16) | 0.35 (0.08) | 0.36 (0.08) | 0.99 |
Right Inferior Lobe | 0.73 (0.21) | 0.39 (0.14) | 0.51 (0.12) | 0.29 |
Left Inferior Lobe | 0.64 (0.17) | 0.66 (0.14) | 0.65 (0.11) | 0.90 |
Central Artery | 6.78 (1.99) | 7.32 (1.58) | 7.13 (1.23) | 0.93 |
Total Clot Burden | 10.47 (2.65) | 10.82 (2.03) | 10.69 (1.59) | 0.93 |
Body Composition | ||||
BMI | 32.9 (1.4) | 34.6 (1.5) | 34.0 (1.1) | 0.56 |
Height (cm) | 175.6 (3.0) | 171.1 (1.4) | 172.7 (1.4) | 0.26 |
Weight (kg) | 102.2 (5.8) | 101.8 (4.7) | 101.9 (3.6) | 0.84 |
Bone Density | 307.8 (14.8) | 340.4 (11.1) | 328.8 (9.1) | 0.13 |
Bone Mass | 2.40 (0.13) | 2.31 (0.12) | 2.35 (0.09) | 0.35 |
Bone Volume | 1.63 (0.09) | 1.53 (0.08) | 1.57 (0.06) | 0.21 |
IFAT Density | −84.8 (2.1) | −82.7 (1.1) | −83.4 (1.0) | 0.48 |
IFAT Mass | 0.72 (0.08) | 0.68 (0.06) | 0.69 (0.05) | 0.77 |
IFAT Volume | 0.69 (0.08) | 0.65 (0.06) | 0.66 (0.05) | 0.75 |
Muscle Density | 32.5 (2.3) | 32.7 (2.2) | 32.6 (1.6) | 0.89 |
Muscle Mass | 5.72 (0.37) | 5.51 (0.40) | 5.58 (0.28) | 0.27 |
Muscle Volume | 4.87 (0.31) | 4.70 (0.33) | 4.76 (0.24) | 0.25 |
SFAT Density | −97.4 (2.3) | −96.8 (2.1) | −97.0 (1.5) | 0.93 |
SFAT Mass | 5.71 (0.89) | 6.50 (0.89) | 6.22 (0.65) | 0.71 |
SFAT Volume | 5.58 (0.88) | 6.34 (0.87) | 6.07 (0.64) | 0.70 |
VFAT Density | −95.2 (1.3) | −91.1 (1.5) | −92.6 (1.1) | 0.08 |
VFAT Mass | 1.63 (0.21) | 1.39 (0.26) | 1.48 (0.18) | 0.20 |
VFAT Volume | 1.59 (0.21) | 1.35 (0.25) | 1.43 (0.18) | 0.20 |
Cardiopulmonary | ||||
Airway Ratio | 0.02 (0.01) | 0.05 (0.01) | 0.04 (0.01) | 0.02 |
Airway Volume | 0.06 (0.01) | 0.05 (0.00) | 0.05 (0.00) | 0.04 |
Aorta Diameter | 26.2 (1.1) | 22.9 (0.6) | 24.0 (0.6) | 0.01 |
Artery-Vein Ratio | 0.80 (0.04) | 0.81 (0.02) | 0.81 (0.02) | 0.68 |
BV10 | 108.9 (16.6) | 123.9 (6.8) | 118.6 (7.3) | 0.44 |
BV5 | 44.5 (8.4) | 50.8 (4.0) | 48.5 (3.9) | 0.33 |
Emphysema Volume (950HU) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.07 |
Extrapulmonary Artery Volume | 0.12 (0.01) | 0.10 (0.00) | 0.11 (0.01) | 0.14 |
Extrapulmonary Vein Volume | 0.12 (0.01) | 0.12 (0.01) | 0.12 (0.01) | 0.70 |
Heart Volume | 0.66 (0.03) | 0.58 (0.02) | 0.61 (0.02) | 0.05 |
Intrapulmonary Artery Volume | 0.12 (0.01) | 0.12 (0.00) | 0.12 (0.00) | 0.53 |
Intrapulmonary Vein Volume | 0.16 (0.01) | 0.15 (0.01) | 0.15 (0.01) | 0.30 |
Lung Volume | 4.12 (0.37) | 3.68 (0.23) | 3.84 (0.20) | 0.36 |
PB Larger 10 | 74.1 (10.6) | 75.2 (6.4) | 74.8 (5.5) | 0.75 |
PV Diameter | 36.4 (2.1) | 34.1 (1.1) | 34.9 (1.0) | 0.23 |
PV/A | 1.43 (0.10) | 1.51 (0.06) | 1.48 (0.05) | 0.51 |
Feature | Right Superior Lobe | Left Superior Lobe | Right Middle Lobe | Right Inferior Lobe | Left Inferior Lobe | Central Artery | Total Clot Burden |
---|---|---|---|---|---|---|---|
Body Composition | |||||||
BMI | 0.12 | 0.15 | 0.11 | 0.01 | 0.12 | 0.16 | 0.17 |
Bone Density | −0.14 | 0.14 | −0.06 | −0.24 | −0.20 | 0.10 | 0.04 |
Bone Mass | 0.38 | 0.28 | 0.42 | 0.36 | 0.31 | 0.30 | 0.38 |
Bone Volume | 0.41 | 0.26 | 0.44 | 0.40 | 0.34 | 0.28 | 0.37 |
IFAT Density | 0.02 | −0.15 | 0.05 | 0.08 | 0.17 | −0.26 | −0.19 |
IFAT Mass | 0.15 | 0.21 | 0.13 | 0.07 | 0.09 | 0.16 | 0.18 |
IFAT Volume | 0.15 | 0.21 | 0.13 | 0.07 | 0.08 | 0.17 | 0.19 |
Muscle Density | 0.08 | 0.04 | 0.10 | 0.07 | 0.07 | 0.02 | 0.05 |
Muscle Mass | 0.33 | 0.22 | 0.39 | 0.25 | 0.32 | 0.22 | 0.29 |
Muscle Volume | 0.33 | 0.22 | 0.39 | 0.25 | 0.32 | 0.22 | 0.29 |
SFAT Density | −0.04 | −0.17 | −0.05 | 0.07 | −0.07 | −0.15 | −0.14 |
SFAT Mass | 0.11 | 0.18 | 0.10 | 0.04 | 0.18 | 0.08 | 0.12 |
SFAT Volume | 0.11 | 0.18 | 0.10 | 0.04 | 0.18 | 0.08 | 0.12 |
VFAT Density | −0.12 | −0.27 | −0.13 | −0.13 | −0.16 | −0.22 | −0.24 |
VFAT Mass | 0.37 | 0.33 | 0.31 | 0.41 | 0.39 | 0.28 | 0.37 |
VFAT Volume | 0.37 | 0.34 | 0.31 | 0.41 | 0.39 | 0.28 | 0.37 |
Cardiopulmonary | |||||||
Airway Ratio | 0.00 | 0.01 | −0.03 | 0.00 | −0.10 | 0.14 | 0.10 |
Airway Volume | 0.19 | 0.06 | 0.16 | 0.17 | 0.16 | 0.21 | 0.22 |
Diameter | 0.38 | 0.12 | 0.30 | 0.39 | 0.34 | 0.19 | 0.27 |
Artery-Vein Ratio | −0.34 | −0.38 | −0.23 | −0.21 | −0.18 | −0.49 | −0.49 |
BV10 | −0.25 | −0.25 | −0.22 | −0.24 | −0.37 | −0.07 | −0.17 |
BV5 | −0.27 | −0.24 | −0.22 | −0.24 | −0.34 | −0.11 | −0.20 |
Emphysema Volume (950HU) | 0.19 | 0.12 | 0.16 | 0.26 | 0.13 | 0.18 | 0.21 |
Extrapulmonary Artery Volume | −0.14 | −0.21 | −0.11 | −0.26 | −0.35 | −0.10 | −0.17 |
Extrapulmonary Vein Volume | 0.20 | 0.19 | 0.16 | 0.04 | −0.04 | 0.41 | 0.36 |
Heart Volume | 0.39 | 0.14 | 0.38 | 0.33 | 0.27 | 0.11 | 0.21 |
Intrapulmonary Artery Volume | −0.08 | −0.09 | −0.04 | −0.15 | −0.26 | 0.10 | 0.02 |
Intrapulmonary Vein Volume | 0.22 | 0.18 | 0.19 | 0.08 | −0.02 | 0.37 | 0.34 |
Lung Volume | 0.13 | −0.02 | 0.21 | 0.13 | 0.13 | 0.23 | 0.21 |
PB Larger 10 | 0.26 | 0.06 | 0.33 | 0.24 | 0.25 | −0.02 | 0.07 |
PV Diameter | −0.18 | −0.21 | −0.13 | −0.26 | −0.31 | −0.11 | −0.18 |
PV/A | −0.37 | −0.25 | −0.26 | −0.39 | −0.42 | −0.21 | −0.31 |
Demographic | |||||||
Age | 0.15 | 0.04 | 0.07 | 0.21 | 0.17 | 0.11 | 0.14 |
Gender (Male) | 0.73 | 0.36 | 0.67 | 0.64 | 0.64 | 0.43 | 0.58 |
Feature | Right Superior Lobe | Left Superior Lobe | Right Middle Lobe | Right Inferior Lobe | Left Inferior Lobe | Central Artery | Total Clot Burden |
---|---|---|---|---|---|---|---|
Body Composition | |||||||
BMI | 0.15 | ||||||
Bone Density | 0.19 | ||||||
Bone Mass | 0.09 | 0.18 | 0.19 | ||||
Bone Volume | 0.06 | 0.14 | 0.05 | 0.00 | |||
IFAT Density | −0.22 | ||||||
Muscle Mass | 0.06 | ||||||
VFAT Density | −0.16 | ||||||
VFAT Volume | 0.00 | 0.17 | 0.08 | 0.15 | 0.09 | ||
Cardiopulmonary | |||||||
Airway Ratio | 0.24 | ||||||
Diameter | 0.20 | ||||||
Artery-Vein Ratio | −0.33 | −0.34 | −0.25 | −0.17 | −0.18 | −0.24 | −0.32 |
BV10 | −0.18 | −0.14 | −0.11 | ||||
BV5 | −0.14 | −0.17 | −0.19 | ||||
Emphysema Volume (950HU) | 0.22 | 0.19 | 0.19 | ||||
Extrapulmonary Artery Volume | −0.38 | −0.33 | −0.40 | ||||
Extrapulmonary Vein Volume | 0.42 | 0.27 | |||||
Heart Volume | 0.33 | 0.23 | 0.39 | 0.33 | |||
PB Larger 10 | 0.13 | 0.23 | |||||
PV Diameter | −0.22 | ||||||
PV/A | −0.34 | −0.19 | −0.05 | −0.19 | −0.10 | −0.29 | |
Mean R-squared | 0.28 | 0.20 | 0.28 | 0.25 | 0.24 | 0.36 | 0.32 |
Mean RMSE | 0.81 | 0.81 | 0.82 | 0.87 | 0.84 | 0.78 | 0.79 |
Univariate Models | Multivariate Models | ||||||||
---|---|---|---|---|---|---|---|---|---|
Feature | No Controls | Age Control | Gender Control | Demo | Body | Cardio | Clot | All | Custom |
Body Composition | |||||||||
Bone Density | −0.55 | −0.35 | −0.44 | −0.55 | |||||
VFAT Density | −0.57 | −0.38 | −0.46 | −0.57 | |||||
Cardiopulmonary | |||||||||
Airway Ratio | −1.09 | −1.02 | −1.39 | −2.23 | −2.17 | −1.63 | |||
Airway Volume | 0.63 | 0.50 | 0.17 | 0.79 | |||||
Aortic Diameter | 1.22 | 0.90 | 1.05 | 1.73 | 1.07 | 2.04 | |||
Heart Volume | 0.70 | 0.86 | 0.32 | 1.18 | 1.78 | 1.41 | |||
Clot | |||||||||
Left Superior Lobe | −0.22 | −0.34 | −0.47 | −0.26 | −0.80 | ||||
Right Inferior Lobe | 0.37 | 0.28 | 0.16 | 0.68 | |||||
Left Inferior Lobe | −0.04 | 0.02 | −0.30 | −0.39 | |||||
Demographic | |||||||||
Age | 0.91 | 0.90 | 1.08 | ||||||
Gender (Male) | 1.75 | 1.70 | |||||||
Mean AUC | 0.73 | 0.65 | 0.83 | 0.48 | 0.81 | 0.80 | |||
Mean Brier Score | 0.20 | 0.23 | 0.17 | 0.25 | 0.21 | 0.18 |
Model | Body | Cardio | Clot | All | Custom |
---|---|---|---|---|---|
Demo | 0.40 | 0.21 | 0.05 | 0.32 | 0.41 |
Body | 0.03 | 0.18 | 0.08 | 0.11 | |
Cardio | <0.01 | 0.53 | 0.38 | ||
Clot | <0.01 | 0.01 | |||
All | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auster, Q.; Almetwali, O.; Yu, T.; Kelder, A.; Nouraie, S.M.; Mustafaev, T.; Rivera-Lebron, B.; Risbano, M.G.; Pu, J. CT-Derived Features as Predictors of Clot Burden and Resolution. Bioengineering 2024, 11, 1062. https://doi.org/10.3390/bioengineering11111062
Auster Q, Almetwali O, Yu T, Kelder A, Nouraie SM, Mustafaev T, Rivera-Lebron B, Risbano MG, Pu J. CT-Derived Features as Predictors of Clot Burden and Resolution. Bioengineering. 2024; 11(11):1062. https://doi.org/10.3390/bioengineering11111062
Chicago/Turabian StyleAuster, Quentin, Omar Almetwali, Tong Yu, Alyssa Kelder, Seyed Mehdi Nouraie, Tamerlan Mustafaev, Belinda Rivera-Lebron, Michael G. Risbano, and Jiantao Pu. 2024. "CT-Derived Features as Predictors of Clot Burden and Resolution" Bioengineering 11, no. 11: 1062. https://doi.org/10.3390/bioengineering11111062
APA StyleAuster, Q., Almetwali, O., Yu, T., Kelder, A., Nouraie, S. M., Mustafaev, T., Rivera-Lebron, B., Risbano, M. G., & Pu, J. (2024). CT-Derived Features as Predictors of Clot Burden and Resolution. Bioengineering, 11(11), 1062. https://doi.org/10.3390/bioengineering11111062