Composites of Polylactic Acid with Diatomaceous Earth for 3D-Printing Biocompatible Scaffolds: A Systematic Study of Their Mechanical, Thermal, and Biocompatibility Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Generation of Composites
2.2. Viability and Cytotoxicity Assays by Extracts after Sterilization Procedures
2.3. Three-Dimensional Printing and Characterization of the Probes
2.3.1. Differential Scanning Calorimetry (DSC)
2.3.2. Scanning Electron Microscopy (SEM)
2.3.3. Tension Tests
2.3.4. Degradation Tests under Physiological Conditions
2.4. The 3D Printing of the Scaffolds
2.5. Cell Adhesion and Proliferation in the Scaffolds
2.6. Statistical Analysis
3. Results
3.1. Viability and Cytotoxicity Assays by Extracts
3.2. Mechanical and Thermal Characterization
3.3. Metabolic Activity and Cell Adhesion in Scaffolds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, F.-M.; Liu, X. Advancing Biomaterials of Human Origin for Tissue Engineering. Prog. Polym. Sci. 2016, 53, 86–168. [Google Scholar] [CrossRef] [PubMed]
- Hay, N.J. Orthodontics: Principles and Practice; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar]
- Abramowicz, S.; Katsnelson, A.; Forbes, P.W.; Padwa, B.L. Anterior versus Posterior Approach to Iliac Crest for Alveolar Cleft Bone Grafting. J. Oral Maxillofac. Surg. 2012, 70, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Middleton, J.C.; Tipton, A.J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335–2346. [Google Scholar] [CrossRef]
- da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, Biodegradation and Excretion of Polylactic Acid (PLA) in Medical Implants and Theranostic Systems. Chem. Eng. J. 2018, 340, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Sölmann, S.; Rattenholl, A.; Blattner, H.; Ehrmann, G.; Gudermann, F.; Lütkemeyer, D.; Ehrmann, A. Mammalian Cell Adhesion on Different 3D Printed Polymers with Varying Sterilization Methods and Acidic Treatment. AIMS Bioeng. 2021, 8, 25–35. [Google Scholar] [CrossRef]
- Ko, H.F.; Sfeir, C.; Kumta, P.N. Novel Synthesis Strategies for Natural Polymer and Composite Biomaterials as Potential Scaffolds for Tissue Engineering. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1981–1997. [Google Scholar] [CrossRef]
- Gao, C.; Peng, S.; Feng, P.; Shuai, C. Bone Biomaterials and Interactions with Stem Cells. Bone Res. 2017, 5, 17059. [Google Scholar] [CrossRef]
- Ogueri, K.S.; Jafari, T.; Escobar Ivirico, J.L.; Laurencin, C.T. Polymeric Biomaterials for Scaffold-Based Bone Regenerative Engineering. Regen. Eng. Transl. Med. 2019, 5, 128–154. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, C.; Thouas, G.A. Progress and Challenges in Biomaterials Used for Bone Tissue Engineering: Bioactive Glasses and Elastomeric Composites. Prog. Biomater. 2012, 1, 2. [Google Scholar] [CrossRef]
- Qu, H.; Fu, H.; Han, Z.; Sun, Y. Biomaterials for Bone Tissue Engineering Scaffolds: A Review. RSC Adv. 2019, 9, 26252–26262. [Google Scholar] [CrossRef]
- Yu, X.; Tang, X.; Gohil, S.V.; Laurencin, C.T. Biomaterials for Bone Regenerative Engineering. Adv. Healthc. Mater. 2015, 4, 1268–1285. [Google Scholar] [CrossRef] [PubMed]
- Damadzadeh, B.; Jabari, H.; Skrifvars, M.; Airola, K.; Moritz, N.; Vallittu, P.K. Effect of Ceramic Filler Content on the Mechanical and Thermal Behaviour pf Poly-L-Lactic Acid and Poly-L-Lactic-Co-Glycolic Acid Composites for Medical Applications. J. Mater. Sci. Mater. Med. 2010, 21, 2523–2531. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V. Calcium orthophosphates: Occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter 2011, 1, 121–164. [Google Scholar] [CrossRef] [PubMed]
- Elsawy, M.A.; Kim, K.; Park, J.; Deep, A. Hydrolytic Degradation of Polylactic Acid (PLA) and Its Composites. Renew. Sustain. Energy Rev. 2017, 79, 1346–1352. [Google Scholar] [CrossRef]
- Fielding, G.A.; Bandyopadhyay, A.; Bose, S. Effects of Silica and Zinc Oxide Doping on Mechanical and Biological Properties of 3D Printed Tricalcium Phosphate Tissue Engineering Scaffolds. Dent. Mater. 2012, 28, 113–122. [Google Scholar] [CrossRef]
- Battegazzore, D.; Bocchini, S.; Alongi, J.; Frache, A. Rice husk as bio-source of silica: Preparation and characterization of PLA–silica bio-composites. RSC Adv. 2014, 4, 54703–54712. [Google Scholar] [CrossRef]
- Reffitt, D.; Ogston, N.; Jugdaohsingh, R.; Cheung, H.; Evans, B.; Thompson, R.; Powell, J.J.; Hampson, G.N. Orthosilicic Acid Stimulates Collagen Type I Synthesis and Osteoblastic Differentiation in Human Osteoblast-Like Cells in Vitro. Bone 2003, 32, 127–135. [Google Scholar] [CrossRef]
- Carlisle, E.M.; Berger, J.W.; Alpenfels, W.F. A Silicon Requirement for Prolyl Hydroxylase Activity. Fed. Proc. 1981, 40, 886. [Google Scholar]
- Xynos, I.; Edgar, A.; Buttery, D.; Hench, L.; Polak, J. Gene-expression profiling of human osteblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J. Biomed. Mater. Res. 2001, 55, 151–157. [Google Scholar] [CrossRef]
- Sayer, M.; Stratilatov, A.; Reid, J.; Calderin, L.; Stott, M.; Yin, X.; MacKenzie, M.; Smith, T.J.N.; Hendry, J.A.; Langstaff, S.D. Structure and composition of silicon stabilized tricalcium phosphate. Biomaterials 2002, 24, 369–382. [Google Scholar] [CrossRef]
- Porter, A. Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition. Micron 2006, 37, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Vandiver, J.; Dean, D.; Patel, N.; Botelho, C.; Best, S.; Santos, J.; Lopes, M.A.; Bonfield, W.; Ortiz, C. Silicon addition to hydroxyapatite increases nanoscale electrostatic, van der Waals and adhesive interactions. J. Biomed. Mater. Res. 2005, 78, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Pietak, A.; Sayer, M. Functional Atomic Force Microscopy Investigation of Osteopontin Affinity for Si-TCP Bioceramic Surfaces. Biomaterials 2006, 27, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Metwally, S.; Ferraris, S.; Spriano, S.; Krysiak, Z.; Kaniuk, L.; Marzec, M.; Kim, S.K.; Szewczyk, P.K.; Gruszczyński, A.; Wytrwal-Sarna, M.; et al. Surface Potential and Roughness Controlled Cell Adhesion and Collagen Formation in Electrospun PCL Fibers for Bone Regeneration. Mater. Des. 2020, 194, 108915. [Google Scholar] [CrossRef]
- Jugdaohsingh, R. Silicon and Bone Health. J. Nutr. Health Aging 2007, 11, 99–110. [Google Scholar]
- Pietak, A.; Reid, J.; Sayer, M. Silicon Substitution in the Calcium Phosphate Bioceramics. Biomaterials 2007, 28, 4023–4032. [Google Scholar] [CrossRef]
- Porter, A.E.; Patel, N.; Skepper, J.N.; Best, S.M.; Bonfield, W. Effect of Sintered Silicate-Substituted Hydroxyapatite on Remodeling Processes at the Bone-Implant Interface. Biomaterials 2004, 25, 3303–3314. [Google Scholar] [CrossRef]
- Gupta, G.; Kirakodu, S.; El-Ghannam, A. Effects of Exogenous Phosphorus and Silicon on Osteoblast Differentiation at the Interface with Bioactive Ceramics. J. Biomed. Mater. Res. 2010, 95, 882–890. [Google Scholar] [CrossRef]
- Krajcer, A.; Klara, J.; Horak, W.; Lewandowska-Łancucka, J. Bioactive injectable composites based on insulin-functionalized silica particles reinforced polymeric hydrogels for potential applications in bone tissue engineering. J. Mater. Sci. Technol. 2022, 105, 153–163. [Google Scholar] [CrossRef]
- Altwaim, S.; Al-Kindi, M.; AlMuraikhi, N.; BinHamdan, S.; Al-Zahrani, A. Assessment of the Effect of Silica Calcium Phosphate Nanocomposite on Mesenchymal Stromal Cell Differentiation and Bone Regeneration in Critical Size Defect. Saudi Dent. J. 2021, 33, 1119–1125. [Google Scholar] [CrossRef]
- Nekounam, H.; Reza Kandi, M.; Shaterabadi, D.; Samadian, H.; Mahmoodi, N.; Hasanzadeh, E.; Faridi-Majidi, R. Silica nanoparticles-incorporated carbon nanofibers as bioactive biomaterial for bone tissue engineering. Diam. Relat. Mater. 2021, 115, 108320. [Google Scholar] [CrossRef]
- Kanniyappan, H.; Venkatesan, M.; Panji, J.; Ramasamy, M.; Muthuvijayan, V. Evaluating the inherent osteogenic and angiogenic potential of mesoporous silica nanoparticles to augment vascularized bone tissue formation. Microporous Mesoporous Mater. 2021, 311, 110687. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Bose, S. 3D Printing for Bone Regeneration. Curr. Osteoporos. Rep. 2020, 18, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Bisht, B.; Hope, A.; Mukherjee, A.; Paul, M.K. Advances in the Fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft. Ann. Biomed. Eng. 2021, 49, 1128–1150. [Google Scholar] [CrossRef] [PubMed]
- Brachet, A.; Bełżek, A.; Furtak, D.; Geworgjan, Z.; Tulej, D.; Kulczycka, K.; Karpiński, R.; Maciejewski, M.; Baj, J. Application of 3D Printing in Bone Grafts. Cells 2023, 12, 859. [Google Scholar] [CrossRef]
- Bhaskar, B.; Owen, R.; Bahmaee, H.; Wally, Z.; Sreenivasa Rao, P.; Reilly, G.C. Composite Porous Scaffold of PEG/PLA Support Improved Bone Matrix Deposition on Vitro Compared to PLA-Only Scaffolds. J. Biomed. Mater. Res. Part A 2018, 106, 1334–1340. [Google Scholar] [CrossRef]
- Collins, N.J.; Leeke, G.A.; Bridson, R.H.; Hassan, F.; Grover, L.M. The Influence of Silica on Pore Diameter and Distribution in PLA Scaffolds Produced Using Supercritical CO2. J. Mater. Sci. Mater. Med. 2008, 19, 1497–1502. [Google Scholar] [CrossRef]
- Wypych, G. (Ed.) 2—Fillers—Origin, Chemical Composition, Properties, and Morphology. In Handbook of Fillers, 4th ed.; ChemTec Publishing: Toronto, ON, Canada, 2016; pp. 13–266. [Google Scholar]
- ISO 10993-5:2009; Biological Evaluation of medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 14 June 2024).
- del-Mazo-Barbara, L.; Gómez-Cuyàs, J.; Martínez-Orozco, L.; Santana Pérez, O.; Bou-Petit, E.; Ginebra, M.-P. In vitro degradation of 3D-printed polycaprolactone/biomimetic hydroxyapatite scaffolds: Impact of the sterilization method. Polym. Test. 2024, 139, 108566. [Google Scholar] [CrossRef]
- Singh, R.; Singh, D.; Singh, A. Radiation Sterilization of Tissue Allografts: A Review. World J. Radiol. 2016, 8, 355–369. [Google Scholar] [CrossRef]
- Eisenbrey, J.R.; Hsu, J.; Wheatley, M.A. Plasma Sterilization of Poly Lactic Acid Ultrasound Contrast Agents: Surface Modification and Implications for Drug Delivery. Ultrasound Med. Biol. 2009, 35, 1854–1862. [Google Scholar] [CrossRef]
- Izdebska-Podsiadły, J.; Dörsam, E. Storage Stability of the Oxygen Plasma-Modified PLA Film. Bull. Mater. Sci. 2021, 44, 79. [Google Scholar] [CrossRef]
- Luque-Agudo, V.; Hierro-Oliva, M.; Gallardo-Moreno, A.M.; Gonzalez-Martin, M.L. Effect of Plasma Treatment on the Surface Properties of Polylactic Acid Films. Polym. Test. 2021, 96, 107097. [Google Scholar] [CrossRef]
- Cordewener, F.; Van Geffen, M.; Joziasse, C.; Schmitz, J.; Bos, R.; Rozema, F.; Pennings, A. Cytotoxicity of Poly(96L/4D-Lactide): The Influence of Degradation and Sterilization. Biomaterials 2000, 21, 2433–2442. [Google Scholar] [CrossRef]
- Grémare, A.; Guduric, V.; Bareille, R.; Heroguez, V.; Latour, S.; L’Heureux, N.; Fricain, J.; Catros, S.; Le Nihouannen, D. Characterization of Printed PLA Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res. 2018, 106, 887–894. [Google Scholar] [CrossRef]
- Gregor, A.; Filová, E.; Novák, M.; Kronek, J.; Chlup, H.; Buzgo, M.; Blahnová, V.; Lukášová, V.; Bartoš, M.; Nečas, A.; et al. Designing of PLA Scaffolds for Bone Tissue Replacement Fabricated by Ordinary Commercial 3D Printer. J. Biol. Eng. 2017, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Neijhoft, J.; Henrich, D.; Kammerer, A.; Janko, M.; Frank, J.; Marzi, I. Sterilization of PLA after Fused Filament Fabrication 3D Printing: Evaluation on Inherent Sterility and the Impossibility of Autoclavation. Polymers 2023, 15, 369. [Google Scholar] [CrossRef]
- Haugen, H.J.; Lyngstadaas, S.P.; Rossi, F.; Perale, G. Bone Grafts: Which Is the Ideal Biomaterial. J. Clin. Periodontol. 2019, 46, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Iaquinta, M.; Mazzoni, E.; Manfrini, M.; D’Agostino, A.; Trevisiol, L.; Nocini, R.; Trombelli, L.; Barbanti-Brodano, G.; Martini, F.; Tognon, M. Innovative Biomaterials for Bone Regrowth. Int. J. Mol. Sci. 2019, 20, 618. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, J.; Shim, J.; Hwang, N.; Heo, C. Bioactive Calcium Phosphate Materials and Applications in Bone Regeneration. Biomater. Res. 2019, 23, 4. [Google Scholar] [CrossRef] [PubMed]
- Pabbruwe, M.; Standard, O.; Sorrell, C.; Howlett, C. Effects of Si Doping on Bone Formation within Alumina Porous Domains. J. Biomed. Mater. Res. 2004, 71, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Cronin, D.S.; Singh, D.; Gierczycka, D.; Barker, J.; Shen, D. Chapter 13—Modeling the Neck for Impact Scenarios. In Basic Finite Element Method as Applied to Injury Biomechanics; Yang, K.-H., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 503–538. [Google Scholar]
- Battegazzore, D.; Alongi, J.; Frache, A. Poly(lactic acid)-Based Composites Containing Natural Fillers: Thermal, Mechanical and Barrier Properties. J. Polym. Environ. 2014, 22, 88–98. [Google Scholar] [CrossRef]
- Chen, Y.; Frith, J.E.; Dehghan-Manshadi, A.; Attar, H.; Kent, D.; Soro, N.D.M.; Bermingham, M.J.; Dargusch, M.S. Mechanical Properties and Biocompatibility of Porous Titanium Scaffolds for Bone Tissue Engineering. J. Mech. Behav. Biomed. Mater. 2017, 75, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ullah, I.; Shi, L.; Zhang, Y.; Ou, H.; Zhou, J.; Ullah, M.W.; Zhang, X.; Li, W. Fabrication and Characterization of Porous Polycaprolactone Scaffold via Extrusion-Based Cryogenic 3D Printing for Tissue Engineering. Mater. Des. 2019, 180, 107946. [Google Scholar] [CrossRef]
- Liang, C.; Luo, Y.; Yang, G.; Xia, D.; Liu, L.; Zhang, X.; Wang, H. Graphene Oxide Hybridized nHAC/PLGA Scaffolds Facilitate the Proliferation of MC3T3-E1 Cells. Nanoscale Res. Lett. 2018, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, B.; Byun, J.J.; Bártolo, P. Assessment of PCL/Carbon Material Scaffolds for Bone Regeneration. J. Mech. Behav. Biomed. Mater. 2019, 93, 52–60. [Google Scholar] [CrossRef]
- Al-Arjan, W.S.; Aslam Khan, M.U.; Nazir, S.; Abd Razak, S.I.; Abdul Kadir, M.R. Development of Arabinoxylan-Reinforced Apple Pectin/Graphene Oxide/Nano-Hydroxyapatite Based Nanocomposite Scaffolds with Controlled Release of Drug for Bone Tissue Engineering: In-Vitro Evaluation of Biocompatibility and Cytotoxicity Against MC3T3-E1. Coatings 2020, 10, 1120. [Google Scholar] [CrossRef]
- Kankala, R.; Xu, X.-M.; Liu, C.-G.; Chen, A.-Z.; Wang, S.-B. 3D-Printing of Microfibrous Porous Scaffolds Based on Hybrid Approaches for Bone Tissue Engineering. Polymers 2018, 10, 807. [Google Scholar] [CrossRef]
- Wang, W.; Yeung, K.W. Bone Grafts and Biomaterials Substitutes for Bone Defect Repair: A Review. Bioact. Mater. 2017, 2, 224–247. [Google Scholar] [CrossRef]
- Winkler, T.; Sass, F.A.; Duda, G.N.; Schmidt-Bleek, K. A Review of Biomaterials in Bone Defect Healing, Remaining Shortcomings and Future Opportunities for Bone Tissue Engineering: The Unsolved Challenge. Bone Jt. Res. 2018, 7, 232–243. [Google Scholar] [CrossRef]
- Luan, H.; Wang, L.; Ren, W.; Chu, Z.; Huang, Y.; Lu, C.; Fan, Y. The Effect of Pore Size and Porosity of Ti6Al4V Scaffolds on MC3T3-E1 Cells and Tissue in Rabbits. Sci. China Technol. Sci. 2019, 62, 1160–1168. [Google Scholar] [CrossRef]
Material | Supplier | Properties |
---|---|---|
Polylactic Acid (PLA 3D850) | NatureWorks/SmartMaterials (Plymouth, MN, USA) | Density: 1.24 g/cm³ Tensile Strength: 57.7 MPa (XY) Flexion Strength: 103.6 MPa (XY) Hardness: 84.4 Shore D Glass Transition Temp: 65 °C |
Calcium Phosphate (β-Tricalcium phosphate 21218) | Sigma-Aldrich/Merck (St. Louis, MO, USA) | Molecular Weight: 310.18 g/mol Density: 3.14 g/cm³ Water Solubility: 7.7 g/L |
Diatomaceous Earth (Costalite NS Agro) | Sur Química (San José, Costa Rica) | Density: 0.3–0.5 g/cm³ SiO2 Content: 85% CaO Content: 0.30% pH: 4–5.5 Porosity: High |
Chloroform for Analysis EMSURE® 102445 | Sigma-Aldrich/Merck (St. Louis, MO, USA) | Molecular Weight: 119.38 g/mol Density: 1.49 g/cm³ Water Solubility: 8.7 g/L |
Composite | PLA | Calcium Phosphate (CP) | Diatomaceous Earth (DE) |
---|---|---|---|
PLA | 100 | - | - |
20PLA/1CP/1DE | 20 | 1 | 1 |
20PLA/1CP/0DE | 20 | 1 | 0 |
20PLA/0CP/1DE | 20 | 0 | 1 |
20PLA/1CP/5DE | 20 | 1 | 5 |
Sterilization Method | Details |
---|---|
Moist Heat | Temperature: 121 °C Pressure: 15 psi Duration: 15 min |
Gamma Radiation | Source: Co-60 Dose: 25 kGy Equipment: Ob-Servo Ignis |
Oxygen Plasma | Flow Rate: 1.0 sccm O2 Pressure: 2.6 Torr Duration: 1.5 min Equipment: Harrick Plasma PDC-32G |
Composite | Tg (°C) | Tc (°C) | ΔHc (J/g) | Tm1 (°C) | ΔHm1 (J/g) | Tm2 (°C) | ΔHm2 (J/g) | Tcc (°C) | ΔHcc (J/g) | PLA % Crystallinity |
---|---|---|---|---|---|---|---|---|---|---|
PLA | 59.4 | 95.7 | 24.7 | 176.8 | 51.0 | 175.5 | 48.0 | 107.5 | 22.7 | 51.2 |
20PLA/1CP/1DE | 56.2 | 88.0 | 23.3 | 177.6 | 56.2 | 171.3/177.6 | 40.4 | 113.2 | 40.7 | 47.4 |
20PLA/1CP/0DE | 56.9 | 88.1 | 28.5 | 175.7 | 63.1 | 175.8 | 48.8 | 108.1 | 41.3 | 54.7 |
20PLA/0CP/1DE | 58.3 | 86.4 | 23.4 | 175.8 | 61.3 | 170.5/176.9 | 43.4 | 113.6 | 43.3 | 48.6 |
20PLA/1CP/5DE | 58.7 | 93.1 | 23.2 | 175.9 | 49.5 | 176.8 | 36.4 | 111.4 | 32.8 | 50.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trejos-Soto, L.; Rivas-Hernández, G.O.; Mora-Bolaños, R.; Vargas-Valverde, N.; Valerio, A.; Ulloa-Fernández, A.; Oviedo-Quirós, J.; García-Piñeres, A.; Paniagua, S.A.; Centeno-Cerdas, C.; et al. Composites of Polylactic Acid with Diatomaceous Earth for 3D-Printing Biocompatible Scaffolds: A Systematic Study of Their Mechanical, Thermal, and Biocompatibility Properties. Bioengineering 2024, 11, 1059. https://doi.org/10.3390/bioengineering11111059
Trejos-Soto L, Rivas-Hernández GO, Mora-Bolaños R, Vargas-Valverde N, Valerio A, Ulloa-Fernández A, Oviedo-Quirós J, García-Piñeres A, Paniagua SA, Centeno-Cerdas C, et al. Composites of Polylactic Acid with Diatomaceous Earth for 3D-Printing Biocompatible Scaffolds: A Systematic Study of Their Mechanical, Thermal, and Biocompatibility Properties. Bioengineering. 2024; 11(11):1059. https://doi.org/10.3390/bioengineering11111059
Chicago/Turabian StyleTrejos-Soto, Lilliam, Gabriel O. Rivas-Hernández, Rodrigo Mora-Bolaños, Nathalia Vargas-Valverde, Abraham Valerio, Andrea Ulloa-Fernández, Jorge Oviedo-Quirós, Alfonso García-Piñeres, Sergio A. Paniagua, Carolina Centeno-Cerdas, and et al. 2024. "Composites of Polylactic Acid with Diatomaceous Earth for 3D-Printing Biocompatible Scaffolds: A Systematic Study of Their Mechanical, Thermal, and Biocompatibility Properties" Bioengineering 11, no. 11: 1059. https://doi.org/10.3390/bioengineering11111059
APA StyleTrejos-Soto, L., Rivas-Hernández, G. O., Mora-Bolaños, R., Vargas-Valverde, N., Valerio, A., Ulloa-Fernández, A., Oviedo-Quirós, J., García-Piñeres, A., Paniagua, S. A., Centeno-Cerdas, C., & Lesser-Rojas, L. (2024). Composites of Polylactic Acid with Diatomaceous Earth for 3D-Printing Biocompatible Scaffolds: A Systematic Study of Their Mechanical, Thermal, and Biocompatibility Properties. Bioengineering, 11(11), 1059. https://doi.org/10.3390/bioengineering11111059