Exploring NRB Biofilm Adhesion and Biocorrosion in Oil/Water Recovery Operations Within Pipelines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.1.1. Crude Oil/Injection Water
2.1.2. Carbon Steel Preparation
2.2. Bacterial Strain Culture and Condition
2.2.1. NRB Bacteria
2.2.2. Bacterial Cultures
2.2.3. CSB Media
2.3. Adhesion Essay
2.3.1. Sessile and Planktonic Cells
2.3.2. Surface Analysis
2.4. Weight Loss
2.5. Contact Angle
3. Results and Discussion
3.1. Physicochemical Analysis of Injection Water
3.2. Reactivation of NRB Strains in CSB Liquid Medium
3.3. Adhesion Essay
3.3.1. Sessile and Planktonic Cell
3.3.2. Surface Analysis
3.4. Weight Loss
3.5. Contact Angle
3.5.1. Injection Water and NRB Interaction
3.5.2. Algerian Crude Oil and NRB Interaction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donaldson, E.C.; Thomas, R.D. Microscopic observations of oil displacement in water-wet and oil-wet systems. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 3–6 October 1971; p. 3555. [Google Scholar]
- Muggeridge, A.; Cockin, A.; Webb, K.; Frampton, H.; Collins, I.; Moulds, T.; Salino, P. Recovery rates, enhanced oil recovery and technological limits. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120320. [Google Scholar] [CrossRef] [PubMed]
- Mya, O.B.; Houga, S.; Chihouba, F.; Asla, B. Treatment of Algerian crude oil using REB09305 OS demulsifier. Egypt. J. Pet. 2018, 27, 769–773. [Google Scholar]
- Ajienka, J.A.; Ogbe, N.O.; Ezeaniekwe, B.C. Measurement of dielectric constant of oilfield emulsions and its application to emulsion resolution. J. Pet. Sci. Eng. 1993, 9, 331–339. [Google Scholar] [CrossRef]
- Efeovbokhan, V.E.; Udonne, J.D.; Ayoola, A.A.; Shogbamu, O.T.; Babalola, R. A study of the effects of phenolic de-emulsifier solutions in xylene on the de-emulsification of a Nigerian crude oil emulsion. J. Appl. Res. Technol. 2017, 15, 110–121. [Google Scholar] [CrossRef]
- Chiu, N.; Tarrega, A.; Parmenter, C.; Hewson, L.; Wolf, B.; Fisk, I.D. Optimisation of octinyl succinic anhydride starch stablised w1/o/w2 emulsions for oral destablisation of encapsulated salt and enhanced saltiness. Food Hydrocoll. 2017, 69, 450–458. [Google Scholar] [CrossRef]
- Nabavi, S.A.; Vladisavljević, G.T.; Manović, V. Mechanisms and control of single-step microfluidic generation of multi-core double emulsion droplets. Chem. Eng. J. 2017, 322, 140–148. [Google Scholar] [CrossRef]
- Daaou, M.; Bendedouch, D. Water pH and surfactant addition effects on the stability of an Algerian crude oil emulsion. J. Saudi Chem. Soc. 2012, 16, 333–337. [Google Scholar] [CrossRef]
- Silva, T.R.; Verde, L.C.; Neto, E.S.; Oliveira, V.M. Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields. Int. Biodeterior. Biodegrad. 2013, 81, 57–70. [Google Scholar] [CrossRef]
- Lv, L.; Zhou, L.; Wang, L.Y.; Liu, J.F.; Gu, J.D.; Mu, B.Z.; Yang, S.Z. Selective inhibition of methanogenesis by sulfate in enrichment culture with production water from low-temperature oil reservoir. Int. Biodeterior. Biodegrad. 2016, 108, 133–141. [Google Scholar] [CrossRef]
- Struchtemeyer, C.G.; Davis, J.P.; Elshahed, M.S. Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett Shale. Appl. Environ. Microbiol. 2011, 77, 4744–4753. [Google Scholar] [CrossRef]
- Struchtemeyer, C.G.; Elshahed, M.S. Bacterial communities associated with hydraulic fracturing fluids in thermogenic natural gas wells in North Central Texas, USA. FEMS Microbiol. Ecol. 2012, 81, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liang, Q.; Chen, Y.; Wang, B. Alteration of methanogenic archaeon by ethanol contribute to the enhancement of biogenic methane production of lignite. Front. Microbiol. 2019, 10, 2323. [Google Scholar] [CrossRef] [PubMed]
- Tellez, G.T.; Nirmalakhandan, N.; Gardea-Torresdey, J.L. Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water. Adv. Environ. Res. 2002, 6, 455–470. [Google Scholar] [CrossRef]
- Dudek, M.; Vik, E.A.; Aanesen, S.V.; Øye, G. Colloid chemistry and experimental techniques for understanding fundamental behaviour of produced water in oil and gas production. Adv. Colloid Interface Sci. 2020, 276, 102105. [Google Scholar] [CrossRef]
- Zapata-Peñasco, I.; Salazar-Coria, L.; Saucedo-García, M.; Villa-Tanaka, L.; Hernández-Rodríguez, C. Bisulfite reductase and nitrogenase genes retrieved from biocorrosive bacteria in saline produced waters of offshore oil recovery facilities. Int. Biodeterior. Biodegrad. 2013, 81, 17–27. [Google Scholar] [CrossRef]
- Rodrigues, T.; De Oliveira, A.; Coutinho, D.; Guerreiro, L.; Galvão, M.; Souza, P.; Charret, S.; De Oliveira, V.; Lutterbach, M. Diversidade de microrganismos relacionados com a biocorrosão no sistema óleo e gás. Corros. Prot. Mater. 2013, 32, 100–104. [Google Scholar]
- Albuquerque, A.C.; Andrade, C.; Neves, B. Biocorrosão: Da integridade do biofilme à integridade do material. Corros. Prot. Mater. 2014, 33, 18–23. [Google Scholar]
- Batmanghelich, F.; Li, L.; Seo, Y. Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron. Corros. Sci. 2017, 121, 94–104. [Google Scholar] [CrossRef]
- Bryers, J.D.; Ratner, B.D. Bioinspired implant materials befuddle bacteria. ASM News-Am. Soc. Microbiol. 2004, 70, 232. [Google Scholar]
- Beech, I.B.; Sunner, J. Biocorrosion: Towards understanding interactions between biofilms and metals. Curr. Opin. Biotechnol. 2004, 15, 181–186. [Google Scholar] [CrossRef]
- Videla, H.A.; Herrera, L.K. Microbiologically influenced corrosion: Looking to the future. Int. Microbiol. 2005, 8, 169–180. [Google Scholar] [PubMed]
- Javed, M.A.; Stoddart, P.R.; Wade, S.A. Corrosion of carbon steel by sulphate reducing bacteria: Initial attachment and the role of ferrous ions. Corros. Sci. 2015, 93, 48–57. [Google Scholar] [CrossRef]
- Ossai, C.I.; Boswell, B.; Davies, I.J. Pipeline failures in corrosive environments–A conceptual analysis of trends and effects. Eng. Fail. Anal. 2015, 53, 36–58. [Google Scholar] [CrossRef]
- Dawson, J.L.; John, G.; Oliver, K. Management of corrosion in the oil and gas industry. In Shreir’s Corrosion; Elsevier: Amsterdam, The Netherlands, 2010; Volume 4, pp. 3230–3269. [Google Scholar]
- Shahriar, A.; Sadiq, R.; Tesfamariam, S. Risk analysis for oil & gas pipelines: A sustainability assessment approach using fuzzy based bow-tie analysis. J. Loss Prev. Process Ind. 2012, 25, 505–523. [Google Scholar]
- Suflita, J.M.; Aktas, D.F.; Oldham, A.L.; Perez-Ibarra, B.M.; Duncan, K. Molecular tools to track bacteria responsible for fuel deterioration and microbiologically influenced corrosion. Biofouling 2012, 28, 1003–1010. [Google Scholar] [CrossRef]
- Lenhart, T.R.; Duncan, K.E.; Beech, I.B.; Sunner, J.A.; Smith, W.; Bonifay, V.; Biri, B.; Suflita, J.M. Identification and characterization of microbial biofilm communities associated with corroded oil pipeline surfaces. Biofouling 2014, 30, 823–835. [Google Scholar] [CrossRef]
- Stipanicev, M.; Turcu, F.; Esnault, L.; Rosas, O.; Basseguy, R.; Sztyler, M.; Beech, I.B. Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems. Bioelectrochemistry 2014, 97, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Parthipan, P.; Elumalai, P.; Ting, Y.P.; Rahman, P.K.; Rajasekar, A. Characterization of hydrocarbon degrading bacteria isolated from Indian crude oil reservoir and their influence on biocorrosion of carbon steel API 5LX. Int. Biodeterior. Biodegrad. 2018, 129, 67–80. [Google Scholar] [CrossRef]
- Elumalai, P.; Parthipan, P.; Narenkumar, J.; Anandakumar, B.; Madhavan, J.; Oh, B.T.; Rajasekar, A. Role of thermophilic bacteria (Bacillus and Geobacillus) on crude oil degradation and biocorrosion in oil reservoir environment. 3 Biotech 2019, 9, 79. [Google Scholar] [CrossRef]
- Narenkumar, J.; Elumalai, P.; Subashchandrabose, S.; Megharaj, M.; Balagurunathan, R.; Murugan, K.; Rajasekar, A. Role of 2-mercaptopyridine on control of microbial influenced corrosion of copper CW024A metal in cooling water system. Chemosphere 2019, 222, 611–618. [Google Scholar] [CrossRef]
- Landoulsi, J.; Cooksey, K.E.; Dupres, V. Review—Interactions between diatoms and stainless steel: Focus on biofouling and biocorrosion. Biofouling 2011, 27, 1105–1124. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Li, J.Y.; Mbadinga, S.M.; Liu, J.F.; Gu, J.D.; Mu, B.Z. Analysis of bacterial and archaeal communities along a high-molecular-weight polyacrylamide transportation pipeline system in an oil field. Int. J. Mol. Sci. 2015, 16, 7445–7461. [Google Scholar] [CrossRef] [PubMed]
- Parthipan, P.; Narenkumar, J.; Elumalai, P.; Preethi, P.S.; Nanthini, A.U.; Agrawal, A.; Rajasekar, A. Neem extract as a green inhibitor for microbiologically influenced corrosion of carbon steel API 5LX in a hypersaline environments. J. Mol. Liq. 2017, 240, 121–127. [Google Scholar] [CrossRef]
- Bakke, R.; Trulear, M.G.; Robinson, J.A.; Characklis, W.G. Activity of Pseudomonas aeruginosa in biofilms: Steady state. Biotechnol. Bioeng. 1984, 26, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Heydorn, A.; Ersbøll, B.K.; Hentzer, M.; Parsek, M.R.; Givskov, M.; Molin, S. Experimental reproducibility in flow-chamber biofilms. Microbiology 2000, 146, 2409–2415. [Google Scholar] [CrossRef]
- Shirtliff, M.E.; Mader, J.T.; Camper, A.K. Molecular interactions in biofilms. Chem. Biol. 2002, 9, 859–871. [Google Scholar] [CrossRef]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef]
- Percival, S.L.; Malic, S.; Cruz, H.; Williams, D.W. Introduction to biofilms. Biofilms Vet. Med. 2011, 6, 41–68. [Google Scholar]
- Elumalai, P.; AlSalhi, M.S.; Mehariya, S.; Karthikeyan, O.P.; Devanesan, S.; Parthipan, P.; Rajasekar, A. Bacterial community analysis of biofilm on API 5LX carbon steel in an oil reservoir environment. Bioprocess Biosyst. Eng. 2021, 44, 355–368. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, E.S.; Pereira, R.F.D.C.; Lima, M.A.G.D.A.; Urtiga Filho, S.L. Study on biofilm forming microorganisms associated with the biocorrosion of x80 pipeline steel in produced water from oilfield. Mater. Res. 2021, 24, e20210196. [Google Scholar] [CrossRef]
- Liu, T.; Cheng, Y.F.; Sharma, M.; Voordouw, G. Effect of fluid flow on biofilm formation and microbiologically influenced corrosion of pipelines in oilfield produced water. J. Pet. Sci. Eng. 2017, 156, 451–459. [Google Scholar] [CrossRef]
- Jin, J.; Guan, Y. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes. Bioresour. Technol. 2014, 169, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Cote, C.; Rosas, O.; Sztyler, M.; Doma, J.; Beech, I.; Basseguy, R. Corrosion of low carbon steel by microorganisms from the ‘pigging’ operation debris in water injection pipelines. Bioelectrochemistry 2014, 97, 97–109. [Google Scholar] [CrossRef]
- Liu, B.; Li, Z.; Yang, X.; Du, C.; Li, X. Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing soil. Bioelectrochemistry 2020, 135, 107551. [Google Scholar] [CrossRef]
- Akkal, R.; Ramézani, H.; Khodja, M.; Azzi, S. Influence of the clay content and type of Algerian sandstone rock samples on water–oil relative permeabilities. Energy Fuels 2019, 33, 9330–9341. [Google Scholar] [CrossRef]
- El Ouahed, A.K.; Tiab, D.; Mazouzi, A. Application of artificial intelligence to characterize naturally fractured zones in Hassi Messaoud Oil Field, Algeria. J. Pet. Sci. Eng. 2005, 49, 122–141. [Google Scholar] [CrossRef]
- Fan, B.; Wang, C.; Song, X.; Ding, X.; Wu, L.; Wu, H.; Gao, X.; Borriss, R. Bacillus velezensis FZB42 in 2018: The gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol. 2018, 9, 2491. [Google Scholar] [CrossRef]
- Anandkumar, B.; George, R.P.; Maruthamuthu, S.; Parvathavarthini, N.; Mudali, U.K. Corrosion characteristics of sulfate-reducing bacteria (SRB) and the role of molecular biology in SRB studies: An overview. Corros. Rev. 2016, 34, 41–63. [Google Scholar] [CrossRef]
- Vigneron, A.; Cruaud, P.; Alsop, E.; de Rezende, J.R.; Head, I.M.; Tsesmetzis, N. Beyond the tip of the iceberg; a new view of the diversity of sulfite-and sulfate-reducing microorganisms. ISME J. 2018, 12, 2096–2099. [Google Scholar] [CrossRef]
- Vigneron, A.; Cruaud, P.; Mohit, V.; Martineau, M.J.; Culley, A.I.; Lovejoy, C.; Vincent, W.F. Multiple strategies for light-harvesting, photoprotection, and carbon flow in high latitude microbial mats. Front. Microbiol. 2018, 9, 2881. [Google Scholar] [CrossRef]
- Geesey, G.G.; Wigglesworth-Cooksey, B.; Cooksey, K.E. Influence of calcium and other cations on surface adhesion of bacteria and diatoms: A review. Biofouling 2000, 15, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Czop, M.; Łaźniewska-Piekarczyk, B.; Kajda-Szcześniak, M. Analysis of the possibility of using slags from the thermal treatment of municipal waste as potential component of cement—Case study. Materials 2021, 14, 6491. [Google Scholar] [CrossRef]
- Ovsyany, E.I.; Orekhova, N.A. Hydrochemical regime of the River Chernaya (Crimea): Environmental aspects. Phys. Oceanogr. 2018, 25, 77–89. [Google Scholar] [CrossRef]
- ISO, E. 9297: 1989; Water Quality—Determination of Chloride—Silver Nitrate Titration with Chromate Indicator (Mohr’s Method). International Organization for Standarization: Geneva, Switzerland, 1989.
- Albert, D.N.; Julienne, N.; Romain, F.F.; Charles, D.D.; Norbert, K.T.W.; Ephraïm, N.A.; Blaise, D.L.J. Biosciences and Plant Biology. Int. J. Curr. Res. Biosci. Plant Biol. 2020, 7, 33–45. [Google Scholar]
- Voordouw, G. Production-related petroleum microbiology: Progress and prospects. Curr. Opin. Biotechnol. 2011, 22, 401–405. [Google Scholar] [CrossRef]
- Roberge, A.; Feldman, P.D.; Lagrange, A.M.; Vidal-Madjar, A.; Ferlet, R.; Jolly, A.; Lemaire, J.L.; Rostas, F. High-resolution Hubble space telescope STIS spectra of CI and CO in the β pictoris circumstellar disk. Astrophys. J. 2000, 538, 904. [Google Scholar] [CrossRef]
- Davis, J.R. Corrosion: Understanding the Basics; ASM International: Materials Park, OH, USA, 2000; p. 47. [Google Scholar]
- Igunnu, E.T.; Chen, G.Z. Produced water treatment technologies. Int. J. Low-Carbon Technol. 2014, 9, 157–177. [Google Scholar] [CrossRef]
- Mousa, I.E. Total petroleum hydrocarbon degradation by hybrid electrobiochemical reactor in oilfield produced water. Mar. Pollut. Bull. 2016, 109, 356–360. [Google Scholar] [CrossRef]
- Ribeiro, F.A.D.L.; Mantovani, G.A.; Poppi, R.J.; Rosário, F.F.D.; Bezerra, M.C.M.; Bastos, A.L.M.; Melo, V.L.A.D. PCA: Uma ferramenta para identificação de traçadores químicos para água de formação e água de injeção associadas à produção de petróleo. Química Nova 2013, 36, 1281–1287. [Google Scholar] [CrossRef]
- Machuca, L.L.; Jeffrey, R.; Melchers, R.E. Microorganisms associated with corrosion of structural steel in diverse atmospheres. Int. Biodeterior. Biodegrad. 2016, 114, 234–243. [Google Scholar] [CrossRef]
- Varjani, S.J.; Upasani, V.N. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour. Technol. 2017, 232, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Labat-Moleur, F.; Steffan, A.M.; Brisson, C.; Perron, H.; Feugeas, O.; Furstenberger, P.A.; Oberling, F.; Brambilla, E.; Behr, J.P. An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther. 1996, 3, 1010–1017. [Google Scholar] [PubMed]
- Little, B.J.; Lee, J.S. Microbiologically influenced corrosion: An update. Int. Mater. Rev. 2014, 59, 384–393. [Google Scholar] [CrossRef]
- Hubert, C.; Nemati, M.; Jenneman, G.; Voordouw, G. Corrosion risk associated with microbial souring control using nitrate or nitrite. Appl. Microbiol. Biotechnol. 2005, 68, 272–282. [Google Scholar] [CrossRef]
- Little, B.J.; Lee, J.S. Microbiologically influenced corrosion. In Oil and Gas Pipelines; Wiley: New York, NY, USA, 2015; pp. 387–398. [Google Scholar]
Parameters | Operating Procedures | mg/L |
---|---|---|
pH | Measurement of pH by electrometry | 7.1 |
Ca2+ | Calcium determination by complexometry | 210 |
Mg2+ | Magnesium determination by complexometry | 70 |
SO42− | Sulphate determination | 600 |
Cl− | Chloride determination by volumetry | 420 |
Dry extract | Dry residue determination at 105 °C | 165,442 |
K+ | Potassium determination | 40 |
Na+ | Sodium determination | 250 |
HCO3− | 170 | |
NO3− | 3.23 | |
NO2− | 1.058 |
Reading Time | Sample | Aerobic (CFU/mL) | Anaerobic (CFU/mL) |
---|---|---|---|
Day 1 | Crude oil | 101 | 100 |
Injection water | 102 | 101 | |
Day 2 | Crude oil | 102 | 101 |
Injection water | 103 | 102 | |
Day 3 | Crude oil | 102 | 102 |
Injection water | 103 | 103 | |
Day 4 | Crude oil | 103 | 102 |
Injection water | 104 | 105 | |
Day 5 | Crude oil | 103 | 103 |
Injection water | 105 | 105 | |
Day 6 | Crude oil | 103 | 103 |
Injection water | 106 | 106 | |
Day 7 | Crude oil | 103 | 103 |
Injection water | 106 | 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Didouh, H.; Khurshid, H.; Hadj Meliani, M.; Suleiman, R.K.; Umoren, S.A.; Bouhaik, I.S. Exploring NRB Biofilm Adhesion and Biocorrosion in Oil/Water Recovery Operations Within Pipelines. Bioengineering 2024, 11, 1046. https://doi.org/10.3390/bioengineering11101046
Didouh H, Khurshid H, Hadj Meliani M, Suleiman RK, Umoren SA, Bouhaik IS. Exploring NRB Biofilm Adhesion and Biocorrosion in Oil/Water Recovery Operations Within Pipelines. Bioengineering. 2024; 11(10):1046. https://doi.org/10.3390/bioengineering11101046
Chicago/Turabian StyleDidouh, Hadjer, Hifsa Khurshid, Mohammed Hadj Meliani, Rami K. Suleiman, Saviour A. Umoren, and Izzeddine Sameut Bouhaik. 2024. "Exploring NRB Biofilm Adhesion and Biocorrosion in Oil/Water Recovery Operations Within Pipelines" Bioengineering 11, no. 10: 1046. https://doi.org/10.3390/bioengineering11101046
APA StyleDidouh, H., Khurshid, H., Hadj Meliani, M., Suleiman, R. K., Umoren, S. A., & Bouhaik, I. S. (2024). Exploring NRB Biofilm Adhesion and Biocorrosion in Oil/Water Recovery Operations Within Pipelines. Bioengineering, 11(10), 1046. https://doi.org/10.3390/bioengineering11101046