Mechanical Behaviour of Plantar Adipose Tissue: From Experimental Tests to Constitutive Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Dissection
2.2. Mechanical Tests
2.2.1. Unconfined Compression Tests
2.2.2. Indentation Tests
2.3. Data Elaboration
2.4. Constitutive Model
2.5. Computational Analyses
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blechschmidt, E. The Structure of the Calcaneal Padding. Foot Ankle 1982, 2, 260–283. [Google Scholar] [CrossRef] [PubMed]
- Cichowitz, A.; Pan, W.R.; Ashton, M. The Heel: Anatomy, Blood Supply, and the Pathophysiology of Pressure Ulcers. Ann. Plast. Surg. 2009, 62, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Bojsen-Moller, F.; Flagstad, K.E. Plantar Aponeurosis and Internal Architecture of the Ball of the Foot. J. Anat. 1976, 121, 599–611. [Google Scholar] [PubMed]
- Wang, Y.-N.W.; Lee, K.L.; Ledoux, W. Histomorphological Evaluation of Diabetic and Non-Diabetic Plantar Soft Tissue. Foot Ankle Int. 2011, 32, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Jahss, M.H.; Michelson, J.D.; Desai, P.; Kaye, R.; Reich, S.; Kummer, F.; Buschman, W.; Watkins, F. Investigations into the Fat Pads of the Sole of the Foot: Anatomy and Histology. Foot Ankle Int. 1992, 13, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Whittle, M.W. Generation and Attenuation of Transient Impulsive Forces beneath the Foot: A Review. Gait Posture 1999, 10, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Whitney, K.A. Foot Deformities, Biomechanical and Pathomechanical Changes Associated with Aging Including Orthotic Considerations, Part II. Clin. Podiatr. Med. Surg. 2003, 20, 511–526. [Google Scholar] [CrossRef]
- Quirk, R. Metatarsalgia. Aust. Fam. Physician 1996, 25, 863–869. [Google Scholar]
- Cooke, R.; Manning, C.; Palihawadana, D.; Zubairy, A.I.; Khan, S.H. Metatarsalgia: Anatomy, Pathology and Management. Br. J. Hosp. Med. 2021, 82, 1–8. [Google Scholar] [CrossRef]
- Boulton, A.J.M.; Vileikyte, L.; Ragnarson-Tennvall, G.; Apelqvist, J. The Global Burden of Diabetic Foot Disease. Lancet 2005, 366, 1719–1724. [Google Scholar] [CrossRef]
- Brady, L.M.; Rombokas, E.; Wang, Y.N.; Shofer, J.B.; Ledoux, W.R. The Effect of Diabetes and Tissue Depth on Adipose Chamber Size and Plantar Soft Tissue Features. Foot 2023, 56, 101989. [Google Scholar] [CrossRef] [PubMed]
- Biz, C.; Belluzzi, E.; Crimì, A.; Bragazzi, N.L.; Nicoletti, P.; Mori, F.; Ruggieri, P. Minimally Invasive Metatarsal Osteotomies (Mimos) for the Treatment of Plantar Diabetic Forefoot Ulcers (Pdfus): A Systematic Review and Meta-analysis with Meta-regressions. Appl. Sci. 2021, 11, 9628. [Google Scholar] [CrossRef]
- Fontanella, C.G.; Nalesso, F.; Carniel, E.L.; Natali, A.N. Biomechanical Behavior of Plantar Fat Pad in Healthy and Degenerative Foot Conditions. Med. Biol. Eng. Comput. 2016, 54, 653–661. [Google Scholar] [CrossRef]
- Rome, K.; Webb, P.; Unsworth, A.; Haslock, I. Heel Pad Stiffness in Runners with Plantar Heel Pain. Clin. Biomech. 2001, 16, 901–905. [Google Scholar] [CrossRef]
- Natali, A.N.; Fontanella, C.G.; Carniel, E.L.; Young, J.M. Biomechanical Behaviour of Heel Pad Tissue: Experimental Testing, Constitutive Formulation, and Numerical Modelling. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2011, 225, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Fontanella, C.G.; Favaretto, E.; Carniel, E.L.; Natali, A.N. Constitutive Formulation and Numerical Analysis of the Biomechanical Behaviour of Forefoot Plantar Soft Tissue. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2014, 228, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Tsai, W.C.; Chen, C.P.C.; Shau, Y.W.; Wang, C.L.; Chen, M.J.L.; Chang, K.J. Effects of Aging on the Plantar Soft Tissue Properties under the Metatarsal Heads at Different Impact Velocities. Ultrasound Med. Biol. 2005, 31, 1423–1429. [Google Scholar] [CrossRef]
- Lemmon, D.; Shiang, T.Y.; Hashmi, A.; Ulbrecht, J.S.; Cavanagh, P.R. The Effect of Insoles in Therapeutic Footwear—A Finite Element Approach. J. Biomech. 1997, 30, 615–620. [Google Scholar] [CrossRef]
- Chen, W.M.; Phyau-Wui Shim, V.; Park, S.B.; Lee, T. An Instrumented Tissue Tester for Measuring Soft Tissue Property under the Metatarsal Heads in Relation to Metatarsophalangeal Joint Angle. J. Biomech. 2011, 44, 1801–1804. [Google Scholar] [CrossRef]
- Tong, J.; Lim, C.S.; Goh, O.L. Technique to Study the Biomechanical Properties of the Human Calcaneal Heel Pad. Foot 2003, 13, 83–91. [Google Scholar] [CrossRef]
- Chao, C.Y.L.; Zheng, Y.P.; Huang, Y.P.; Cheing, G.L.Y. Biomechanical Properties of the Forefoot Plantar Soft Tissue as Measured by an Optical Coherence Tomography-Based Air-Jet Indentation System and Tissue Ultrasound Palpation System. Clin. Biomech. 2010, 25, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Miller-Young, J.E.; Duncan, N.A.; Baroud, G. Material Properties of the Human Calcaneal Fat Pad in Compression: Experiment and Theory. J. Biomech. 2002, 35, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Ledoux, W.R.; Blevins, J.J. The Compressive Material Properties of the Plantar Soft Tissue. J. Biomech. 2007, 40, 2975–2981. [Google Scholar] [CrossRef] [PubMed]
- Pai, S.; Ledoux, W.R. The Shear Mechanical Properties of Diabetic and Non-Diabetic Plantar Soft Tissue. J. Biomech. 2012, 45, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Brady, L.; Pai, S.; Iaquinto, J.M.; Wang, Y.N.; Ledoux, W.R. The Compressive, Shear, Biochemical, and Histological Characteristics of Diabetic and Non-Diabetic Plantar Skin Are Minimally Different. J. Biomech. 2021, 129, 110797. [Google Scholar] [CrossRef] [PubMed]
- Pai, S.; Ledoux, W.R. The Compressive Mechanical Properties of Diabetic and Non-Diabetic Plantar Soft Tissue. J. Biomech. 2010, 43, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Pai, S.; Ledoux, W.R. The Quasi-Linear Viscoelastic Properties of Diabetic and Non-Diabetic Plantar Soft Tissue. Ann. Biomed. Eng. 2011, 39, 1517–1527. [Google Scholar] [CrossRef]
- Fung, Y.C. Biomechanics: Mechanical Properties of Living Tissues; Springer: New York, NY, USA, 1993; ISBN 978-1-4419-3104-7. [Google Scholar]
- De Caro, R.; Boscolo-Berto, R.; Artico, M.; Bertelli, E.; Cannas, M.; Cappello, F.; Carpino, G.; Castorina, S.; Cataldi, A.; Cavaletti, G.A.; et al. The Italian Law on Body Donation: A Position Paper of the Italian College of Anatomists. Ann. Anat. 2021, 238, 151761. [Google Scholar] [CrossRef]
- Sun, Z.; Gepner, B.D.; Lee, S.H.; Oyen, M.L.; Rigby, J.; Cottler, P.S.; Hallman, J.J.; Kerrigan, J.R. Effect of Temperature and Freezing on Human Adipose Tissue Material Properties Characterized by High-Rate Indentation: Puncture Testing. J. Biomech. Eng. 2022, 144, 034502. [Google Scholar] [CrossRef]
- Fontanella, C.G.; Belluzzi, E.; Pozzuoli, A.; Favero, M.; Ruggieri, P.; Macchi, V.; Luigi, E. Mechanical Behavior of Infrapatellar Fat Pad of Patients Affected by Osteoarthritis. J. Biomech. 2022, 131, 110931. [Google Scholar] [CrossRef]
- Fontanella, C.G.; Toniolo, I.; Foletto, M.; Prevedello, L.; Carniel, E.L. Mechanical Behavior of Subcutaneous and Visceral Abdominal Adipose Tissue in Patients with Obesity. Processes 2022, 10, 1798. [Google Scholar] [CrossRef]
- Balsly, C.R.; Cotter, A.T.; Williams, L.A.; Gaskins, B.D.; Moore, M.A.; Wolfinbarger, L. Effect of Low Dose and Moderate Dose Gamma Irradiation on the Mechanical Properties of Bone and Soft Tissue Allografts. Cell Tissue Bank. 2008, 9, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, G.A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Natali, A.N.; Fontanella, C.G.; Carniel, E.L. Constitutive Formulation and Analysis of Heel Pad Tissues Mechanics. Med. Eng. Phys. 2010, 32, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Lohr, M.J.; Sugerman, G.P.; Kakaletsis, S.; Lejeune, E.; Rausch, M.K. An Introduction to the Ogden Model in Biomechanics: Benefits, Implementation Tools and Limitations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2022, 380, 20210365. [Google Scholar] [CrossRef] [PubMed]
- Moran, R.; Smith, J.H.; García, J.J. Fitted Hyperelastic Parameters for Human Brain Tissue from Reported Tension, Compression, and Shear Tests. J. Biomech. 2014, 47, 3762–3766. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Z.; Dong, R.G.; Schopper, A.W. Analysis of Effects of Friction on the Deformation Behavior of Soft Tissues in Unconfined Compression Tests. J. Biomech. 2004, 37, 147–155. [Google Scholar] [CrossRef]
- ABAQUS Inc. ABAQUS Analysis User’s Manual: Version 6.6; ABAQUS, Incorporated: Providence, RI, USA, 2006.
- Cavanagh, P.R. Plantar Soft Tissue Thickness during Ground Contact in Walking. J. Biomech. 1999, 32, 623–628. [Google Scholar] [CrossRef]
- Nass, D.; Hennig, E.M.; van Treek, R. The Thickness of the Heel Pad Loaded by Bodyweight in Obese and Normal Weight Adults. In Proceedings of the 4th Symposium on Footwear Biomechanics, Canmore, AB, Canada, 5–7 August 1999; University of Calgary: Calgary, AB, Canada, 1999; pp. 74–75. [Google Scholar]
- Erdemir, A.; Viveiros, M.L.; Ulbrecht, J.S.; Cavanagh, P.R. An Inverse Finite-Element Model of Heel-Pad Indentation. J. Biomech. 2006, 39, 1279–1286. [Google Scholar] [CrossRef]
- Gefen, A.; Gefen, N.; Zhu, Q.; Raghupathi, R.; Margulies, S.S. Age-Dependent Changes in Material Properties of the Brain and Braincase of the Rat. J. Neurotrauma 2003, 20, 1163–1177. [Google Scholar] [CrossRef]
- Cheng, S.; Clarke, E.C.; Bilston, L.E. The Effects of Preconditioning Strain on Measured Tissue Properties. J. Biomech. 2009, 42, 1360–1362. [Google Scholar] [CrossRef]
- Ou, H.; Zhan, P.; Kang, L.; Su, J.; Hu, X.; Johnson, S. Region-Specific Constitutive Modeling of the Plantar Soft Tissue. Biomech. Model. Mechanobiol. 2018, 17, 1373–1388. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Gepner, B.D.; Lee, S.H.; Rigby, J.; Cottler, P.S.; Hallman, J.J.; Kerrigan, J.R. Multidirectional Mechanical Properties and Constitutive Modeling of Human Adipose Tissue under Dynamic Loading. Acta Biomater. 2021, 129, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Ito, K.; Lee, T.; Ogihara, N. In-Vivo Viscous Properties of the Heel Pad by Stress-Relaxation Experiment Based on a Spherical Indentation. Med. Eng. Phys. 2017, 50, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Kwak, Y.; Kim, J.; Lee, K.M.; Koo, S. Increase of Stiffness in Plantar Fat Tissue in Diabetic Patients. J. Biomech. 2020, 107, 109857. [Google Scholar] [CrossRef] [PubMed]
- Fontanella, C.G.; Matteoli, S.; Carniel, E.L.; Wilhjelm, J.E.; Virga, A.; Corvi, A.; Natali, A.N. Investigation on the Load-Displacement Curves of a Human Healthy Heel Pad: In Vivo Compression Data Compared to Numerical Results. Med. Eng. Phys. 2012, 34, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Chatzistergos, P.E.; Naemi, R.; Chockalingam, N. A Method for Subject-Specific Modelling and Optimisation of the Cushioning Properties of Insole Materials Used in Diabetic Footwear. Med. Eng. Phys. 2015, 37, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Ito, K.; Lee, T.; Ogihara, N. Parameter Identification of Hyperelastic Material Properties of the Heel Pad Based on an Analytical Contact Mechanics Model of a Spherical Indentation. J. Mech. Behav. Biomed. Mater. 2017, 65, 753–760. [Google Scholar] [CrossRef]
- Chokhandre, S.; Halloran, J.P.; Van Den Bogert, A.J.; Erdemir, A. A Three-Dimensional Inverse Finite Element Analysis of the Heel Pad. J. Biomech. Eng. 2012, 134, 031002. [Google Scholar] [CrossRef]
- Kwan, R.L.C.; Zheng, Y.P.; Cheing, G.L.Y. The Effect of Aging on the Biomechanical Properties of Plantar Soft Tissues. Clin. Biomech. 2010, 25, 601–605. [Google Scholar] [CrossRef]
Subject | Sex | Age (Years) | BMI (kg/m2) | Pathology | Amputation Site, Leg | a/c |
---|---|---|---|---|---|---|
1 | M | 40 | 25.3 | Chondrosarcoma | Interileoabdominal, RL | a |
2 | M | 49 | 28.7 | Chondrosarcoma | Interileoabdominal, LL | a |
3 | M | 54 | 23.7 | Chondrosarcoma | Thigh, RL | a |
4 | M | 82 | 26.7 | Leiomyosarcoma | Thigh, RL | a |
5 | F | 58 | 24.8 | Synovial sarcoma | Thigh, RL | a |
6 | M | 67 | 26.1 | - | RL and LL | c |
7 | F | 62 | 25.7 | - | RL and LL | c |
Mean ± SD | 59 ± 13 | 25.9 ± 1.6 |
Region | Initial Indentation Stiffness (N) | Final Indentation Stiffness (N) | Relative Stiffness γ∞ (−) |
---|---|---|---|
HP | 0.82 ± 0.27 * | 16.34 ± 1.01 | 0.20 ± 0.04 |
L | 0.38 ± 0.27 | 10.29 ± 1.57 | 0.20 ± 0.03 |
Met | 0.31 ± 0.07 * | 9.60 ± 1.54 | 0.17 ± 0.05 |
Initial Elastic Modulus (kPa) | ||||
---|---|---|---|---|
Region | = 7%/s | = 70%/s | = 700%/s | p-Value |
HP | 0.73 ± 0.27 | 1.78 ± 0.53 | 1.97 ± 0.71 | a: p < 0.0001; b: p < 0.0001 |
L | 0.53 ± 0.31 | 1.55 ± 0.62 | 1.70 ± 0.46 | a: p < 0.0002; b: p < 0.0009 |
M | 0.29 ± 0.19 | 1.16 ± 0.36 | 1.58 ± 0.44 | a: p < 0.0160; b: p < 0.0014 |
Met | 0.25 ± 0.21 | 1.23 ± 0.44 | 1.61 ± 0.38 | a: p < 0.0094; b: p < 0.0012 |
Final Elastic Modulus (kPa) | ||||
---|---|---|---|---|
Region | = 7%/s | = 70%/s | = 700%/s | p-Value |
HP | 690.88 ± 853.66 | 818.04 ± 1057.22 | 755.98 ± 1007.78 | >0.05 |
L | 551.82 ± 757.93 | 587.05 ± 803.64 | 441.53 ± 514.83 | >0.05 |
M | 833.79 ± 538.24 | 944.67 ± 609.28 | 769.95 ± 493.42 | >0.05 |
Met | 352.91 ± 379.68 | 442.41 ± 448.06 | 437.37 ± 381.05 | >0.05 |
Region | µ (kPa) | α (−) | D (kPa−1) | γ1 (−) | γ2 (−) | τ1 (s) | τ2 (s) |
---|---|---|---|---|---|---|---|
HP | 0.14 | −6.18 | 0.03 | 0.58 | 0.18 | 0.39 | 63.48 |
L | 0.08 | −7.01 | 0.05 | 0.58 | 0.18 | 0.37 | 62.87 |
M | 0.07 | −7.95 | 0.06 | 0.67 | 0.20 | 0.39 | 54.44 |
Met | 0.10 | −4.09 | 0.04 | 0.58 | 0.17 | 0.36 | 66.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pettenuzzo, S.; Belluzzi, E.; Pozzuoli, A.; Macchi, V.; Porzionato, A.; Boscolo-Berto, R.; Ruggieri, P.; Berardo, A.; Carniel, E.L.; Fontanella, C.G. Mechanical Behaviour of Plantar Adipose Tissue: From Experimental Tests to Constitutive Analysis. Bioengineering 2024, 11, 42. https://doi.org/10.3390/bioengineering11010042
Pettenuzzo S, Belluzzi E, Pozzuoli A, Macchi V, Porzionato A, Boscolo-Berto R, Ruggieri P, Berardo A, Carniel EL, Fontanella CG. Mechanical Behaviour of Plantar Adipose Tissue: From Experimental Tests to Constitutive Analysis. Bioengineering. 2024; 11(1):42. https://doi.org/10.3390/bioengineering11010042
Chicago/Turabian StylePettenuzzo, Sofia, Elisa Belluzzi, Assunta Pozzuoli, Veronica Macchi, Andrea Porzionato, Rafael Boscolo-Berto, Pietro Ruggieri, Alice Berardo, Emanuele Luigi Carniel, and Chiara Giulia Fontanella. 2024. "Mechanical Behaviour of Plantar Adipose Tissue: From Experimental Tests to Constitutive Analysis" Bioengineering 11, no. 1: 42. https://doi.org/10.3390/bioengineering11010042
APA StylePettenuzzo, S., Belluzzi, E., Pozzuoli, A., Macchi, V., Porzionato, A., Boscolo-Berto, R., Ruggieri, P., Berardo, A., Carniel, E. L., & Fontanella, C. G. (2024). Mechanical Behaviour of Plantar Adipose Tissue: From Experimental Tests to Constitutive Analysis. Bioengineering, 11(1), 42. https://doi.org/10.3390/bioengineering11010042