A Dual Coordinate System Vertebra Landmark Detection Network with Sparse-to-Dense Vertebral Line Interpolation
Abstract
:1. Introduction
- We introduce an effective scheme, namely the center point interval estimator (CPIE), as an approach to obtain inter-vertebral supervision information to estimate the center points of vertebrae. The proposed scheme enhances the precision of center point localization, particularly in cases where vertebrae are subject to significant background interference. This improvement effectively reduces the accumulation of errors caused by inaccurately identified center points.
- We introduce the implementation of an auxiliary task, namely the adjacent vertebra interval estimator (AVIE). This task aims to effectively utilize the implicit knowledge the existing annotations provide.
- We introduce a novel approach using a dual coordinate system during the learning process. Our strategy involves the utilization of both Cartesian and polar coordinate systems for presenting the ground truth of center points and corner offsets, respectively. The sub-tasks can effectively preserve the advantages to a greater extent by using multiple coordinate systems.
- We introduce a vertebral line interpolation scheme to alleviate the drawbacks of the ground truth design during the network training process by converting the ground truth from sparse to dense.
- We propose a novel evaluation metric named self-adaptive MDE to analyze the sources of errors better. These include the misordering of vertebral pairs and inaccurate localization of the landmarks under correct ordering.
2. Related Work
2.1. Landmark Detection
2.2. Vertebra Landmark Detection and Automated Cobb Angle Estimation
3. Method
3.1. Vertebra Landmark Detector Framework
3.2. Dual Coordinate System
3.3. Center Point Interval Estimator and Adjacent Vertebra Interval Estimator
3.4. Vertebral Line Interpolation
4. Experiment
4.1. Dataset and Implementation Details
4.2. Evaluation Metrics
4.3. Experimental Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glassman, S.D.; Bridwell, K.; Dimar, J.R.; Horton, W.; Berven, S.; Schwab, F. The impact of positive sagittal balance in adult spinal deformity. Spine 2005, 30, 2024–2029. [Google Scholar] [CrossRef] [PubMed]
- Cobb, J. Outline for the study of scoliosis. Instr. Course Lect. AAOS 1948, 5, 261–275. [Google Scholar]
- Gstoettner, M.; Sekyra, K.; Walochnik, N.; Winter, P.; Wachter, R.; Bach, C.M. Inter-and intraobserver reliability assessment of the Cobb angle: Manual versus digital measurement tools. Eur. Spine J. 2007, 16, 1587–1592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Mok, T.C.; Chung, A.C. Dcor-VLDet: A Vertebra Landmark Detection Network for Scoliosis Assessment with Dual Coordinate System. In Proceedings of the International Workshop on Machine Learning in Medical Imaging, Singapore, 18–22 September 2022; Springer: Cham, Switzerland, 2022; pp. 72–80. [Google Scholar]
- Hsu, C.F.; Lin, C.C.; Hung, T.Y.; Lei, C.L.; Chen, K.T. A Detailed Look At CNN-based Approaches In Facial Landmark Detection. arXiv 2020, arXiv:2005.08649. [Google Scholar]
- Ranjan, R.; Patel, V.M.; Chellappa, R. Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 41, 121–135. [Google Scholar] [CrossRef]
- Bulat, A.; Tzimiropoulos, G. Two-stage convolutional part heatmap regression for the 1st 3d face alignment in the wild (3dfaw) challenge. In Proceedings of the European Conference on Computer Vision, 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 616–624. [Google Scholar]
- Zhang, Z.; Luo, P.; Loy, C.C.; Tang, X. Learning deep representation for face alignment with auxiliary attributes. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 918–930. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Q.; Zhang, K. Stacked hourglass network for robust facial landmark localisation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 79–87. [Google Scholar]
- Zadeh, A.; Chong Lim, Y.; Baltrusaitis, T.; Morency, L.P. Convolutional experts constrained local model for 3d facial landmark detection. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 2519–2528. [Google Scholar]
- Ranjan, R.; Sankaranarayanan, S.; Castillo, C.D.; Chellappa, R. An all-in-one convolutional neural network for face analysis. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 17–24. [Google Scholar]
- Wu, W.; Qian, C.; Yang, S.; Wang, Q.; Cai, Y.; Zhou, Q. Look at boundary: A boundary-aware face alignment algorithm. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2129–2138. [Google Scholar]
- Wu, Y.; Hassner, T.; Kim, K.; Medioni, G.; Natarajan, P. Facial landmark detection with tweaked convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 3067–3074. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, A.; Zhang, R.; Zhang, L. UniPose: Detecting Any Keypoints. arXiv 2023, arXiv:2310.08530. [Google Scholar]
- Yang, J.; Zeng, A.; Li, F.; Liu, S.; Zhang, R.; Zhang, L. Neural interactive keypoint detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 15122–15132. [Google Scholar]
- Sun, Y.; Wang, X.; Tang, X. Deep convolutional network cascade for facial point detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3476–3483. [Google Scholar]
- Zhou, E.; Fan, H.; Cao, Z.; Jiang, Y.; Yin, Q. Extensive facial landmark localization with coarse-to-fine convolutional network cascade. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 2–8 December 2013; pp. 386–391. [Google Scholar]
- Fan, H.; Zhou, E. Approaching human level facial landmark localization by deep learning. Image Vis. Comput. 2016, 47, 27–35. [Google Scholar] [CrossRef]
- Lv, J.; Shao, X.; Xing, J.; Cheng, C.; Zhou, X. A deep regression architecture with two-stage re-initialization for high performance facial landmark detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3317–3326. [Google Scholar]
- Kowalski, M.; Naruniec, J.; Trzcinski, T. Deep alignment network: A convolutional neural network for robust face alignment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 88–97. [Google Scholar]
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef]
- He, Z.; Zhang, J.; Kan, M.; Shan, S.; Chen, X. Robust fec-cnn: A high accuracy facial landmark detection system. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 98–104. [Google Scholar]
- Chai, X.; Wang, Q.; Zhao, Y.; Li, Y. Robust facial landmark detection based on initializing multiple poses. Int. J. Adv. Robot. Syst. 2016, 13, 1729881416662793. [Google Scholar] [CrossRef]
- Dong, X.; Yan, Y.; Ouyang, W.; Yang, Y. Style aggregated network for facial landmark detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 379–388. [Google Scholar]
- Wu, Y.; Ji, Q. Facial landmark detection: A literature survey. Int. J. Comput. Vis. 2019, 127, 115–142. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Jackson, A.S.; Valstar, M.; Tzimiropoulos, G. A CNN cascade for landmark guided semantic part segmentation. In Proceedings of the European Conference on Computer Vision, 4th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 143–155. [Google Scholar]
- Bulat, A.; Tzimiropoulos, G. How far are we from solving the 2d & 3d face alignment problem? (and a dataset of 230,000 3d facial landmarks). In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1021–1030. [Google Scholar]
- Bulat, A.; Tzimiropoulos, G. Super-fan: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with gans. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 109–117. [Google Scholar]
- Robinson, J.P.; Li, Y.; Zhang, N.; Fu, Y.; Tulyakov, S. Laplace landmark localization. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 25–20 June 2019; pp. 10103–10112. [Google Scholar]
- Wei, S.E.; Ramakrishna, V.; Kanade, T.; Sheikh, Y. Convolutional pose machines. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4724–4732. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Xu, Y.; Zhang, J.; Zhang, Q.; Tao, D. Vitpose: Simple vision transformer baselines for human pose estimation. Adv. Neural Inf. Process. Syst. 2022, 35, 38571–38584. [Google Scholar]
- Chen, T.; Saxena, S.; Li, L.; Lin, T.Y.; Fleet, D.J.; Hinton, G.E. A unified sequence interface for vision tasks. Adv. Neural Inf. Process. Syst. 2022, 35, 31333–31346. [Google Scholar]
- Horng, M.H.; Kuok, C.P.; Fu, M.J.; Lin, C.J.; Sun, Y.N. Cobb angle measurement of spine from X-ray images using convolutional neural network. Comput. Math. Methods Med. 2019, 2019, 6357171. [Google Scholar] [CrossRef]
- Zhang, J.; Lou, E.; Le, L.H.; Hill, D.L.; Raso, J.V.; Wang, Y. Automatic Cobb measurement of scoliosis based on fuzzy Hough Transform with vertebral shape prior. J. Digit. Imaging 2009, 22, 463–472. [Google Scholar] [CrossRef]
- Zhang, J.; Lou, E.; Hill, D.L.; Raso, J.V.; Wang, Y.; Le, L.H.; Shi, X. Computer-aided assessment of scoliosis on posteroanterior radiographs. Med. Biol. Eng. Comput. 2010, 48, 185–195. [Google Scholar] [CrossRef]
- Sun, H.; Zhen, X.; Bailey, C.; Rasoulinejad, P.; Yin, Y.; Li, S. Direct estimation of spinal cobb angles by structured multi-output regression. In Proceedings of the International Conference on Information Processing in Medical Imaging, Boone, NC, USA, 25–30 June 2017; Springer: Cham, Switzerland, 2017; pp. 529–540. [Google Scholar]
- Wu, H.; Bailey, C.; Rasoulinejad, P.; Li, S. Automatic landmark estimation for adolescent idiopathic scoliosis assessment using BoostNet. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Quebec City, QC, Canada, 10–14 September 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 127–135. [Google Scholar]
- Wu, H.; Bailey, C.; Rasoulinejad, P.; Li, S. Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-Net. Med. Image Anal. 2018, 48, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Q.; Leung, S.; Chung, J.; Chen, B.; Li, S. Accurate automated Cobb angles estimation using multi-view extrapolation net. Med. Image Anal. 2019, 58, 101542. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, N.; Yang, G.; Wu, J.; Fu, X. An automated cobb angle estimation method using convolutional neural network with area limitation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019; Springer: Cham, Switzerland, 2019; pp. 775–783. [Google Scholar]
- Chen, K.; Peng, C.; Li, Y.; Cheng, D.; Wei, S. Accurate automated keypoint detections for spinal curvature estimation. In Proceedings of the International Workshop and Challenge on Computational Methods and Clinical Applications for Spine Imaging, Shenzhen, China, 13–17 October 2019; Springer: Cham, Switzerland, 2019; pp. 63–68. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 5693–5703. [Google Scholar]
- Zhang, K.; Xu, N.; Guo, C.; Wu, J. MPF-net: An effective framework for automated cobb angle estimation. Med. Image Anal. 2022, 75, 102277. [Google Scholar] [CrossRef]
- An, C.H.; Lee, J.S.; Jang, J.S.; Choi, H.C. Part Affinity Fields and CoordConv for Detecting Landmarks of Lumbar Vertebrae and Sacrum in X-ray Images. Sensors 2022, 22, 8628. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Guo, L.; Zhang, R.; Ni, L.; Chen, Z.; He, X.; Wang, J. VLTENet: A Deep-Learning-Based Vertebra Localization and Tilt Estimation Network for Automatic Cobb Angle Estimation. IEEE J. Biomed. Health Inform. 2023, 27, 3002–3013. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Yi, J.; Wu, P.; Huang, Q.; Qu, H.; Metaxas, D.N. Vertebra-focused landmark detection for scoliosis assessment. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 736–740. [Google Scholar]
- Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer Vision (ECCV), 15th European Conference, Munich, Germany, 8–14 September 2018; pp. 734–750. [Google Scholar]
- Zhou, L.; Wei, H.; Li, H.; Zhao, W.; Zhang, Y. Objects detection for remote sensing images based on polar coordinates. arXiv 2020, arXiv:2001.02988. [Google Scholar]
- Ruder, S. An overview of multi-task learning in deep neural networks. arXiv 2017, arXiv:1706.05098. [Google Scholar]
- Manickam, A.M.A. Cervical Spine Alignment. Available online: http://Radiopaedia.org (accessed on 1 June 2022).
- Li, S.; Wang. Accurate Automated Spinal Curvature Estimation MICCAI 2019. 2019. Available online: https://aasce19.github.io/ (accessed on 1 March 2021).
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Scholten, P.; Veldhuizen, A. Analysis of Cobb angle measurements in scoliosis. Clin. Biomech. 1987, 2, 7–13. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y. Single-shot three-dimensional reconstruction based on structured light line pattern. Opt. Lasers Eng. 2018, 106, 10–16. [Google Scholar] [CrossRef]
- Chen, B.; Xu, Q.; Wang, L.; Leung, S.; Chung, J.; Li, S. An automated and accurate spine curve analysis system. IEEE Access 2019, 7, 124596–124605. [Google Scholar] [CrossRef]
- Lin, Y.; Zhou, H.Y.; Ma, K.; Yang, X.; Zheng, Y. Seg4Reg networks for automated spinal curvature estimation. In Proceedings of the Computational Methods and Clinical Applications for Spine Imaging: 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, 17 October 2019; Proceedings 6. Springer: Cham, Switzerland, 2020; pp. 69–74. [Google Scholar]
- Lin, Y.; Liu, L.; Ma, K.; Zheng, Y. Seg4reg+: Consistency learning between spine segmentation and cobb angle regression. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, 27 September–1 October 2021; Proceedings, Part V 24. Springer: Cham, Switzerland, 2021; pp. 490–499. [Google Scholar]
- Khanal, B.; Dahal, L.; Adhikari, P.; Khanal, B. Automatic cobb angle detection using vertebra detector and vertebra corners regression. In Proceedings of the Computational Methods and Clinical Applications for Spine Imaging: 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, 17 October 2019; Proceedings 6. Springer: Cham, Switzerland, 2020; pp. 81–87. [Google Scholar]
- Dubost, F.; Collery, B.; Renaudier, A.; Roc, A.; Posocco, N.; Niessen, W.; de Bruijne, M. Automated estimation of the spinal curvature via spine centerline extraction with ensembles of cascaded neural networks. In Proceedings of the Computational Methods and Clinical Applications for Spine Imaging: 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, 17 October 2019; Proceedings 6. Springer: Cham, Switzerland, 2020; pp. 88–94. [Google Scholar]
- Wang, J.; Wang, L.; Liu, C. A multi-task learning method for direct estimation of spinal curvature. In Proceedings of the Computational Methods and Clinical Applications for Spine Imaging: 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, 17 October 2019; Proceedings 6. Springer: Cham, Switzerland, 2020; pp. 113–118. [Google Scholar]
- Guo, Y.; Li, Y.; He, W.; Song, H. Heterogeneous consistency loss for cobb angle estimation. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico City, Mexico, 1–5 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 2588–2591. [Google Scholar]
Method | Auxiliary Estimator | Corner Point Obtain | CT ↓ | ↓ | ↓ | LM ↓ | ↓ | ↓ | |||
---|---|---|---|---|---|---|---|---|---|---|---|
CPIE | AVIE | Relative | Absolute | Polar | |||||||
Baseline [50] | ✓ | 60.33 | 49.81 | 75.36 | 63.19 | 52.09 | 79.07 | ||||
Ours | ✓ | ✓ | 55.18 | 44.89 | 69.89 | 58.68 | 47.61 | 74.50 | |||
Ours | ✓ | ✓ | 55.45 | 44.95 | 70.45 | 59.13 | 47.72 | 75.43 | |||
Ours | ✓ | ✓ | ✓ | 48.54 | 39.73 | 61.13 | 52.06 | 42.53 | 65.67 |
Method | Auxiliary Estimator | Corner Point Obtain | Vertebral Line Interpolation | SP↓ | ↓ | ↓ | ↓ | MDE ↓ | FPS ↑ | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CPIE | AVIE | Relative | Absolute | Polar | ||||||||
Baseline [50] | ✓ | 9.82 | 5.68 | 15.77 | 22.15 | 63.19 | 20.54 | |||||
Ours | ✓ | ✓ | 8.82 | 5.27 | 15.22 | 20.27 | 58.68 | 27.72 | ||||
Ours | ✓ | ✓ | 9.10 | 5.60 | 15.66 | 21.88 | 59.13 | 26.67 | ||||
Ours | ✓ | ✓ | ✓ | 8.61 | 4.98 | 14.59 | 21.48 | 52.06 | 26.56 | |||
Ours | ✓ | 9.61 | 6.30 | 14.67 | 21.67 | 62.61 | 27.52 | |||||
Ours | ✓ | 8.36 | 5.04 | 16.21 | 20.21 | 55.61 | 12.66 | |||||
Ours | ✓ | ✓ | ✓ | 11.53 | 8.13 | 18.77 | 21.82 | 66.19 | 16.04 | |||
Ours | ✓ | ✓ | ✓ | 8.43 | 5.13 | 13.45 | 19.99 | 53.13 | 24.67 | |||
Ours | ✓ | ✓ | 8.59 | 5.14 | 13.56 | 20.58 | 59.59 | 25.11 | ||||
Ours | ✓ | ✓ | ✓ | ✓ | 8.28 | 5.14 | 14.55 | 20.98 | 56.08 | 24.68 |
Interpolation Method | SMAPE |
---|---|
Linear interpolation | 9.35 |
Spline interpolation of zeroth order | 10.58 |
Spline interpolation of first order | 10.52 |
Nearest interpolation | 9.77 |
B-spline interpolation | 8.28 |
Method | CT ↓ | ↓ | ↓ | LM ↓ | ↓ | ↓ |
---|---|---|---|---|---|---|
Baseline [50] | 17.83 | 12.38 | 25.62 | 22.32 | 15.96 | 31.40 |
CPIE+AVIE+relative | 18.32 | 12.28 | 26.95 | 22.93 | 15.91 | 32.97 |
CPIE+AVIE+polar | 17.94 | 12.39 | 25.88 | 23.16 | 16.26 | 33.02 |
CPIE+AVIE+polar+vertebral line interpolation | 17.79 | 12.37 | 25.54 | 22.27 | 15.95 | 31.30 |
Methods | SMAPE | PT | MT | TL | MSE |
---|---|---|---|---|---|
Khanal et al. [63] | 26.05 | - | - | - | - |
Wang et al. [41] | 23.43 | 26.38 | 30.27 | 35.61 | 77.94 |
Chen et al. [60] | 23.59 | - | - | - | - |
Yi et al. [50] | 10.81 | 6.26 | 18.04 | 23.42 | 50.11 |
Horng et al. [35] | 16.48 | 9.71 | 25.97 | 33.01 | 74.07 |
Dubost et al. [64] | 22.96 | - | - | - | - |
Wang et al. [65] | 12.97 | - | - | - | - |
Lin et al. (ResNet18) [62] | 8.47 | - | - | - | - |
Guo et al. [66] | 8.62 | 4.76 | 15.83 | 21.04 | 52.72 |
Ours | 8.28 | 5.14 | 14.55 | 20.98 | 56.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Chung, A.C.S. A Dual Coordinate System Vertebra Landmark Detection Network with Sparse-to-Dense Vertebral Line Interpolation. Bioengineering 2024, 11, 101. https://doi.org/10.3390/bioengineering11010101
Zhang H, Chung ACS. A Dual Coordinate System Vertebra Landmark Detection Network with Sparse-to-Dense Vertebral Line Interpolation. Bioengineering. 2024; 11(1):101. https://doi.org/10.3390/bioengineering11010101
Chicago/Turabian StyleZhang, Han, and Albert C. S. Chung. 2024. "A Dual Coordinate System Vertebra Landmark Detection Network with Sparse-to-Dense Vertebral Line Interpolation" Bioengineering 11, no. 1: 101. https://doi.org/10.3390/bioengineering11010101
APA StyleZhang, H., & Chung, A. C. S. (2024). A Dual Coordinate System Vertebra Landmark Detection Network with Sparse-to-Dense Vertebral Line Interpolation. Bioengineering, 11(1), 101. https://doi.org/10.3390/bioengineering11010101