Direct Estimation of Equivalent Bioelectric Sources Based on Huygens’ Principle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Volume Conductor Problem
2.2. Direct Inverse Problem Solution
- Interpolate the discrete electrode voltages to generate equivalent surface potential source distribution.
- Consider an eigenfunction expansion for the volume potential distribution and estimate its weighing factors by equating it to the source distribution (of step 1) by exploiting the eigenfunction orthogonality.
- Assume a source distribution over the epicardium (or inside the brain) as an expansion of the FEM basis functions. Its weighing factors are estimated by equating to the volume potential and exploiting the FEM basis function’s orthogonality.
- The resulting internal sources are validated by comparing their generated potential to the original ECG or EEG measurements.
2.2.1. Step 1: Surface Source Distribution
2.2.2. Step 2a: Volume Potential Eigenfunction Expansion—Current Sources
2.2.3. Step 2b: Volume Potential Eigenfunction Expansion—Voltage Sources
2.2.4. Step 3: Estimate the Internal Equivalent Sources
- Acquisition of a data set corresponding to measurements recorded from the surface of the thorax.
- Interpolation of the acquired recordings throughout the surface of the model, i.e., the thorax.
- Calculation of the weighting factor , exploiting Equation (14) or (18), depending on the selected source type.
- Adaptation of the problem to describe the heart’s surface (Huygens’ Principle) and selection of the appropriate shape functions for them to comprise an orthogonal basis.
- Exploitation of the orthogonality over the heart and integration over the epicardium.
- Extraction of the epicardium potentials using Equation (24).
2.3. Numerical Implementation
- , which is an array containing the m eigenvectors for each of the n nodes, and
- , which is an array consisting of the n nodes of the model from which only the ones corresponding to the surface of the thorax are non-zero and the different time instances t.
3. Numerical Results
4. Discussion
5. Conclusions
6. Future Extensions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prince, M.J.; Wu, F.; Guo, Y.; Gutierrez Robledo, L.M.; O’Donnell, M.; Sullivan, R.; Yusuf, S. The burden of disease in older people and implications for health policy and practice. Lancet 2015, 385, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Mikla, V.I.; Mikla, V.V. (Eds.) Medical Imaging Technology; Elsevier: Amsterdam, The Netherlands, 2014; pp. i–iii. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D. Review of methods for solving the EEG inverse problem. Int. J. Bioelectromagn. 1999, 1, 75–86. [Google Scholar]
- Ak, A.; Topuz, V.; Midi, I. Motor imagery EEG signal classification using image processing technique over GoogLeNet deep learning algorithm for controlling the robot manipulator. Biomed. Signal Process. Control 2022, 72, 103295. [Google Scholar] [CrossRef]
- Power, S.P.; Moloney, F.; Twomey, M.; James, K.; O’Connor, O.J.; Maher, M.M. Computed tomography and patient risk: Facts, perceptions and uncertainties. World J. Radiol. 2016, 8, 902–915. [Google Scholar] [CrossRef] [PubMed]
- Medical X-ray Imaging: FDA, U.S. Food and Drug Administration. Available online: https://www.fda.gov/radiation-emitting-products/medical-imaging/medical-x-ray-imaging (accessed on 28 August 2023).
- Rafie, N.; Kashou, A.H.; Noseworthy, P.A. ECG Interpretation: Clinical Relevance, Challenges, and Advances. Hearts 2021, 2, 505–513. [Google Scholar] [CrossRef]
- Aitidis, I.; Kyriacou, G.; Sahalos, J. Exploiting Proper Orthogonal Decomposition for the solution of forward and inverse ECG and EEG related biomedical problems. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 526–529. [Google Scholar] [CrossRef]
- Shou, G.; Jiang, M.; Xia, L.; Wei, Q.; Liu, F.; Crozier, S. A comparison of different choices for the regularization parameter in inverse electrocardiography models. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 3903–3906. [Google Scholar] [CrossRef]
- Zemzemi, N.; Bourenane, H.; Cochet, H. An Iterative method for solving the inverse problem in Electrocardiography imaging: From body surface to heart potential. In Proceedings of the IEEE Computers in Cardiology, MIT, Cambridge, MA, USA, 7–10 September 2014. [Google Scholar]
- Kalinin, A.; Potyagaylo, D.; Kalinin, V. Solving the Inverse Problem of Electrocardiography on the Endocardium Using a Single Layer Source. Front. Physiol. 2019, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.W.; Bear, L.; Lin, C.W. Solving Inverse Electrocardiographic Mapping Using Machine Learning and Deep Learning Frameworks. Sensors 2022, 22, 2331. [Google Scholar] [CrossRef]
- Nafea, M.S.; Ismail, Z.H. Supervised Machine Learning and Deep Learning Techniques for Epileptic Seizure Recognition Using EEG Signals— A Systematic Literature Review. Bioengineering 2022, 9, 781. [Google Scholar] [CrossRef]
- Matos, J.; Peralta, G.; Heyse, J.; Menetre, E.; Seeck, M.; van Mierlo, P. Diagnosis of Epilepsy with Functional Connectivity in EEG after a Suspected First Seizure. Bioengineering 2022, 9, 690. [Google Scholar] [CrossRef]
- Quester, C.; Heinke, M.; Hörth, J. Simulation and Visualization of the electrical Activity of the Heart with focal ventricular tachycardia in a 3D Model. Curr. Dir. Biomed. Eng. 2021, 7, 17–20. [Google Scholar] [CrossRef]
- Gillette, K.; Gsell, M.A.F.; Strocchi, M.; Grandits, T.; Neic, A.; Manninger, M.; Scherr, D.; Roney, C.H.; Prassl, A.J.; Augustin, C.M.; et al. A personalized real-time virtual model of whole heart electrophysiology. Front. Physiol. 2022, 13, 1860. [Google Scholar] [CrossRef] [PubMed]
- Rueda, C.; Rodríguez-Collado, A.; Fernández, I.; Canedo, C.; Ugarte, M.D.; Larriba, Y. A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis. iScience 2022, 25, 105617. [Google Scholar] [CrossRef] [PubMed]
- Grech, R.; Cassar, T.; Muscat, J.; Camilleri, K.P.; Fabri, S.G.; Zervakis, M.; Xanthopoulos, P.; Sakkalis, V.; Vanrumste, B. Review on solving the inverse problem in EEG source analysis. J. Neuroeng. Rehabil. 2008, 5, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rivera, A.; Van Veen, B.; Wakai, R. Statistical performance analysis of signal variance-based dipole models for MEG/EEG source localization and detection. IEEE Trans. Biomed. Eng. 2003, 50, 137–149. [Google Scholar] [CrossRef]
- Michel, C.M.; Murray, M.M. Towards the utilization of EEG as a brain imaging tool. NeuroImage 2012, 61, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Shou, G.; Xia, L.; Jiang, M. Solving the Electrocardiography Inverse Problem by Using an Optimal Algorithm Based on the Total Least Squares Theory. In Proceedings of the Third International Conference on Natural Computation (ICNC 2007), Haikou, China, 24–27 August 2007; Volume 5, pp. 115–119. [Google Scholar] [CrossRef]
- Jiang, M.; Xia, L.; Shou, G. The Use of Genetic Algorithms for Solving the Inverse Problem of Electrocardiography. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 3907–3910. [Google Scholar] [CrossRef]
- Chari, M.; Salon, S. (Eds.) Numerical Methods in Electromagnetism; Electromagnetism, Academic Press: San Diego, CA, USA, 2000. [Google Scholar] [CrossRef]
- Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. In Proceedings of the Numerical Analysis; Watson, G.A., Ed.; Springer: Berlin/Heidelberg, Germany, 1978; pp. 105–116. [Google Scholar]
- Ramanathan, C.; Rudy, Y. Electrocardiographic Imaging: II. Effect of Torso Inhomogeneities on Noninvasive Reconstruction of Epicardial Potentials, Electrograms, and Isochrones. J. Cardiovasc. Electrophysiol. 2001, 12, 241–252. [Google Scholar] [CrossRef]
- Milan Horáček, B.; Clements, J.C. The inverse problem of electrocardiography: A solution in terms of single- and double-layer sources on the epicardial surface. Math. Biosci. 1997, 144, 119–154. [Google Scholar] [CrossRef]
- Zemzemi, N.; Dubois, R.; Coudière, Y.; Bernus, O.; Haïssaguerre, M. A Machine Learning Technique Regularization of the Inverse Problem in Cardiac Electrophysiology. In Proceedings of the CinC—Computing in Cardiology Conference, Zaragoza, Spain, 22–25 September 2013; Laguna, P., Ed.; pp. 285–312. [Google Scholar]
- Nakamura, H.; Aoki, T.; Tanaka, H. Regularization methods for inverse problem of body surface potential mapping. In Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. ‘Magnificent Milestones and Emerging Opportunities in Medical Engineering’ (Cat. No.97CH36136), Chicago, IL, USA, 30 October–2 November 1997; Volume 1, pp. 344–347. [Google Scholar] [CrossRef]
- Velipasaoglu, E.; Sun, H.; Zhang, F.; Berrier, K.; Khoury, D. Spatial regularization of the electrocardiographic inverse problem and its application to endocardial mapping. IEEE Trans. Biomed. Eng. 2000, 47, 327–337. [Google Scholar] [CrossRef]
- Shou, G.; Xia, L.; Jiang, M.; Wei, Q.; Liu, F.; Crozier, S. Truncated Total Least Squares: A New Regularization Method for the Solution of ECG Inverse Problems. IEEE Trans. Biomed. Eng. 2008, 55, 1327–1335. [Google Scholar] [CrossRef]
- Potyagaylo, D.; Schulze, W.H.W.; Doessel, O. A new method for choosing the regularization parameter in the transmembrane potential based inverse problem of ECG. In Proceedings of the 2012 Computing in Cardiology, Krakow, Poland, 9–12 September 2012; pp. 29–32. [Google Scholar]
- Ding, B.; Chen, R.; Wu, J. Multiscale-Wavelet Regularization Method for the Inverse Problem of Electrocardiography. In Proceedings of the 2019 International Conference on Medical Imaging Physics and Engineering (ICMIPE), Shenzhen, China, 22–24 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Kupriyanova, Y.A.; Zhikhareva, G.V.; Mishenina, T.B.; Bobrovskaya, A.I.; Andreev, I.V. Selection of the Regularization Coefficient in Solving the Inverse Problem of Electrocardiography by High-Frequency Low Amplitude Components of ECG Signals. In Proceedings of the 2022 International Conference on Information, Control, and Communication Technologies (ICCT), Astrakhan, Russia, 3–7 October 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Bouhamama, O.; Potse, M.; Bear, L.; Weynans, L. A Patchwork Method to Improve the Performance of Current Methods for Solving the Inverse Problem of Electrocardiography. IEEE Trans. Biomed. Eng. 2023, 70, 55–66. [Google Scholar] [CrossRef]
- Cluitmans, M.; Karel, J.; Bonizzi, P.; Volders, P.; Westra, R.; Peeters, R. Wavelet-promoted sparsity for non-invasive reconstruction of electrical activity of the heart. Med. Biol. Eng. Comput. 2018, 56, 2039–2050. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Malik, A.; Bear, L.R.; Trew, M.L. Impulse Data Models for the Inverse Problem of Electrocardiography. IEEE J. Biomed. Health Inform. 2022, 26, 1353–1361. [Google Scholar] [CrossRef] [PubMed]
- Malmivuo, J. Application of the principle of reciprocity to impedance tomography and other problems in bioelectromagnetism. In Proceedings of the 2010 12th Biennial Baltic Electronics Conference, Tallinn, Estonia, 4–6 October 2010; pp. 61–64. [Google Scholar] [CrossRef]
- Malmivuo, J. The principle of reciprocity is a powerful tool in developing and comparing the properties of bioelectric and biomagnetic measurements in detecting the electric activity of the brain and the heart. In Proceedings of the XXV Brazilian Congress on Biomedical Engineering—CBEB, Foz do Iguaçu, Brazil, 2016. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Jorgenson, D.; Haynor, D.; Bardy, G.; Kim, Y. Computational studies of transthoracic and transvenous defibrillation in a detailed 3-D human thorax model. IEEE Trans. Biomed. Eng. 1995, 42, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C.; Gabriel, S. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. Internet Document. Available online: http://safeemf.iroe.fi.cnr.it (accessed on 28 August 2023).
- Hasgall, P.A.; Neufeld, E.; Gosselin, M.C.; Klingenböck, A.; Kuster, N.; Kuster, N.; Hasgall, P.; Gosselin, M. ITIS Database for thermal and electromagnetic parameters of biological tissues. 2022. Available online: https://itis.swiss/virtual-population/tissue-properties/overview/ (accessed on 28 August 2023).
- Xanthis, C.; Bonovas, P.; Kyriacou, G. Inverse Problem of ECG for Different Equivalent Cardiac Sources. Piers Online 2007, 3, 1222–1227. [Google Scholar] [CrossRef]
- Bonovas, P.; Kyriacou, G.; Sahalos, J. A realistic 3-D FEM human torso model for electrocardiography applications. In Proceedings of the Second International Symposium of Trans Black Sea Region on Applied Electromagnetism (Cat. No.00TH8519), Xanthi, Greece, 29 June 2000; p. 33. [Google Scholar] [CrossRef]
- Eycleshymer, A.C.; Shoemaker, D.M. A Cross-Section Anatomy; Appleton Century Crofts: New York, NY, USA; London, UK, 1911. [Google Scholar]
- Schelkunoff, S.A. Some equivalence theorems of electromagnetics and their application to radiation problems. Bell Syst. Tech. J. 1936, 15, 92–112. [Google Scholar] [CrossRef]
- Collin, R.; Zucker, F. Antenna Theory, Part 1; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
- Popovic, B. Electromagnetic field theorems. IEE Proc. 1981, 128, 47–63. [Google Scholar] [CrossRef]
- Wieners, C. Conforming Discretizations on Tetrahedrons, Pyramids, Prism and Hexahedrons. 1997. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=31cb1d713a2c51e981ef9275f68cf9d79f655c51 (accessed on 28 August 2023).
- Aitidis, I. Inverse Electromagnetic Problem Based on Eigenfunctions’ Expansion: Biomedical Applications. Master’s Thesis, Democritus University of Thrace, Xanthi, Greece, 2014. [Google Scholar]
- University of Utah. Available online: http://www.sci.utah.edu/~macleod/bioen/be6000/labnotes/ecg/data/ (accessed on 28 August 2023).
- The MathWorks Inc. Natick, Massachusetts, United States, MATLAB Version: 9.13.0 (R2022b). 2022. Available online: https://www.mathworks.com (accessed on 28 August 2023).
- Theodosiadou, G.; Aitidis, I.; Terzoudi, A.; Piperidou, H.; Kyriacou, G. Discrimination of ischemic and hemorrhagic acute strokes based on equivalent brain dipole estimated by inverse EEG. Biomed. Phys. Eng. Express 2017, 3, 014001. [Google Scholar] [CrossRef]
- Malmivuo, J.; Plonsey, R. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields; Oxford University Press: Oxford, MS, USA, 1995; Available online: https://www.researchgate.net/publication/281555513_Bioelectromagnetism_-_Principles_and_Applications_of_Bioelectric_and_Biomagnetic_Fields_-_The_Internet_version (accessed on 28 August 2023).
- Burnes, J.E.; Taccardi, B.; Ershler, P.R.; Rudy, Y. Noninvasive electrocardiogram imaging of substrate and intramural ventricular tachycardia in infarcted hearts. J. Am. Coll. Cardiol. 2001, 38, 2071–2078. [Google Scholar] [CrossRef]
- Cluitmans, M.J.M.; Peeters, R.L.M.; Westra, R.L.; Volders, P.G.A. Noninvasive reconstruction of cardiac electrical activity: Update on current methods, applications and challenges. Neth. Heart J. 2015, 23, 301–311. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodosiadou, G.; Arnaoutoglou, D.G.; Nannis, I.; Katsimentes, S.; Sirakoulis, G.C.; Kyriacou, G.A. Direct Estimation of Equivalent Bioelectric Sources Based on Huygens’ Principle. Bioengineering 2023, 10, 1063. https://doi.org/10.3390/bioengineering10091063
Theodosiadou G, Arnaoutoglou DG, Nannis I, Katsimentes S, Sirakoulis GC, Kyriacou GA. Direct Estimation of Equivalent Bioelectric Sources Based on Huygens’ Principle. Bioengineering. 2023; 10(9):1063. https://doi.org/10.3390/bioengineering10091063
Chicago/Turabian StyleTheodosiadou, Georgia, Dimitrios G. Arnaoutoglou, Ioannis Nannis, Sotirios Katsimentes, Georgios Ch. Sirakoulis, and George A. Kyriacou. 2023. "Direct Estimation of Equivalent Bioelectric Sources Based on Huygens’ Principle" Bioengineering 10, no. 9: 1063. https://doi.org/10.3390/bioengineering10091063
APA StyleTheodosiadou, G., Arnaoutoglou, D. G., Nannis, I., Katsimentes, S., Sirakoulis, G. C., & Kyriacou, G. A. (2023). Direct Estimation of Equivalent Bioelectric Sources Based on Huygens’ Principle. Bioengineering, 10(9), 1063. https://doi.org/10.3390/bioengineering10091063