Effects of tDCS on Foot Biomechanics: A Narrative Review and Clinical Applications
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Eligibility Criteria and Article Selection
3. Discussion
3.1. Effects of Conventional Functional Training on Foot Biomechanical Characteristics
3.2. Effects of tDCS on Foot Biomechanical Characteristics
3.3. Clinical Applications of tDCS in Foot Biomechanics
3.4. Possible Mechanisms of Foot Biomechanical Responses Induced by tDCS
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hillstrom, H.J.; Song, J.; Kraszewski, A.P.; Hafer, J.F.; Mootanah, R.; Dufour, A.B.; Chow, B.S.; Deland, J.T., 3rd. Foot type biomechanics part 1: Structure and function of the asymptomatic foot. Gait Posture 2013, 37, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Holowka, N.B.; Lieberman, D.E. Rethinking the evolution of the human foot: Insights from experimental research. J. Exp. Biol. 2018, 221, jeb174425. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Tsujimoto, T.; Kim, B.; Katayama, Y.; Tanaka, K. Association of Foot Structure with the Strength of Muscles that Move the Ankle and Physical Performance. J. Foot Ankle Surg. Off. Publ. Am. Coll. Foot Ankle Surg. 2018, 57, 1143–1147. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Yin, A.; Hunt, K.J. Foot and Ankle Injuries in Runners. Phys. Med. Rehabil. Clin. N. Am. 2016, 27, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Belatti, D.A.; Phisitkul, P. Economic burden of foot and ankle surgery in the US Medicare population. Foot Ankle Int. 2014, 35, 334–340. [Google Scholar] [CrossRef] [PubMed]
- van der Worp, M.P.; ten Haaf, D.S.; van Cingel, R.; de Wijer, A.; Nijhuis-van der Sanden, M.W.; Staal, J.B. Injuries in runners; a systematic review on risk factors and sex differences. PLoS ONE 2015, 10, e0114937. [Google Scholar] [CrossRef]
- McKeon, P.O.; Hertel, J.; Bramble, D.; Davis, I. The foot core system: A new paradigm for understanding intrinsic foot muscle function. Br. J. Sports Med. 2015, 49, 290. [Google Scholar] [CrossRef]
- Borich, M.R.; Brodie, S.M.; Gray, W.A.; Ionta, S.; Boyd, L.A. Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation. Neuropsychologia 2015, 79, 246–255. [Google Scholar] [CrossRef]
- Gilbert, C.D.; Sigman, M. Brain states: Top-down influences in sensory processing. Neuron 2007, 54, 677–696. [Google Scholar] [CrossRef]
- Murphy, A.C.; Muldoon, S.F.; Baker, D.; Lastowka, A.; Bennett, B.; Yang, M.; Bassett, D.S. Structure, function, and control of the human musculoskeletal network. PLoS Biol. 2018, 16, e2002811. [Google Scholar] [CrossRef]
- Needle, A.R.; Lepley, A.S.; Grooms, D.R. Central nervous system adaptation after ligamentous injury: A summary of theories, evidence, and clinical interpretation. Sports Med. 2017, 47, 1271–1288. [Google Scholar] [CrossRef]
- Patti, A.; Bianco, A.; Messina, G.; Iovane, A.; Alesi, M.; Pepi, A.; Palma, A. Evaluation of podalic support and monitoring of balance control in children with and without dyslexia: A pilot study. Sustainability 2020, 12, 1191. [Google Scholar] [CrossRef]
- Bourzac, K. Neurostimulation: Bright sparks. Nature 2016, 531, S6–S8. [Google Scholar] [CrossRef]
- Hornyak, T. Smarter, not harder. Nature 2017, 549, S1–S3. [Google Scholar] [CrossRef]
- Bruce, A.S.; Howard, J.S.; Van Werkhoven, H.; McBride, J.M.; Needle, A.R. The effects of transcranial direct current stimulation on chronic ankle instability. Med. Sci. Sports Exerc. 2020, 52, 335–344. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, K.; Zhuang, W.; Zhang, C.; Jiang, Y.; Huang, J.; Manor, B.; Zhou, J.; Liu, Y. Effects of Combining High-Definition Transcranial Direct Current Stimulation with Short-Foot Exercise on Chronic Ankle Instability: A Pilot Randomized and Double-Blinded Study. Brain Sci. 2020, 10, 749. [Google Scholar] [CrossRef]
- Zhou, J.; Lo, O.Y.; Lipsitz, L.A.; Zhang, J.; Fang, J.; Manor, B. Transcranial direct current stimulation enhances foot sole somatosensation when standing in older adults. Exp. Brain Res. 2018, 236, 795–802. [Google Scholar] [CrossRef]
- Yamamoto, S.; Ishii, D.; Ichiba, N.; Yozu, A.; Kohno, Y. Cathodal tDCS on the motor area decreases the tactile threshold of the distal pulp of the hallux. Neurosci. Lett. 2020, 719, 133887. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, B.; Zhang, X.; Zhou, J.; Fu, W. Acute Effects of High-Definition Transcranial Direct Current Stimulation on Foot Muscle Strength, Passive Ankle Kinesthesia, and Static Balance: A Pilot Study. Brain Sci. 2020, 10, 246. [Google Scholar] [CrossRef]
- Lerma-Lara, S.; De Cherade Montbron, M.; Guérin, M.; Cuenca-Martínez, F.; La Touche, R. Transcranial direct-current stimulation (tDCS) in the primary motor cortex and its effects on sensorimotor function: A quasi-experimental single-blind sham-controlled trial. Sci. Rep. 2021, 11, 6566. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, B.; Yu, C.; Shen, B.; Zhang, X.; Ye, D.; Deng, L.; Xu, Y.; Zhou, J.; Fu, W. Effects of intervention combining transcranial direct current stimulation and foot core exercise on sensorimotor function in foot and static balance. J. Neuroeng. Rehabil. 2022, 19, 98. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, B.; Zhang, X.; Zhou, J.; Fu, W. Effects of 4 Weeks of High-Definition Transcranial Direct Stimulation and Foot Core Exercise on Foot Sensorimotor Function and Postural Control. Front. Bioeng. Biotechnol. 2022, 10, 894131. [Google Scholar] [CrossRef]
- Xiao, S.; Shen, B.; Zhang, C.; Zhang, X.; Yang, S.; Zhou, J.; Fu, W. Anodal transcranial direct current stimulation enhances ankle force control and modulates the beta-band activity of the sensorimotor cortex. Cereb. Cortex 2023, 33, 7670–7677. [Google Scholar] [CrossRef]
- Tanaka, S.; Hanakawa, T.; Honda, M.; Watanabe, K. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp. Brain Res. 2009, 196, 459–465. [Google Scholar] [CrossRef]
- Devanathan, D.; Madhavan, S. Effects of anodal tDCS of the lower limb M1 on ankle reaction time in young adults. Exp. Brain Res. 2016, 234, 377–385. [Google Scholar] [CrossRef]
- Mizuno, T.; Aramaki, Y. Cathodal transcranial direct current stimulation over the Cz increases joint flexibility. Neurosci. Res. 2017, 114, 55–61. [Google Scholar] [CrossRef]
- Shah, B.; Nguyen, T.T.; Madhavan, S. Polarity independent effects of cerebellar tDCS on short term ankle visuomotor learning. Brain Stimul. 2013, 6, 966–968. [Google Scholar] [CrossRef]
- Sriraman, A.; Oishi, T.; Madhavan, S. Timing-dependent priming effects of tDCS on ankle motor skill learning. Brain Res. 2014, 1581, 23–29. [Google Scholar] [CrossRef]
- Zhiqiang, Z.; Wei, W.; Yunqi, T.; Yu, L. Effects of Bilateral Extracephalic Transcranial Direct Current Stimulation on Lower Limb Kinetics in Countermovement Jumps. Int. J. Environ. Res. Public Health 2023, 20, 2241. [Google Scholar] [CrossRef]
- Concerto, C.; Al Sawah, M.; Chusid, E.; Trepal, M.; Taylor, G.; Aguglia, E.; Battaglia, F. Anodal transcranial direct current stimulation for chronic pain in the elderly: A pilot study. Aging Clin. Exp. Res. 2016, 28, 231–237. [Google Scholar] [CrossRef]
- Hashimoto, T.; Sakuraba, K. Strength training for the intrinsic flexor muscles of the foot: Effects on muscle strength, the foot arch, and dynamic parameters before and after the training. J. Phys. Ther. Sci. 2014, 26, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Ueyasu, Y.; Yamashita, Y.; Akagi, R. Effects of 4 Weeks of Explosive-type Strength Training for the Plantar Flexors on the Rate of Torque Development and Postural Stability in Elderly Individuals. Int. J. Sports Med. 2016, 37, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Lynn, S.K.; Padilla, R.A.; Tsang, K.K. Differences in static- and dynamic-balance task performance after 4 weeks of intrinsic-foot-muscle training: The short-foot exercise versus the towel-curl exercise. J. Sport Rehabil. 2012, 21, 327–333. [Google Scholar] [CrossRef]
- Mulligan, E.P.; Cook, P.G. Effect of plantar intrinsic muscle training on medial longitudinal arch morphology and dynamic function. Man. Ther. 2013, 18, 425–430. [Google Scholar] [CrossRef]
- Taddei, U.T.; Matias, A.B.; Ribeiro, F.I.A.; Inoue, R.S.; Bus, S.A.; Sacco, I.C.N. Effects of a therapeutic foot exercise program on injury incidence, foot functionality and biomechanics in long-distance runners: Feasibility study for a randomized controlled trial. Phys. Ther. Sport Off. J. Assoc. Chart. Physiother. Sports Med. 2018, 34, 216–226. [Google Scholar] [CrossRef]
- Ebrecht, F.; Sichting, F. Does neuromuscular electrostimulation have the potential to increase intrinsic foot muscle strength? Foot 2018, 35, 56–62. [Google Scholar] [CrossRef]
- Fraser, J.J.; Hertel, J. Effects of a 4-Week Intrinsic Foot Muscle Exercise Program on Motor Function: A Preliminary Randomized Control Trial. J. Sport Rehabil. 2018, 28, 339–349. [Google Scholar] [CrossRef]
- Miller, E.E.; Whitcome, K.K.; Lieberman, D.E.; Norton, H.L.; Dyer, R.E. The effect of minimal shoes on arch structure and intrinsic foot muscle strength. J. Sport Health Sci. 2014, 3, 74–85. [Google Scholar] [CrossRef]
- Johnson, A.W.; Myrer, J.W.; Mitchell, U.H.; Hunter, I.; Ridge, S.T. The Effects of a Transition to Minimalist Shoe Running on Intrinsic Foot Muscle Size. Int. J. Sports Med. 2016, 37, 154–158. [Google Scholar] [CrossRef]
- Chen, T.L.; Sze, L.K.; Davis, I.S.; Cheung, R.T. Effects of training in minimalist shoes on the intrinsic and extrinsic foot muscle volume. Clin. Biomech. 2016, 36, 8–13. [Google Scholar] [CrossRef]
- Sukkeaw, W.; Kritpet, T.; Bunyaratavej, N. A Comparison between the Effects of Aerobic Dance Training on Mini-Trampoline and Hard Wooden Surface on Bone Resorption, Health-Related Physical Fitness, Balance, and Foot Plantar Pressure in Thai Working Women. J. Med. Assoc. Thai. 2015, 98, S58–S64. [Google Scholar] [PubMed]
- Ozdinc, S.A.; Turan, F.N. Effects of ballet training of children in Turkey on foot anthropometric measurements and medial longitudinal arc development. JPMA. J. Pak. Med. Assoc. 2016, 66, 869–874. [Google Scholar]
- Aydog, S.T.; Ozcakar, L.; Tetik, O.; Demirel, H.A.; Hascelik, Z.; Doral, M.N. Relation between foot arch index and ankle strength in elite gymnasts: A preliminary study. Br. J. Sports Med. 2005, 39, e13. [Google Scholar] [CrossRef] [PubMed]
- Ridge, S.T.; Olsen, M.T.; Bruening, D.A.; Jurgensmeier, K.; Griffin, D.; Davis, I.S.; Johnson, A.W. Walking in Minimalist Shoes Is Effective for Strengthening Foot Muscles. Med. Sci. Sports Exerc. 2019, 51, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527 Pt 3, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016, 9, 641–661. [Google Scholar] [CrossRef]
- Machado, D.; Unal, G.; Andrade, S.M.; Moreira, A.; Altimari, L.R.; Brunoni, A.R.; Perrey, S.; Mauger, A.R.; Bikson, M.; Okano, A.H. Effect of transcranial direct current stimulation on exercise performance: A systematic review and meta-analysis. Brain Stimul. 2019, 12, 593–605. [Google Scholar] [CrossRef]
- Angius, L.; Pascual-Leone, A.; Santarnecchi, E. Brain stimulation and physical performance. Prog. Brain Res. 2018, 240, 317–339. [Google Scholar] [CrossRef]
- Wang, B.; Xiao, S.; Yu, C.; Zhou, J.; Fu, W. Effects of Transcranial Direct Current Stimulation Combined with Physical Training on the Excitability of the Motor Cortex, Physical Performance, and Motor Learning: A Systematic Review. Front. Neurosci. 2021, 15, 648354. [Google Scholar] [CrossRef]
- Spedden, M.E.; Beck, M.M.; Christensen, M.S.; Dietz, M.J.; Karabanov, A.N.; Geertsen, S.S.; Nielsen, J.B.; Lundbye-Jensen, J. Directed connectivity between primary and premotor areas underlying ankle force control in young and older adults. NeuroImage 2020, 218, 116982. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Sasaki, A.; Masugi, Y.; Milosevic, M.; Nakazawa, K. Changes in corticospinal excitability during bilateral and unilateral lower-limb force control tasks. Exp. Brain Res. 2020, 238, 1977–1987. [Google Scholar] [CrossRef] [PubMed]
- Wikstrom, E.A.; Hubbard-Turner, T.; McKeon, P.O. Understanding and treating lateral ankle sprains and their consequences: A constraints-based approach. Sports Med. 2013, 43, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.E.P.; Alawdah, L.; Alhassan, H.A.A.; Guidetti, M.; Priori, A.; Papatheodorou, S.; Fregni, F. The analgesic effect of transcranial direct current stimulation (tdcs) combined with physical therapy on common musculoskeletal conditions: A systematic review and meta-analysis. Princ. Pract. Clin. Res. 2020, 6, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Mohomad, A.S.; Mohammad, R.; Chusid, E.; Trepal, M.; Battaglia, F. Severe chronic heel pain in a diabetic patient with plantar fasciitis successfully treated through transcranial direct current stimulation. J. Am. Podiatr. Med. Assoc. 2015, 105, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, W.; Wang, L.; Ye, Y.; Li, T. Transcranial direct current stimulation alleviates the chronic pain of osteoarthritis by modulating nmda receptors in midbrain periaqueductal gray in rats. J. Pain Res. 2022, 15, 203–214. [Google Scholar] [CrossRef]
- Ammann, C.; Spampinato, D.; Márquez-Ruiz, J. Modulating Motor Learning through Transcranial Direct-Current Stimulation: An Integrative View. Front. Psychol. 2016, 7, 1981. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef]
- Dutta, A. Simultaneous functional near-infrared spectroscopy (fNIRS) and electroencephalogram (EEG) to elucidate neurovascular modulation by transcranial electrical stimulation (tES). Brain Stimul. 2021, 14, 1093–1094. [Google Scholar] [CrossRef]
- Bahr-Hosseini, M.; Bikson, M. Neurovascular-modulation: A review of primary vascular responses to transcranial electrical stimulation as a mechanism of action. Brain Stimul. 2021, 14, 837–847. [Google Scholar] [CrossRef]
- Hassanzahraee, M.; Nitsche, M.A.; Zoghi, M.; Jaberzadeh, S. Determination of anodal tDCS intensity threshold for reversal of corticospinal excitability: An investigation for induction of counter-regulatory mechanisms. Sci. Rep. 2020, 10, 16108. [Google Scholar] [CrossRef]
- Sherwood, M.S.; Mcintire, L.; Madaris, A.T.; Kim, K.; Mckinley, R.A. Intensity-Dependent Changes in Quantified Resting Cerebral Perfusion with Multiple Sessions of Transcranial DC Stimulation. Front. Hum. Neurosci. 2021, 15, 679977. [Google Scholar] [CrossRef]
- Bindman, L.J.; Lippold, O.C.; Redfearn, J.W. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J. Physiol. 1964, 172, 369–382. [Google Scholar] [CrossRef]
- Dutta, A.; Krishnan, C.; Kantak, S.S.; Ranganathan, R.; Nitsche, M.A. Recurrence quantification analysis of surface electromyogram supports alterations in motor unit recruitment strategies by anodal transcranial direct current stimulation. Restor. Neurol. Neurosci. 2015, 33, 663–669. [Google Scholar] [CrossRef]
- Foerster, Á.; Dutta, A.; Kuo, M.F.; Paulus, W.; Nitsche, M.A. Effects of anodal transcranial direct current stimulation over lower limb primary motor cortex on motor learning in healthy individuals. Eur. J. Neurosci. 2018, 47, 779–789. [Google Scholar] [CrossRef]
- Jeffery, D.T.; Norton, J.A.; Roy, F.D.; Gorassini, M.A. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp. Brain Res. 2007, 182, 281–287. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, Y.; Zhou, J.; Fried, P.J.; Wang, X.; Zhang, J.; Fang, J.; Pascual-Leone, A.; Manor, B. Direct current stimulation over the human sensorimotor cortex modulates the brain’s hemodynamic response to tactile stimulation. Eur. J. Neurosci. 2015, 42, 1933–1940. [Google Scholar] [CrossRef]
- Schambra, H.M.; Sawaki, L.; Cohen, L.G. Modulation of excitability of human motor cortex (M1) by 1 Hz transcranial magnetic stimulation of the contralateral M1. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2003, 114, 130–133. [Google Scholar] [CrossRef]
- Abdelmoula, A.; Baudry, S.; Duchateau, J. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability. Neuroscience 2016, 322, 94–103. [Google Scholar] [CrossRef]
- Angius, L.; Pageaux, B.; Hopker, J.; Marcora, S.M.; Mauger, A.R. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience 2016, 339, 363–375. [Google Scholar] [CrossRef]
- Fertonani, A.; Miniussi, C. Transcranial electrical stimulation: What we know and do not know about mechanisms. Neurosci. A Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2017, 23, 109–123. [Google Scholar] [CrossRef]
Study | Participants, Gender, Age (Years) | Anodal/Cathodal Location | Electrode Size (cm2) | Current (mA) | Session, Duration (min) | Main Outcomes of Biomechanical Characteristics |
---|---|---|---|---|---|---|
Zhou, et al., 2018 [17] | Healthy, 20 M, 61 ± 4 | A: Left C3 R: Right supraorbital region | 35 | 2.0 | One session, 20 | ↓Standing vibratory threshold of foot sole |
Yamamoto, et al., 2020 [18] | Healthy, 10 M, 22–34 | C: Left C3 R: Right supraorbital region | 35 | 1.5 | One session, 10 | ↓Tactile threshold of distal pulp of the hallux |
Xiao, et al., 2020 [19] | Healthy, 14 M, 22.8 ± 1.2 | A: Cz R: C3, C4, Fz, Pz | 1 | 2.0 | One session, 20 | →Foot flexor strength →Ankle kinesthesia threshold |
Lerma-Lara, et al., 2021 [20] | Healthy, 53 M/54 F, tDCS (22 ± 2), control (23 ± 3) | A: M1 R: Supra-orbital region | 35 | 2.0 | One session, 20 | ↑Pressure pain threshold ↑Electromyographic activity in the lower limb |
Xiao, et al., 2022a [21] | Healthy, 30 M, tDCS (20.5 ± 1.8), control (21.3 ± 1.8) | A: Cz R: C3, C4, Fz, Pz | 3.14 | 2.0 | Twelve sessions, 20 | ↑Toe flexor strength ↓Ankle eversion kinesthesia threshold |
Xiao, et al., 2022b [22] | Healthy, 36 M, tDCS (21.9 ± 2.1), control (23.5 ± 1.5) | A: Cz R: C3, C4, Fz, Pz | 3.14 | 2.0 | Twelve sessions, 20 | ↑Metatarsophalangeal joint flexor strength ↓Ankle inversion and eversion kinesthesia thresholds |
Xiao, et al., 2023 [23] | Healthy, 8 M/8 F, 25.4 ± 1.8 | A: Cz R: C3, C4, Fz, Pz | 3.14 | 2.0 | One session, 20 | ↑Ankle plantarflexion force control |
Tanaka, et al., 2009 [24] | Healthy, 8 M/2 F, 20–35 | A and C: M1 (“hotspot” of the TA muscle) R: Right forehead | 35 | 2.0 | One session, 10 | ↑Toe pinch force |
Devanathan, et al., 2016 [25] | Healthy, 6 M/8 F 20–32 | A: M1 (“hotspot” of the TA muscle) R: Right supraorbital region | 12.5 | 1.0 | One session, 15 | ↓Ankle dorsiflexion choice reaction time |
Mizuno, et al., 2017 [26] | Healthy, 10 M, 25 ± 3 | A and C: Cz R: Center of the forehead | 35 | 2.0 | One session, 10 | ↑Ankle range of motion |
Shah, et al., 2013 [27] | Healthy, 5 M/3 F, 18–26 | A and C: M1 (‘hotspot’ of the TA muscle), left cerebellum R: Right supraorbital region, left buccinator muscle | 8 | 1.0 | One session, 15 | ↑Accuracy index of ankle tracking |
Sriraman, et al., 2014 [28] | Healthy, 4 M/8 F, 20–32 | A: M1 (“hotspot” of the TA muscle) R: Right supraorbital region | 8 | 1.0 | One session, 15 | ↑Accuracy index of ankle tracking |
Zhu, et al., 2023 [29] | Healthy, 15 M, 19.47 ± 1.6 | A: C3, C4 R: Ipsilateral shoulders | 35 | 2.0 | Two sessions, 20 | ↑Jump height ↓Maximum ankle torque ↓Ankle positive energy and net energy decreased in the sham condition |
Bruce, et al., 2020 [15] | CAI, 9 M/17 F, 18–40 | A: M1 R: Right forehead | 15 | 1.5 | Ten sessions, 18 | ↑Dynamic balance and muscle activation ↑Functional performance on a side-hop test ↓Global ratings of perceived disablement |
Ma, et al., 2022 [16] | CAI, 15 M/15 F, 18–30 | A: Cz R: C3, C4, Fz, Pz | 3.14 | 2.0 | Twelve sessions, 20 | ↓Joint position senses absolute error at 15° inversion ↑Y-balance reach distance |
Concerto, et al., 2016 [30] | Plantar fasciitis, 4 M/6 F, 68.8 ± 3.3 | A: C1, C2 R: Supraorbital area contralateral to the stimulated area | 35 | 2.0 | Five consecutive sessions, 20 | ↓Pain intensity ↓Foot function index |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, S.; Shen, B.; Zhang, C.; Xu, Z.; Li, J.; Fu, W.; Jin, J. Effects of tDCS on Foot Biomechanics: A Narrative Review and Clinical Applications. Bioengineering 2023, 10, 1029. https://doi.org/10.3390/bioengineering10091029
Xiao S, Shen B, Zhang C, Xu Z, Li J, Fu W, Jin J. Effects of tDCS on Foot Biomechanics: A Narrative Review and Clinical Applications. Bioengineering. 2023; 10(9):1029. https://doi.org/10.3390/bioengineering10091029
Chicago/Turabian StyleXiao, Songlin, Bin Shen, Chuyi Zhang, Zhen Xu, Jingjing Li, Weijie Fu, and Jing Jin. 2023. "Effects of tDCS on Foot Biomechanics: A Narrative Review and Clinical Applications" Bioengineering 10, no. 9: 1029. https://doi.org/10.3390/bioengineering10091029
APA StyleXiao, S., Shen, B., Zhang, C., Xu, Z., Li, J., Fu, W., & Jin, J. (2023). Effects of tDCS on Foot Biomechanics: A Narrative Review and Clinical Applications. Bioengineering, 10(9), 1029. https://doi.org/10.3390/bioengineering10091029