Microbial Fuel Cell-Based Organic Matter Sensors: Principles, Structures and Applications
Abstract
:1. Introduction
2. Working Principles of MFC Sensors
3. MFC-BOD Sensor Construction Type
3.1. Dual-Chamber MFC Sensor
3.2. Single-Chamber MFC Sensor
3.3. MEC Sensor
3.4. Multi-Stage MFC Sensor
3.5. Miniaturized MFC Sensor
3.6. Submersible MFC Sensor
3.7. Coupled MFC Sensor
3.8. Comprehensive Evaluation of MFC Sensor
4. Performance Parameters and Optimization Strategies
4.1. Environmental Parameters
4.2. Diffusion of Oxygen and Electron Acceptors
4.3. Microbial Inoculation
4.4. Response Time
4.5. Electrode Materials
4.6. Substrate Effects
5. Challenges and Perspective
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jouanneau, S.; Recoules, L.; Durand, M.J.; Boukabache, A.; Picot, V.; Primault, Y.; Lakel, A.; Sengelin, M.; Barillon, B.; Thouand, G. Methods for assessing biochemical oxygen demand (BOD): A review. Water Res. 2014, 49, 62–82. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, N.; Sankaran, S.; Al Hosni, T.K.; Rao, V.G. Surface water characteristics in the vicinity of lakes and drainage network. Environ. Earth Sci. 2015, 74, 6077–6096. [Google Scholar] [CrossRef]
- Chapra, S.C.; Camacho, L.A.; McBride, G.B. Impact of Global Warming on Dissolved Oxygen and BOD Assimilative Capacity of the World’s Rivers: Modeling Analysis. Water 2021, 13, 2408. [Google Scholar] [CrossRef]
- Memon, A.G.; Mustafa, A.; Raheem, A.; Ahmad, J.; Giwa, A.S. Impact of effluent discharge on recreational beach water quality: A case study of Karachi-Pakistan. J. Coast. Conserv. 2021, 25, 37. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, X.; Liang, P.; Liu, P.; Huang, X. Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges. Renew. Sustain. Energy Rev. 2018, 81, 292–305. [Google Scholar] [CrossRef]
- Perumal, V.; Hashim, U. Advances in biosensors: Principle, architecture and applications. J. Appl. Biomed. 2014, 12, 1–15. [Google Scholar] [CrossRef]
- Kim, J.; Park, M. Recent Progress in Electrochemical Immunosensors. Biosensors 2021, 11, 360. [Google Scholar] [CrossRef]
- Chao, J.; Zhu, D.; Zhang, Y.N.; Wang, L.H.; Fan, C.H. DNA nanotechnology-enabled biosensors. Biosens. Bioelectron. 2016, 76, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Liu, T.; Chu, Z.Y.; Jin, W.Q. Recent advances in electrochemical enzymatic biosensors based on regular nanostructured materials. J. Electroanal. Chem. 2021, 893, 115328. [Google Scholar] [CrossRef]
- Gupta, N.; Renugopalakrishnan, V.; Liepmann, D.; Paulmurugan, R.; Malhotra, B.D. Cell-based biosensors: Recent trends, challenges and future perspectives. Biosens. Bioelectron. 2019, 141, 111435. [Google Scholar] [CrossRef]
- Bosi, S.; Ballerini, L.; Prato, M. Carbon Nanotubes in Tissue Engineering. In Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes; Marcaccio, M., Paolucci, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 348, pp. 181–204. [Google Scholar]
- Wang, X.; Lu, X.; Chen, J. Development of biosensor technologies for analysis of environmental contaminants. Trends Environ. Anal. Chem. 2014, 2, 25–32. [Google Scholar] [CrossRef]
- Liu, J.; Yin, L.F.; Dai, Y.R.; Jiang, F.; Niu, J.F. Application of Electrochemical Enzyme Biosensor in Environmental Pollution Monitoring. Prog. Chem. 2012, 24, 131–143. [Google Scholar]
- Arlyapov, V.A.; Plekhanova, Y.V.; Kamanina, O.A.; Nakamura, H.; Reshetilov, A.N. Microbial Biosensors for Rapid Determination of Biochemical Oxygen Demand: Approaches, Tendencies and Development Prospects. Biosensors 2022, 12, 842. [Google Scholar] [CrossRef]
- Karube, I.; Matsunaga, T.; Mitsuda, S.; Suzuki, S. Microbial Electrode BOD Sensors (Reprinted from Biotechnology and bioengineering, vol XIX, pg 1535–1547, 1977). Biotechnol. Bioeng. 2009, 102, 660–672. [Google Scholar] [PubMed]
- Yamane, T.; Yoshida, N.; Sugioka, M. Estimation of total energy requirement for sewage treatment by a microbial fuel cell with a one-meter air-cathode assuming Michaelis-Menten COD degradation. Rsc Adv. 2021, 11, 20036–20045. [Google Scholar] [CrossRef]
- Shabani, F.; Philamore, H.; Matsuno, F. An Energy-Autonomous Chemical Oxygen Demand Sensor Using a Microbial Fuel Cell and Embedded Machine Learning. IEEE Access 2021, 9, 108689–108701. [Google Scholar] [CrossRef]
- Ma, Y.; Deng, D.; Zhan, Y.; Cao, L.; Liu, Y. A systematic study on self-powered microbial fuel cell based BOD biosensors running under different temperatures. Biochem. Eng. J. 2022, 180, 108372. [Google Scholar] [CrossRef]
- Sonawane, J.M.; Ezugwu, C.I.; Ghosh, P.C. Microbial Fuel Cell-Based Biological Oxygen Demand Sensors for Monitoring Wastewater: State-of-the-Art and Practical Applications. ACS Sens. 2020, 5, 2297–2316. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Su, M.; Li, D. Removal of Sulfide and Production of Methane from Carbon Dioxide in Microbial Fuel Cells–Microbial Electrolysis Cell (MFCs–MEC) Coupled System. Appl. Biochem. Biotechnol. 2014, 172, 2720–2731. [Google Scholar] [CrossRef]
- Chouler, J.; Di Lorenzo, M. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer? Biosensors 2015, 5, 450–470. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Jia, W.; Hou, C.; Lei, Y. Microbial biosensors: A review. Biosens. Bioelectron. 2011, 26, 1788–1799. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.Y.; Wang, S.; Jin, X.J.; Yang, J.X.; Liu, H. Role played by the physical structure of carbon anode materials in MFC biosensor for BOD measurement. Sci. Total Environ. 2023, 856, 158848. [Google Scholar] [CrossRef]
- Liu, Y.; Tuo, A.-X.; Jin, X.-J.; Li, X.-Z.; Liu, H. Quantifying biodegradable organic matter in polluted water on the basis of coulombic yield. Talanta 2018, 176, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.D.; Sanroman, M.D.; Marks, S.; Makinia, J.; del Campo, A.G.; Rodrigo, M.; Fernandez, F.J. A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells. Bioresour. Technol. 2016, 200, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Do, M.H.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Deng, L.; Chen, Z.; Nguyen, T.V. Performance of mediator-less double chamber microbial fuel cell-based biosensor for measuring biological chemical oxygen. J. Environ. Manag. 2020, 276, 111279. [Google Scholar] [CrossRef] [PubMed]
- Logrono, W.; Guambo, A.; Perez, M.; Kadier, A.; Recalde, C. A Terrestrial Single Chamber Microbial Fuel Cell-based Biosensor for Biochemical Oxygen Demand of Synthetic Rice Washed Wastewater. Sensors 2016, 16, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tardy, G.M.; Lorant, B.; Gyalai-Korpos, M.; Bakos, V.; Simpson, D.; Goryanin, I. Microbial fuel cell biosensor for the determination of biochemical oxygen demand of wastewater samples containing readily and slowly biodegradable organics. Biotechnol. Lett. 2021, 43, 445–454. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Yin, F.J.; Ma, W.Q.; Wang, S.; Liu, Y.; Liu, H. Rapid detection of biodegradable organic matter in polluted water with microbial fuel cell sensor: Method of partial coulombic yield. Bioelectrochemistry 2020, 133, 107488. [Google Scholar] [CrossRef]
- Ayyaru, S.; Dharmalingam, S. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor. Anal. Chim. Acta 2014, 818, 15–22. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.H.; Wang, M.Y.; Zhang, P.P.; Zong, Y.P.; Zhang, Q.F. A single-chamber microbial fuel cell for rapid determination of biochemical oxygen demand using low-cost activated carbon as cathode catalyst. Environ. Technol. 2018, 39, 3228–3237. [Google Scholar] [CrossRef]
- Alferov, S.V.; Arlyapov, V.A.; Alferov, V.A.; Reshetilov, A.N. Biofuel Cell Based on Bacteria of the Genus Gluconobacter as a Sensor for Express Analysis of Biochemical Oxygen Demand. Appl. Biochem. Microbiol. 2018, 54, 689–694. [Google Scholar] [CrossRef]
- Hsieh, M.C.; Chung, Y.C. Measurement of biochemical oxygen demand from different wastewater samples using a mediator-less microbial fuel cell biosensor. Environ. Technol. 2014, 35, 2204–2211. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Curtis, T.P.; Head, I.M.; Scott, K. A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res. 2009, 43, 3145–3154. [Google Scholar] [CrossRef] [PubMed]
- Modin, O.; Wilén, B.-M. A novel bioelectrochemical BOD sensor operating with voltage input. Water Res. 2012, 46, 6113–6120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.Y.; Liao, C.M.; Zhong, Z.H.; Liu, S.Y.; Li, M.; Wang, X. Design, optimization and application of a highly sensitive microbial electrolytic cell-based BOD biosensor. Environ. Res. 2023, 216, 114533. [Google Scholar] [CrossRef]
- Adekunle, A.; Raghavan, V.; Tartakovsky, B. A comparison of microbial fuel cell and microbial electrolysis cell biosensors for real-time environmental monitoring. Bioelectrochemistry 2019, 126, 105–112. [Google Scholar] [CrossRef]
- Yuan, P.Y.; Kim, Y. Accurate and rapid organic detection by eliminating hysteresis in bioanode sensor applications. Environ. Sci. Water Res. Technol. 2017, 3, 905–910. [Google Scholar] [CrossRef]
- Pasternak, G.; Greenman, J.; Ieropoulos, I. Self-powered, autonomous Biological Oxygen Demand biosensor for online water quality monitoring. Sens. Actuators B Chem. 2017, 244, 815–822. [Google Scholar] [CrossRef]
- Spurr, M.W.A.; Yu, E.H.; Scott, K.; Head, I.M. Extending the dynamic range of biochemical oxygen demand sensing with multi-stage microbial fuel cells. Environ. Sci. Water Res. Technol. 2018, 4, 2029–2040. [Google Scholar] [CrossRef] [Green Version]
- Spurr, M.W.A.; Yu, E.H.; Scott, K.; Head, I.M. A microbial fuel cell sensor for unambiguous measurement of organic loading and definitive identification of toxic influents. Environ. Sci. Water Res. Technol. 2020, 6, 612–621. [Google Scholar] [CrossRef]
- Chouler, J.; Bentley, I.; Vaz, F.; O’Fee, A.; Cameron, P.J.; Di Lorenzo, M. Exploring the use of cost-effective membrane materials for Microbial Fuel Cell based sensors. Electrochim. Acta 2017, 231, 319–326. [Google Scholar] [CrossRef]
- Xiao, N.; Wu, R.; Huang, J.J.; Selvaganapathy, P.R. Development of a xurographically fabricated miniaturized low-cost, high-performance microbial fuel cell and its application for sensing biological oxygen demand. Sens. Actuators B Chem. 2020, 304, 127432. [Google Scholar] [CrossRef]
- Xiao, N.; Wu, R.; Huang, J.J.; Selvaganapathy, P.R. Anode surface modification regulates biofilm community population and the performance of micro-MFC based biochemical oxygen demand sensor. Chem. Eng. Sci. 2020, 221, 115691. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Thomson, A.R.; Schneider, K.; Cameron, P.J.; Ieropoulos, I. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens. Bioelectron. 2014, 62, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, N.; Selvaganapathy, P.R.; Wu, R.; Huang, J.J. Influence of wastewater microbial community on the performance of miniaturized microbial fuel cell biosensor. Bioresour. Technol. 2020, 302, 122777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Angelidaki, I. Submersible Microbial Fuel Cell Sensor for Monitoring Microbial Activity and BOD in Groundwater: Focusing on Impact of Anodic Biofilm on Sensor Applicability. Biotechnol. Bioeng. 2011, 108, 2339–2347. [Google Scholar] [CrossRef]
- Peixoto, L.; Min, B.; Martins, G.; Brito, A.G.; Kroff, P.; Parpot, P.; Angelidaki, I.; Nogueira, R. In situ microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry 2011, 81, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Corbella, C.; Hartl, M.; Fernandez-Gatell, M.; Puigagut, J. MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands. Sci. Total Environ. 2019, 660, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; Chen, Y.H.; Wu, J.M.; Chen, D.S.; Wu, Z.B.; Xiao, E.R. In situ COD monitoring with use of a hybrid of constructed wetland-microbial fuel cell. Water Res. 2022, 210, 117957. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, Y.; Fan, C.; Fan, Z.; Zhao, F. First study to explore the feasibility of applying microbial fuel cells into constructed wetlands for COD monitoring. Bioresour. Technol. 2017, 243, 846–854. [Google Scholar] [CrossRef]
- Jia, H.; Yang, G.; Wang, J.; Ngo, H.H.; Guo, W.; Zhang, H.; Zhang, X. Performance of a microbial fuel cell-based biosensor for online monitoring in an integrated system combining microbial fuel cell and upflow anaerobic sludge bed reactor. Bioresour. Technol. 2016, 218, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Tront, J.M.; Fortner, J.D.; Plötze, M.; Hughes, J.B.; Puzrin, A.M. Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens. Bioelectron. 2008, 24, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Permana, D.; Rosdianti, D.; Ishmayana, S.; Rachman, S.D.; Putra, H.E.; Rahayuningwulan, D.; Hariyadi, H.R. Preliminary Investigation of Electricity Production Using Dual Chamber Microbial Fuel Cell (DCMFC) with Saccharomyces Cerevisiae as Biocatalyst and Methylene Blue as an Electron Mediator; 3rd International Seminar on Chemistry; Elsevier Science Bv: Bandung, Indonesia, 2014; pp. 36–43. [Google Scholar]
- Penteado, E.D.; Fernandez-Marchante, C.M.; Zaiat, M.; Gonzalez, E.R.; Rodrigo, M. On the Effects of Ferricyanide as Cathodic Mediator on the Performance of Microbial Fuel Cells. Electrocatalysis 2017, 8, 59–66. [Google Scholar] [CrossRef]
- Rozendal, R.A.; Hamelers, H.V.M.; Buisman, C.J.N. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 2006, 40, 5206–5211. [Google Scholar] [CrossRef]
- Harnisch, F.; Schroder, U. Selectivity versus Mobility: Separation of Anode and Cathode in Microbial Bioelectrochemical Systems. Chemsuschem 2009, 2, 921–926. [Google Scholar] [CrossRef]
- Do, M.H.; Ngo, H.H.; Guo, W.S.; Chang, S.W.; Nguyen, D.D.; Liu, Y.W.; Varjani, S.; Kumar, M. Microbial fuel cell-based biosensor for online monitoring wastewater quality: A critical review. Sci. Total Environ. 2020, 712, 135612. [Google Scholar] [CrossRef] [PubMed]
- Mashkour, M.; Rahimnejad, M.; Mashkour, M.; Soavi, F. Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly. Appl. Energy 2021, 282, 116150. [Google Scholar] [CrossRef]
- Pham, T.H.; Jang, J.K.; Moon, H.S.; Chang, I.S.; Kim, B.H. Improved performance of microbial fuel cell using membrane-electrode assembly. J. Microbiol. Biotechnol. 2005, 15, 438–441. [Google Scholar]
- Kim, M.; Hyun, M.S.; Gadd, G.M.; Kim, G.T.; Lee, S.J.; Kim, H.J. Membrane-electrode assembly enhances performance of a microbial fuel cell type biological oxygen demand sensor. Environ. Technol. 2009, 30, 329–336. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, L.; Zularisam, A.W. Microbial Fuel Cells: Types and Applications. In Waste Biomass Management—A Holistic Approach; Singh, L., Kalia, V.C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 367–384. [Google Scholar]
- Jin, X.D.; Li, X.H.; Zhao, N.N.; Angelidaki, I.; Zhang, Y.F. Bio-electrolytic sensor for rapid monitoring of volatile fatty acids in anaerobic digestion process. Water Res. 2017, 111, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.H.; Chang, I.S.; Cheol Gil, G.; Park, H.S.; Kim, H.J. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 2003, 25, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Aelterman, P.; Rabaey, K.; Pham, H.T.; Boon, N.; Verstraete, W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 2006, 40, 3388–3394. [Google Scholar] [CrossRef] [PubMed]
- Godain, A.; Spurr, M.W.A.; Boghani, H.C.; Premier, G.C.; Yu, E.H.; Head, I.M. Detection of 4-Nitrophenol, a Model Toxic Compound, Using Multi-Stage Microbial Fuel Cells. Front. Environ. Sci. 2020, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.; Okabe, S. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. Appl. Microbiol. Biotechnol. 2009, 83, 965–977. [Google Scholar] [CrossRef]
- ElMekawy, A.; Hegab, H.M.; Dominguez-Benetton, X.; Pant, D. Internal resistance of microfluidic microbial fuel cell: Challenges and potential opportunities. Bioresour. Technol. 2013, 142, 672–682. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Bernarda, A.; Huang, C.-Y.; Lee, D.-J.; Chang, J.-S. Micro-sized microbial fuel cell: A mini-review. Bioresour. Technol. 2011, 102, 235–243. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Fox-Robichaud, A.E.; Selvaganapathy, P.R. Rapid and inexpensive method for fabrication of multi-material multi-layer microfluidic devices. J. Micromech. Microeng. 2019, 29, 015013. [Google Scholar] [CrossRef]
- Erable, B.; Byrne, N.; Etcheverry, L.; Achouak, W.; Bergel, A. Single medium microbial fuel cell: Stainless steel and graphite electrode materials select bacterial communities resulting in opposite electrocatalytic activities. Int. J. Hydrogen Energy 2017, 42, 26059–26067. [Google Scholar] [CrossRef] [Green Version]
- Min, B.; Angelidaki, I. Innovative microbial fuel cell for electricity production from anaerobic reactors. J. Power Sources 2008, 180, 641–647. [Google Scholar] [CrossRef]
- Xu, G.H.; Wang, Y.K.; Sheng, G.P.; Mu, Y.; Yu, H.Q. An MFC-Based Online Monitoring and Alert System for Activated Sludge Process. Sci. Rep. 2014, 4, 6779. [Google Scholar] [CrossRef] [Green Version]
- Oon, Y.-L.; Ong, S.-A.; Ho, L.-N.; Wong, Y.-S.; Dahalan, F.A.; Oon, Y.-S.; Lehl, H.K.; Thung, W.-E.; Nordin, N. Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresour. Technol. 2017, 224, 265–275. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, X.L.; Wang, W.; Luo, H.B.; Chen, W.; Ma, D.D.; Mo, Y.; Chen, J.; Li, L. Effects of plant location on methane emission, bioelectricity generation, pollutant removal and related biological processes in microbial fuel cell constructed wetland. J. Water Process Eng. 2021, 43, 102283. [Google Scholar] [CrossRef]
- Dai, M.X.; Zhang, Y.J.; Wu, Y.M.; Sun, R.P.; Zong, W.S.; Kong, Q. Mechanism involved in the treatment of sulfamethoxazole in wastewater using a constructed wetland microbial fuel cell system. J. Environ. Chem. Eng. 2021, 9, 106193. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Sivakumar, M.; McLauchlan, C.; Ansari, A.; Vishwanathan, A.S. A critical review of the symbiotic relationship between constructed wetland and microbial fuel cell for enhancing pollutant removal and energy generation. J. Environ. Chem. Eng. 2021, 9, 105011. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.H.; Yu, G.; Yao, Y.; Lin, H. Effects of flow pattern, Leersia hexandra, and circuit mode on the Cr(VI) removal capacity, electricity generation performance, and microbial community of constructed wetland-microbial fuel cells. Fuel 2023, 338, 127326. [Google Scholar] [CrossRef]
- Doherty, L.; Zhao, Y.; Zhao, X.; Hu, Y.; Hao, X.; Xu, L.; Liu, R. A review of a recently emerged technology: Constructed wetland—Microbial fuel cells. Water Res. 2015, 85, 38–45. [Google Scholar] [CrossRef]
- Xu, F.; Cao, F.-Q.; Kong, Q.; Zhou, L.-l.; Yuan, Q.; Zhu, Y.-j.; Wang, Q.; Du, Y.-d.; Wang, Z.-D. Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chem. Eng. J. 2018, 339, 479–486. [Google Scholar] [CrossRef]
- Xu, L.; Yu, W.; Graham, N.; Zhao, Y. Revisiting the bioelectrochemical system based biosensor for organic sensing and the prospect on constructed wetland-microbial fuel cell. Chemosphere 2021, 264, 128532. [Google Scholar] [CrossRef]
- Doherty, L.; Zhao, X.; Zhao, Y.; Wang, W. The effects of electrode spacing and flow direction on the performance of microbial fuel cell-constructed wetland. Ecol. Eng. 2015, 79, 8–14. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Gonzalez-Martinez, A.; Pozo, C.; Gonzalez-Lopez, J. Diversity of electroactive and non-electroactive microorganisms and their potential relationships in microbial electrochemical systems: A review. J. Water Process Eng. 2022, 50, 103199. [Google Scholar] [CrossRef]
- Oon, Y.-L.; Ong, S.-A.; Ho, L.-N.; Wong, Y.-S.; Oon, Y.-S.; Lehl, H.K.; Thung, W.-E. Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation. Bioresour. Technol. 2015, 186, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Mariraj Mohan, S.; Swathi, T. A review on upflow anaerobic sludge blanket reactor: Factors affecting performance, modification of configuration and its derivatives. Water Environ. Res. A Res. Publ. Water Environ. Fed. 2022, 94, e1665. [Google Scholar] [CrossRef] [PubMed]
- Ngwenya, N.; Gaszynski, C.; Ikumi, D. A review of winery wastewater treatment: A focus on UASB biotechnology optimisation and recovery strategies. J. Environ. Chem. Eng. 2022, 10, 108172. [Google Scholar] [CrossRef]
- Jia, H.; Liu, W.; Wang, J.; Ngo, H.-H.; Guo, W.; Zhang, H. Optimization of sensing performance in an integrated dual sensors system combining microbial fuel cells and upflow anaerobic sludge bed reactor. Chemosphere 2018, 210, 931–940. [Google Scholar] [CrossRef]
- Xu, J.; Sheng, G.P.; Luo, H.W.; Li, W.W.; Wang, L.F.; Yu, H.Q. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Res. 2012, 46, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Song, X.R.; Jo, C.; Han, L.J.; Zhou, M.H. Recent advance in microbial fuel cell reactor configuration and coupling technologies for removal of antibiotic pollutants. Curr. Opin. Electrochem. 2022, 31, 100833. [Google Scholar] [CrossRef]
- Spurr, M.W.; Yu, E.H.; Scott, K.; Head, I.M. No re-calibration required? Stability of a bioelectrochemical sensor for biodegradable organic matter over 800 days. Biosens. Bioelectron. 2021, 190, 113392. [Google Scholar] [CrossRef]
- Yi, Y.; Xie, B.Z.; Zhao, T.; Qian, Z.N.; Liu, H. The effect of anode hydrodynamics on the sensitivity of microbial fuel cell based biosensors and the biological mechanism. Bioelectrochemistry 2020, 132, 107351. [Google Scholar] [CrossRef]
- Freguia, S.; Rabaey, K.; Yuan, Z.; Keller, J. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res. 2008, 42, 1387–1396. [Google Scholar] [CrossRef] [Green Version]
- Chang, I.S.; Moon, H.; Jang, J.K.; Kim, B.H. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens. Bioelectron. 2005, 20, 1856–1859. [Google Scholar] [CrossRef]
- Wang, S.Q.; Tian, S.; Zhang, P.Y.; Ye, J.P.; Tao, X.; Li, F.; Zhou, Z.Y.; Nabi, M. Enhancement of biological oxygen demand detection with a microbial fuel cell using potassium permanganate as cathodic electron acceptor. J. Environ. Manag. 2019, 252, 109682. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, Y.; Gao, G.; Xia, S. A Mediated BOD Biosensor Based on Immobilized B. Subtilis on Three-Dimensional Porous Graphene-Polypyrrole Composite. Sensors 2017, 17, 2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, F.; Liu, H. Impact of heterotrophic denitrification on BOD detection of the nitrate-containing wastewater using microbial fuel cell-based biosensors. Chem. Eng. J. 2020, 394, 125042. [Google Scholar] [CrossRef]
- Tran, P.; Nguyen, L.; Nguyen, H.; Nguyen, B.; Nong, L.; Mai, L.; Tran, H.; Nguyen, T.; Pham, H. Effects of inoculation sources on the enrichment and performance of anode bacterial consortia in sensor typed microbial fuel cells. AIMS Bioeng. 2016, 3, 60–74. [Google Scholar] [CrossRef]
- Yi, Y.; Xie, B.Z.; Zhao, T.; Liu, H. Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism. Bioresour. Technol. 2018, 265, 415–421. [Google Scholar] [CrossRef]
- Guo, F.; Liu, Y.; Liu, H. Hibernations of electroactive bacteria provide insights into the flexible and robust BOD detection using microbial fuel cell-based biosensors. Sci. Total Environ. 2021, 753, 142244. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Curtis, T.P.; Head, I.M.; Velasquez-Orta, S.B.; Velasquez-Orta, S.B.; Scott, K. A single chamber packed bed microbial fuel cell biosensor for measuring organic content of wastewater. Water Sci. Technol. 2009, 60, 2879–2887. [Google Scholar] [CrossRef]
- Xiao, N.; Wang, B.; Huang, J.J. Hydrodynamic optimization for design and operating parameters of an innovative continuous-flow miniaturized MFC biosensor. Chem. Eng. Sci. 2021, 235, 116505. [Google Scholar] [CrossRef]
- Hindatu, Y.; Annuar, M.S.M.; Gumel, A.M. Mini-review: Anode modification for improved performance of microbial fuel cell. Renew. Sustain. Energy Rev. 2017, 73, 236–248. [Google Scholar] [CrossRef]
- Sonawane, J.M.; Yadav, A.; Ghosh, P.C.; Adeloju, S.B. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens. Bioelectron. 2017, 90, 558–576. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Cui, D.; Xiang, X.; Li, W. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell. Biosens. Bioelectron. 2014, 51, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Rismani-Yazdi, H.; Carver, S.M.; Christy, A.D.; Tuovinen, O.H. Cathodic limitations in microbial fuel cells: An overview. J. Power Sources 2008, 180, 683–694. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Santoro, C.; Kodali, M.; Herrera, S.; Serov, A.; Ieropoulos, I.; Atanassov, P. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs. J. Power Sources 2018, 378, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Kharkwal, S.; Tan, Y.C.; Lu, M.; Ng, H.Y. Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO(2) Catalyst. Int. J. Mol. Sci. 2017, 18, 276. [Google Scholar] [CrossRef] [Green Version]
- Sonawane, J.M.; Mahadevan, R.; Pandey, A.; Greener, J. Recent progress in microbial fuel cells using substrates from diverse sources. Heliyon 2022, 8, e12353. [Google Scholar] [CrossRef]
- Hsieh, M.C.; Cheng, C.Y.; Liu, M.H.; Chung, Y.C. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor. Sensors 2016, 16, 35. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Yu, Y.; Xi, H.; Wang, C.; Zhou, Y. Bacterial response to formaldehyde in an MFC toxicity sensor. Enzym. Microb. Technol. 2020, 140, 109565. [Google Scholar] [CrossRef]
- Bird, L.J.; Kundu, B.B.; Tschirhart, T.; Corts, A.D.; Su, L.; Gralnick, J.A.; Ajo-Franklin, C.M.; Glaven, S.M. Engineering Wired Life: Synthetic Biology for Electroactive Bacteria. ACS Synth. Biol. 2021, 10, 2808–2823. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.F.; Dong, S.J. Recent advances in microbial fuel cell-based toxicity biosensors: Strategies for enhanced toxicity response. Curr. Opin. Electrochem. 2022, 34, 100975. [Google Scholar] [CrossRef]
- Khan, N.; Anwer, A.H.; Sultana, S.; Ibhadon, A.; Khan, M.Z. Effective toxicity assessment of synthetic dye in microbial fuel cell biosensor with spinel nanofiber anode. J. Environ. Chem. Eng. 2022, 10, 107313. [Google Scholar] [CrossRef]
- Chu, N.; Liang, Q.J.; Hao, W.; Jiang, Y.; Liang, P.; Zeng, R.J.X. Microbial electrochemical sensor for water biotoxicity monitoring. Chem. Eng. J. 2021, 404, 127053. [Google Scholar] [CrossRef]
- Jiang, Y.; Liang, P.; Liu, P.P.; Wang, D.L.; Miao, B.; Huang, X. A novel microbial fuel cell sensor with biocathode sensing element. Biosens. Bioelectron. 2017, 94, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Liang, P.; Liu, P.P.; Bian, Y.H.; Miao, B.; Sun, X.L.; Zhang, H.L.; Huang, X. Enhancing Signal Output and Avoiding BOD/Toxicity Combined Shock Interference by Operating a Microbial Fuel Cell Sensor with an Optimized Background Concentration of Organic Matter. Int. J. Mol. Sci. 2016, 17, 1392. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Chhabra, M. The versatility of microbial fuel cells as tools for organic matter monitoring. Bioresour. Technol. 2023, 377, 128949. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, R.; Smith, K.; Che, H. Why conventional detection methods fail in identifying the existence of contamination events. Water Res. 2016, 93, 222–229. [Google Scholar] [CrossRef] [PubMed]
Type | Items | Reactor | Anode | Cathode | Detection Range | Response Time | Signal Acquisition | Ref. |
---|---|---|---|---|---|---|---|---|
MFC | BOD | Single | GB | CG | 59–660 mg/L | 0.5–4 day | CY | [28] |
Single | CC | CC/Pt | 0–650 mg/L | 80 min | current | [30] | ||
Single | CF | AC | 80–1280 mg/L | 50 h | CY | [31] | ||
Double | CF | CFB | 0–300 mg/L | N/A | voltage | [26] | ||
Double | AG | AG | 0.34–9.6 mg/L | 30–130 min | voltage | [32] | ||
Double | CC | CC | 37.5–375 mg/L | 0.99–18.08 h | P-CY | [29] | ||
Double | CF | Pt/C | 5–500 mg/L | 5–50 h | CY | [24] | ||
Double | GF | GF | 8–240 mg/L | 6–12 h | voltage | [33] | ||
COD | Single | CC | CC/Pt | 0–500 ppm | 4.5 h | current | [34] | |
MEC | BOD | Single | GR | CP | 32–1280 mg/L | 20 h | CY | [35] |
Double | CF | SSM | 10–500 mg/L | 5 min | current | [36] | ||
COD | Single | CF | CC/Ni | 100–700 mg/L | 48 h | current | [37] | |
Single | GFB | SSM | 0–130 mg/L | 3 min | current | [38] | ||
multi-stag | BOD | Single | CF | AC/Pt | 0–149.7 mg/L | 61 min | voltage | [39] |
Single | CC | Pt/C | 0–720 mg/L | 2.3 h | current | [40] | ||
Single | CC | Pt-GDE | 60–360 mg/L | 2.3h | current | [41] | ||
Miniature | BOD | Single | CC | CC | 9.8–19,600 ppm | 37 ± 2 min | current | [42] |
Double | CC | Pt film | 20–490 mg/L | 1.1 min | current | [43] | ||
Double | CC/SWCNT | Pt film | 129–492 mg/L | N/A | current | [44] | ||
COD | Single | CC | CC | 3–164 ppm | 2.8 min | current | [45] | |
Double | CC | Pt film | 20–400 mg/L | N/A | current | [46] | ||
Submersible | BOD | N/A | CP | CP | 0–250 mg/L | 3.1 h | current | [47] |
Double | CP | CP | 0–78 ± 8 mg/L | 10 h | current | [48] | ||
coupled | COD | CW | GR | GG | 0–200 mg/L | 20 h | voltage | [49] |
CW | AC | GF | 50–400 mg/L | 2.2–17.8 h | CY | [50] | ||
CW | SSM/AC | SSM/GC | 0–1000 mg/L | 12 h | voltage | [51] | ||
UASB | CF | CC | 500–3000 mg/L | 12 h | voltage | [52] |
Type | Advantage | Disadvantage | Cost | Wastewater Samples | Ref. |
---|---|---|---|---|---|
Dual-chamber MFC | Higher coulombic efficiency, stable structure. | Complex design, cumbersome operation. | average cost | SW, DS, IW | [24,29,32,33] |
Single-chamber MFC | Easy to manufacture, simple operation. | PH gradient, low power output, | low cost | SW, DS | [28,30,31] |
MEC | Short response time. | requires external power supply. | high cost | SW, DS, IW | [36,37,38] |
Multi-stage MFCs | Wide detection range, high resistance to toxic interference. | Manufacturing difficulties, cumbersome operation. | high cost | SW, IW | [39,40,41] |
Miniaturized MFC | Short response time, easy to manufacture. | Low power output, unstable detection. | low cost | SW | [42,43,45] |
Submersible MFC | Able to monitor on site. | Manufacturing difficulties, cumbersome operation. | high cost | DS, IW | [47,48,73] |
Coupled MFC | Real-time monitoring. | Single scope of application, long response time. | high cost | SW, DS | [49,50,51,52,89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Xiao, J.; Tang, X. Microbial Fuel Cell-Based Organic Matter Sensors: Principles, Structures and Applications. Bioengineering 2023, 10, 886. https://doi.org/10.3390/bioengineering10080886
Yao H, Xiao J, Tang X. Microbial Fuel Cell-Based Organic Matter Sensors: Principles, Structures and Applications. Bioengineering. 2023; 10(8):886. https://doi.org/10.3390/bioengineering10080886
Chicago/Turabian StyleYao, Huang, Jialong Xiao, and Xinhua Tang. 2023. "Microbial Fuel Cell-Based Organic Matter Sensors: Principles, Structures and Applications" Bioengineering 10, no. 8: 886. https://doi.org/10.3390/bioengineering10080886
APA StyleYao, H., Xiao, J., & Tang, X. (2023). Microbial Fuel Cell-Based Organic Matter Sensors: Principles, Structures and Applications. Bioengineering, 10(8), 886. https://doi.org/10.3390/bioengineering10080886