Pressure-Volume Loop Analysis of Voiding Workload: An Application in Trans-Vaginal Mesh-Repaired Pelvic Organ Prolapse Patients
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design
2.2. Surgery
2.3. Cystometry Investigation
2.4. Pressure–Volume Analysis
2.5. Statistical Analysis
3. Results
3.1. Baseline Data of the Patient
3.2. TVM Postoperatively Diminishes the Voiding Resistance
3.3. TVM Postoperatively Decreases the Voiding Pressure
3.4. TVM Postoperatively Elevates the Flow Rate
3.5. TVM Postoperatively Shortens the Voiding Time
3.6. TVM Postoperatively Lessens the Voiding Workload
3.7. TVM Postoperatively Ameliorates Urine Retention
4. Discussion
4.1. TVM Lessens the Thermodynamic Work of Bladder Voiding
4.2. TVM Postoperatively Increases the Voiding Efficacy of the Bladder
4.3. If TVM Displays Compartment or Stage Specificity
4.4. Possible Limitations in This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iglesia, C.B.; Smithling, K.R. Pelvic organ prolapse. Am. Fam. Physician 2017, 96, 179–185. [Google Scholar]
- Kummeling, M.T.M.; Rietbergen, J.B.W.; Withagen, M.I.J.; Mannaerts, G.H.H.; van der Weiden, R.M.F. Sequential urodynamic assessment before and after laparoscopic sacrocolpopexy. Acta Obstet. Gynecol. Scand. 2013, 92, 172–177. [Google Scholar] [CrossRef]
- Aichner, S.; Fähnle, I.; Frey, J.; Krebs, J.; Christmann-Schmid, C. Impact of sacrocolpopexy for the management of pelvic organ prolapse on voiding dysfunction and roflowmetry parameters: A prospective cohort study. Arch. Gynecol. Obstet. 2022, 306, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Dörflinger, A.; Monga, A. Voiding dysfunction. Curr. Opin. Obstet. Gynecol. 2001, 13, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Clifton, M.M.; Pizarro-Berdichevsky, J.; Goldman, H.B. Robotic Female Pelvic Floor Reconstruction: A Review. Urology 2016, 91, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Majkusiak, W.; Horosz, E.; Tomasik, P.; Zwierzchowska, A.; Wielgoś, M.; Barcz, E. Quality of life assessment in women after cervicosacropexy with polypropylene mesh for pelvic organ prolapse: A preliminary study. Menopausal Rev. 2015, 14, 126–129. [Google Scholar] [CrossRef]
- Luo, D.Y.; Yang, T.X.; Shen, H. Long term Follow-up of Transvaginal Anatomical Implant of Mesh in Pelvic organ prolapse. Sci. Rep. 2018, 8, 2829. [Google Scholar] [CrossRef] [PubMed]
- McFadden, E.; Lay-Flurrie, S.; Koshiaris, C.; Richards, G.C.; Heneghan, C. The Long-Term Impact of Vaginal Surgical Mesh Devices in UK Primary Care: A Cohort Study in the Clinical Practice Research Datalink. Clin. Epidemiol. 2021, 13, 1167–1180. [Google Scholar] [CrossRef]
- Atis, G.; Arisan, S.; Ozagari, A.; Caskurlu, T.; Dalkilinc, A.; Ergenekon, E. Tissue reaction of the rat urinary bladder to synthetic mesh materials. Sci. World J. 2009, 9, 1046–1051. [Google Scholar] [CrossRef] [Green Version]
- Eslami, M.J.; Zargham, M.; Gholipour, F.; Hajian, M.; Bakhtiari, K.; Hajebrahimi, S.; Eghbal, M.; Farajzadegan, Z. Transvaginal repair of anterior vaginal wall prolapse with polyvinylidene fluoride (PVDF) mesh: An alternative for previously restricted materials? Int. Urogynecol. J. 2022, 33, 1989–1997. [Google Scholar] [CrossRef]
- Achtari, C.; Hiscock, R.; O’Reilly, B.A.; Schierlitz, L.; Dwyer, P.L. Risk factors for mesh erosion after transvaginal surgery using polypropylene (Atrium) or composite polypropylene/polyglactin 910 (Vypro II) mesh. Int. Urogynecol. J. 2005, 16, 389–394. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. FDA News Release: FDA Strengthens Requirement for Surgical Mesh for the Transvaginal Repair of Pelvic Organ Prolapse to Address Safety Risks; US Food and Drug Administration: Silver Springs, MD, USA, 2016.
- Rogowski, A.; Kluz, T.; Szafarowska, M.; Mierzejewski, P.; Sienkiewicz-Jarosz, H.; Samochowiec, J.; Bienkowski, P.; Baranowski, W. Efficacy and safety of the Calistar and Elevate anterior vaginal mesh procedures. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 239, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Naumann, G.; Hüsch, T.; Mörgeli, C.; Kolterer, A.; Tunn, R. Mesh-augmented transvaginal repair of recurrent or complex anterior pelvic organ prolapse in accordance with the SCENIHR opinion. Int. Urogynecol. J. 2021, 32, 819–827. [Google Scholar] [CrossRef]
- Mateu-Arrom, L.; Gutiérrez-Ruiz, C.; Palou Redorta, J.; Errando-Smet, C. Pelvic organ prolapse repair with mesh: Description of surgical technique using the Surelift® Anterior Repair System. Urol. Int. 2021, 105, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Long, C.Y.; Hsu, C.S.; Wu, C.H.; Liu, C.M.; Wang, C.L.; Tsai, E.M. Three-year outcome of transvaginal mesh repair for the treatment of pelvic organ prolapse. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 161, 105–108. [Google Scholar] [CrossRef]
- Bradley, C.S.; Nygaard, I.E. Vaginal wall descensus and pelvic floor symptoms in older women. Obstet. Gynecol. 2005, 106, 759e66. [Google Scholar] [CrossRef]
- Avanti, P.; Jonathan, D. Effect of prolapse repair on voiding and bladder overactivity. Curr. Opin. Obstet. Gynecol. 2010, 22, 399e403. [Google Scholar]
- Romanzi, L.J.; Chaikin, D.C.; Blaivas, J.G. The effect of genital prolapse on voiding. J. Urol. 1999, 161, 581e6. [Google Scholar] [CrossRef]
- Leippold, T.; Reitz, A.; Schurch, B. Botulinum toxin as a new therapy option for voiding disorders: Current state of the art. Eur. Urol. 2003, 44, 165–174. [Google Scholar] [CrossRef]
- Lau, H.H.; Lai, C.Y.; Peng, H.Y.; Hsieh, M.C.; Su, T.H.; Lee, J.J.; Lin, T.B. Modification of bladder thermodynamics in stress urinary incontinence patients submitted to trans-obturator tape: A retrospective study based on urodynamic assessment. Front. Bioeng. Biotechnol. 2022, 10, 912602. [Google Scholar] [CrossRef] [PubMed]
- Schafer, W.; Abrams, P.; Liao, L.; Mattiasson, A.; Pesce, F.; Spangberg, A.; Sterling, A.M.; Zinner, N.R.; van Kerrebroeck, P. Good urodynamic practices: Uroflowmetry, filling cystometry, and pressure-flow studies. Neurourol. Urodyn. 2002, 21, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.Y.; Lai, C.Y.; Hsieh, M.C.; Ho, Y.C.; Lin, T.B. Pressure-volume analysis of rat’s micturition cycles in vivo. Neurourol. Urodyn. 2020, 39, 1304–1312. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.Y.; Lai, C.Y.; Hsieh, M.C.; Lin, T.B. Solifenacin/mirabegron induces an acute compliance increase in the filling phase of the capacity-reduced urinary bladder: A pressure-volume analysis in rats. Front. Pharmacol. 2021, 12, 657959. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.H.; Su, T.H.; Huang, W.C. Effect of aging on lower urinary tract symptoms and urodynamic parameters in women. Taiwan. J. Obstet. Gynecol. 2021, 60, 513–516. [Google Scholar] [CrossRef]
- Lee, S.M.; Gammie, A.; Abrams, P. Assessment of quality in urodynamics: Cough versus valsalva. Neurourol. Urodyn. 2021, 40, 1021–1026. [Google Scholar] [CrossRef]
- Schneider, A.J.; Grimes, M.; Lyon, W.; Kemper, A.; Wang, S.; Bushman, W. Cluster analysis of men undergoing surgery for BPH/LUTS reveals prominent roles of both bladder outlet obstruction and diminished bladder contractility. PLoS ONE 2021, 16, e0251721. [Google Scholar] [CrossRef] [PubMed]
- Digesu, G.A.; Chaliha, C.; Salvatore, S.; Hutchings, A.; Khullar, V. The relationship of vaginal prolapse severity to symptoms and quality of life. BJOG 2005, 112, 971–976. [Google Scholar] [CrossRef]
- Weintraub, A.Y.; Glinter, H.; Marcus-Braun, N. Narrative review of the epidemiology, diagnosis and pathophysiology of pelvic organ prolapse. Int. Braz. J. Urol. 2020, 46, 5–14. [Google Scholar] [CrossRef]
- Tegerstedt, G.; Maehle-Schmidt, M.; Nyren, O.; Hammarstrom, M. Prevalence of symptomatic pelvic organ prolapse in a Swedish population. Int. Urogynecol. J. 2005, 16, 497e503. [Google Scholar] [CrossRef]
- Bradley, C.S.; Zimmerman, M.B.; Wang, Q.; Nygaard, I.E. Women’s Health Initiative. Vaginal descent and pelvic floor symptoms in postmenopausal women: A longitudinal study. Obstet. Gynecol. 2008, 111, 1148e53. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.H.; Ng, S.C.; Chen, G.D. Correlation of severity of pelvic organ prolapse with lower urinary tract symptoms. Taiwan. J. Obstet. Gynecol. 2021, 60, 90–94. [Google Scholar] [CrossRef] [PubMed]
- De Boer, T.A.; Slieker-ten Hove, M.C.; Burger, C.W.; Vierhout, M.E. The prevalence and risk factors of overactive bladder symptoms and its relation to pelvic organ prolapse symptoms in a general female population. Int. Urogynecol. J. 2011, 22, 569e75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, H.-H.; Lai, C.-Y.; Hsieh, M.-C.; Peng, H.-Y.; Chou, D.; Su, T.-H.; Lee, J.-J.; Lin, T.-B. Pressure-Volume Loop Analysis of Voiding Workload: An Application in Trans-Vaginal Mesh-Repaired Pelvic Organ Prolapse Patients. Bioengineering 2023, 10, 853. https://doi.org/10.3390/bioengineering10070853
Lau H-H, Lai C-Y, Hsieh M-C, Peng H-Y, Chou D, Su T-H, Lee J-J, Lin T-B. Pressure-Volume Loop Analysis of Voiding Workload: An Application in Trans-Vaginal Mesh-Repaired Pelvic Organ Prolapse Patients. Bioengineering. 2023; 10(7):853. https://doi.org/10.3390/bioengineering10070853
Chicago/Turabian StyleLau, Hui-Hsuan, Cheng-Yuan Lai, Ming-Chun Hsieh, Hsien-Yu Peng, Dylan Chou, Tsung-Hsien Su, Jie-Jen Lee, and Tzer-Bin Lin. 2023. "Pressure-Volume Loop Analysis of Voiding Workload: An Application in Trans-Vaginal Mesh-Repaired Pelvic Organ Prolapse Patients" Bioengineering 10, no. 7: 853. https://doi.org/10.3390/bioengineering10070853
APA StyleLau, H. -H., Lai, C. -Y., Hsieh, M. -C., Peng, H. -Y., Chou, D., Su, T. -H., Lee, J. -J., & Lin, T. -B. (2023). Pressure-Volume Loop Analysis of Voiding Workload: An Application in Trans-Vaginal Mesh-Repaired Pelvic Organ Prolapse Patients. Bioengineering, 10(7), 853. https://doi.org/10.3390/bioengineering10070853