Quantitative Characterization of Gait Patterns in Individuals with Spinocerebellar Ataxia 38
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Spatio-Temporal and Kinematic Data Collection
- Spatio-temporal parameters of gait (i.e., speed, stride length, cadence, step width and duration of stance, and swing and double support phase). Parameters known to be dependent on individuals’ anthropometry (i.e., speed, cadence, and stride length) were normalized according to the procedure described by Pinzone et al. [18];
- Kinematics on the sagittal plane (i.e., hip and knee flexion and extension and ankle dorsiflexion and plantar flexion angle variations during the gait cycle). The dynamic range of motion (ROM) was also calculated as the difference between the maximum and minimum angle values recorded during a trial.
2.3. Statistical Analysis
3. Results
3.1. Spatio-Temporal Parameters of Gait
3.2. Dynamic ROM
3.3. Gait Kinematics
- significantly larger hip flexion approximately from midstance to the end of the stance phase (16% to 62% of the gait cycle) and in the terminal swing (86% to 98% of the gait cycle);
- significantly larger knee flexion in midstance and part of the terminal stance (28% to 39% of the gait cycle) and reduced knee flexion which involves the pre-swing and most of the swing phase (52% to 76% and 82% to 100% of the gait cycle);
- significantly reduced ankle dorsiflexion in the first part of the terminal stance (31% to 41% of the gait cycle) and reduced plantar flexion at pre-swing (in correspondence of the toe-off) and initial swing (48% to 72% of the gait cycle).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Gregorio, E.; Borroni, B.; Giorgio, E.; Lacerenza, D.; Ferrero, M.; Lo Buono, N.; Ragusa, N.; Mancini, C.; Gaussen, M.; Calcia, A.; et al. ELOVL5 mutations cause spinocerebellar ataxia 38. Am. J. Hum. Genet. 2014, 95, 209–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brusco, A.; Di Gregorio, E.; Borroni, B. Spinocerebellar Ataxia Type 38. In GeneReviews; Adam, M.P., Mirzaa, G.M., Pagon, R.A., et al., Eds.; University of Washington: Seattle, WA, USA, 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK543515/ (accessed on 29 June 2023).
- Borroni, B.; Di Gregorio, E.; Orsi, L.; Vaula, G.; Costanzi, C.; Tempia, F.; Mitro, N.; Caruso, D.; Manes, M.; Pinessi, L.; et al. Clinical and neuroradiological features of spinocerebellar ataxia 38 (SCA38). Park. Relat. Disord. 2016, 28, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Buckley, E.; Mazzà, C.; McNeill, A. A systematic review of the gait characteristics associated with Cerebellar Ataxia. Gait Posture 2018, 60, 154–163. [Google Scholar] [CrossRef]
- Buldt, A.K.; Levinger, P.; Murley, G.S.; Menz, H.B.; Nester, C.J.; Landorf, K.B. Foot posture is associated with kinematics of the foot during gait: A comparison of normal, planus and cavus feet. Gait Posture 2015, 42, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Buckley, C.; Alcock, L.; McArdle, R.; Rehman, R.Z.U.; Del Din, S.; Mazzà, C.; Yarnall, A.J.; Rochester, L. The Role of Movement Analysis in Diagnosing and Monitoring Neurodegenerative Conditions: Insights from Gait and Postural Control. Brain Sci. 2019, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Palliyath, S.; Hallett, M.; Thomas, S.L.; Lebiedowska, M.K. Gait in patients with cerebellar ataxia. Mov. Disord 1998, 13, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Ilg, W.; Golla, H.; Thier, P.; Giese, M.A. Specific influences of cerebellar dysfunctions on gait. Brain 2007, 130 Pt 3, 786–798. [Google Scholar] [CrossRef]
- Serrao, M.; Pierelli, F.; Ranavolo, A.; Draicchio, F.; Conte, C.; Don, R.; Di Fabio, R.; LeRose, M.; Padua, L.; Sandrini, G.; et al. Gait pattern in inherited cerebellar ataxias. Cerebellum 2012, 11, 194–211. [Google Scholar] [CrossRef]
- Mari, S.; Serrao, M.; Casali, C.; Conte, C.; Martino, G.; Ranavolo, A.; Coppola, G.; Draicchio, F.; Padua, L.; Sandrini, G.; et al. Lower limb antagonist muscle co-activation and its relationship with gait parameters in cerebellar ataxia. Cerebellum 2014, 13, 226–236. [Google Scholar] [CrossRef]
- Martino, G.; Ivanenko, Y.P.; Serrao, M.; Ranavolo, A.; d’Avella, A.; Draicchio, F.; Conte, C.; Casali, C.; Lacquaniti, F. Locomotor patterns in cerebellar ataxia. J. Neurophysiol. 2014, 112, 2810–2821. [Google Scholar] [CrossRef]
- Ilg, W.; Seemann, J.; Giese, M.; Traschütz, A.; Schöls, L.; Timmann, D.; Synofzik, M. Real-life gait assessment in degenerative cerebellar ataxia: Toward ecologically valid biomarkers. Neurology 2020, 95, e1199–e1210. [Google Scholar] [CrossRef]
- Khan, N.C.; Pandey, V.; Gajos, K.Z.; Gupta, A.S. Free-Living Motor Activity Monitoring in Ataxia-Telangiectasia. Cerebellum 2022, 21, 368–379. [Google Scholar] [CrossRef]
- Pau, M.; Leban, B.; Deidda, M.; Putzolu, F.; Porta, M.; Coghe, G.; Cocco, E. Kinematic Analysis of Lower Limb Joint Asymmetry During Gait in People with Multiple Sclerosis. Symmetry 2021, 13, 598. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Gardner, R.; MacMore, J.; Vangel, M.G. Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS. Mov. Disord. 2009, 24, 1820–1828. [Google Scholar] [CrossRef] [Green Version]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Pinzone, O.; Schwartz, M.H.; Baker, R. Comprehensive non-dimensional normalization of gait data. Gait Posture 2016, 44, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Cohen, P. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 2008. [Google Scholar]
- Bruening, D.A.; Frimenko, R.E.; Goodyear, C.D.; Bowden, D.R.; Fullenkamp, A.M. Sex differences in whole body gait kinematics at preferred speeds. Gait Posture 2015, 41, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Pau, M.; Corona, F.; Pilloni, G.; Porta, M.; Coghe, G.; Cocco, E. Do gait patterns differ in men and women with multiple sclerosis? Mult. Scler. Relat. Disord. 2017, 18, 202–208. [Google Scholar] [CrossRef]
- Feng, J.; Wick, J.; Bompiani, E.; Aiona, M. Applications of gait analysis in pediatric orthopaedics. Curr. Orthop. Pract. 2016, 27, 455–464. [Google Scholar] [CrossRef]
- Hertel, J.; Gay, M.R.; Denegar, C.R. Differences in Postural Control During Single-Leg Stance Among Healthy Individuals with Different Foot Types. J. Athl. Train. 2002, 37, 129–132. [Google Scholar] [PubMed]
- Piazza, S.; Ricci, G.; Caldarazzo Ienco, E.; Carlesi, C.; Volpi, L.; Siciliano, G.; Mancuso, M. Pes cavus and hereditary neuropathies: When a relationship should be suspected. J. Orthop. Traumatol. 2010, 11, 195–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Tsujimoto, T.; Kim, B.; Tanaka, K. Association of arch height with ankle muscle strength. Biol. Sport 2017, 34, 119–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krähenbühl, N.; Weinberg, M.W. Anatomy and Biomechanics of Cavovarus Deformity. Foot Ankle Clin. 2019, 24, 173–181. [Google Scholar] [CrossRef]
- Hengel, H.; Martus, P.; Faber, J.; Garcia-Moreno, H.; Solanky, N.; Giunti, P.; Klockgether, T.; Reetz, K.; van de Warrenburg, B.P.; Pereira de Almeida, L.; et al. Characterization of Lifestyle in Spinocerebellar Ataxia Type 3 and Association with Disease Severity. Mov. Disord. 2022, 37, 405–410. [Google Scholar] [CrossRef]
- Lee, L.W.; Zavarei, K.; Evans, J.; Lelas, J.J.; Riley, P.O.; Kerrigan, D.C. Reduced hip extension in the elderly: Dynamic or postural? Arch. Phys. Med. Rehabil. 2005, 86, 1851–1854. [Google Scholar] [CrossRef]
- Beauchamp, M.; Labelle, H.; Duhaime, M.; Joncas, J. Natural history of muscle weakness in Friedreich’s Ataxia and its relation to loss of ambulation. Clin. Orthop. Relat. Res. 1995, 311, 270–275. [Google Scholar]
- Serrao, M.; Chini, G.; Casali, C.; Conte, C.; Rinaldi, M.; Ranavolo, A.; Marcotulli, C.; Leonardi, L.; Fragiotta, G.; Bini, F.; et al. Progression of Gait Ataxia in Patients with Degenerative Cerebellar Disorders: A 4-Year Follow-Up Study. Cerebellum 2017, 16, 629–637. [Google Scholar] [CrossRef]
- Milne, S.C.; Corben, L.A.; Georgiou-Karistianis, N.; Delatycki, M.B.; Yiu, E.M. Rehabilitation for Individuals with Genetic Degenerative Ataxia: A Systematic Review. Neurorehabilit. Neural Repair 2017, 31, 609–622. [Google Scholar] [CrossRef] [Green Version]
- Wren, T.A.L.; Tucker, C.A.; Rethlefsen, S.A.; Gorton, G.E.; Õunpuu, S. Clinical efficacy of instrumented gait analysis: Systematic review 2020 update. Gait Posture 2020, 80, 274–279. [Google Scholar] [CrossRef]
Unaffected | SCA 38 | |
---|---|---|
Participants (F, M) | 20 (13 F, 7 M) | 7 (4 F, 3 M) |
Age (years) | 49.2 (5.7) | 51.0 (6.5) |
Height (cm) | 166.1 (9.9) | 166.6 (10.4) |
Body Mass (kg) | 65.3 (12.8) | 71.5 (22.2) |
Body Mass Index (kg m−2) | 23.4 (2.8) | 25.3 (5.2) |
Disease duration (years) | - | 9.4 (0.8) |
MICARS Score | - | 22.6 (12.4) |
Non-Normalized | Normalized | |||
---|---|---|---|---|
Unaffected | SCA 38 | Unaffected | SCA 38 | |
Stride length (m) | 1.32 (0.13) | 0.86 (0.18) * | 1.54 (0.13) | 1.02 (0.25) * |
Gait speed (m s−1) | 1.26 (0.16) | 0.73 (0.31) * | 0.44 (0.06) | 0.25 (0.11) * |
Cadence (steps s−1) | 115.6 (9.45) | 99.83 (27.04) | 34.12 (2.47) | 29.23 (7.73) |
Step width (m) | 0.19 (0.03) | 0.24 (0.04) * | ||
Stance phase (% of GC) | 59.28 (1.48) | 64.21 (2.64) * | ||
Swing phase (% of GC) | 40.72 (1.48) | 35.79 (2.64) * | ||
Double support phase (% of GC) | 18.79 (2.94) | 28.07 (5.06) * |
Unaffected | SCA 38 | |
---|---|---|
Hip Flexion—Extension (°) | 46.27 (3.92) | 38.11 (4.92) * |
Knee Flexion—Extension (°) | 58.94 (6.73) | 50.33 (6.35) |
Ankle Dorsi—Plantar-flexion (°) | 31.01 (4.82) | 20.03 (5.66) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pau, M.; Porta, M.; Pau, C.; Tacconi, P.; Sanna, A. Quantitative Characterization of Gait Patterns in Individuals with Spinocerebellar Ataxia 38. Bioengineering 2023, 10, 788. https://doi.org/10.3390/bioengineering10070788
Pau M, Porta M, Pau C, Tacconi P, Sanna A. Quantitative Characterization of Gait Patterns in Individuals with Spinocerebellar Ataxia 38. Bioengineering. 2023; 10(7):788. https://doi.org/10.3390/bioengineering10070788
Chicago/Turabian StylePau, Massimiliano, Micaela Porta, Chiara Pau, Paolo Tacconi, and Angela Sanna. 2023. "Quantitative Characterization of Gait Patterns in Individuals with Spinocerebellar Ataxia 38" Bioengineering 10, no. 7: 788. https://doi.org/10.3390/bioengineering10070788
APA StylePau, M., Porta, M., Pau, C., Tacconi, P., & Sanna, A. (2023). Quantitative Characterization of Gait Patterns in Individuals with Spinocerebellar Ataxia 38. Bioengineering, 10(7), 788. https://doi.org/10.3390/bioengineering10070788