Artificial Intelligence for Personalized Genetics and New Drug Development: Benefits and Cautions
1. Introduction
2. Predictive Analytics and Personalized Genetics
3. The Most Significant Achievements of AI in the Pharmaceutical Field
3.1. AI against Tumors
3.2. Machine Learning to Design New Drugs
4. Technology Is Not a Cure-All
- Identifying the correct drug target in the organism;
- Devising the appropriate molecule for interaction with it;
- Establishing in which populations the molecule has the greatest likelihood of being used successfully.
5. How AI Can Reduce the Time and Cost Associated with New Drug Research?
6. The Impact of Machine Learning Algorithms on Global Health Care
7. Conclusions
Funding
Conflicts of Interest
References
- Singh, A.; Jain, S.K. A personalized cancer diagnosis using machine learning models based on big data. In Proceedings of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 7–9 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 763–771. [Google Scholar]
- Alizargar, A.; Chang, Y.L.; Tan, T.H. Performance Comparison of Machine Learning Approaches on Hepatitis C Prediction Employing Data Mining Techniques. Bioengineering 2023, 10, 481. [Google Scholar] [CrossRef]
- Moztarzadeh, O.; Jamshidi, M.; Sargolzaei, S.; Jamshidi, A.; Baghalipour, N.; Malekzadeh Moghani, M.; Hauer, L. Metaverse and Healthcare: Machine Learning-Enabled Digital Twins of Cancer. Bioengineering 2023, 10, 455. [Google Scholar] [CrossRef] [PubMed]
- Hassaballah, M.; Wazery, Y.M.; Ibrahim, I.E.; Farag, A. ECG Heartbeat Classification Using Machine Learning and Metaheuristic Optimization for Smart Healthcare Systems. Bioengineering 2023, 10, 429. [Google Scholar] [CrossRef]
- Ozaltin, O.; Coskun, O.; Yeniay, O.; Subasi, A. A Deep Learning Approach for Detecting Stroke from Brain CT Images Using OzNet. Bioengineering 2022, 9, 783. [Google Scholar] [CrossRef]
- Bizzego, A.; Gabrieli, G.; Esposito, G. Deep neural networks and transfer learning on a multivariate physiological signal Dataset. Bioengineering 2021, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Ambrosanio, M.; Franceschini, S.; Pascazio, V.; Baselice, F. An End-to-End Deep Learning Approach for Quantitative Microwave Breast Imaging in Real-Time Applications. Bioengineering 2022, 9, 651. [Google Scholar] [CrossRef]
- Lopez, C.; Holgado, J.L.; Cortes, R.; Sauri, I.; Fernandez, A.; Calderon, J.M.; Nuñez, J.; Redon, J. Supervised Analysis for Phenotype Identification: The Case of Heart Failure Ejection Fraction Class. Bioengineering 2021, 8, 85. [Google Scholar] [CrossRef]
- Gazis, A.; Karaiskos, P.; Loukas, C. Surgical Gesture Recognition in Laparoscopic Tasks Based on the Transformer Network and Self-Supervised Learning. Bioengineering 2022, 9, 737. [Google Scholar] [CrossRef]
- Espino-Salinas, C.H.; Galván-Tejada, C.E.; Luna-García, H.; Gamboa-Rosales, H.; Celaya-Padilla, J.M.; Zanella-Calzada, L.A.; Tejada, J.I.G. Two-Dimensional Convolutional Neural Network for Depression Episodes Detection in Real Time Using Motor Activity Time Series of Depresjon Dataset. Bioengineering 2022, 9, 458. [Google Scholar] [CrossRef] [PubMed]
- Rade, J.; Zhang, J.; Sarkar, S.; Krishnamurthy, A.; Ren, J.; Sarkar, A. Deep learning for live cell shape detection and automated afm navigation. Bioengineering 2022, 9, 522. [Google Scholar] [CrossRef]
- Ukwuoma, C.C.; Qin, Z.; Bin Heyat, B.; Akhtar, F.; Smahi, A.; Jackson, J.K.; Qadri, S.F.; Muaad, A.Y.; Monday, H.N.; Nneji, G.U. Automated Lung-Related Pneumonia and COVID-19 Detection Based on Novel Feature Extraction Framework and Vision Transformer Approaches Using Chest X-ray Images. Bioengineering 2022, 9, 709. [Google Scholar] [CrossRef]
- Ibrahim, M.; Elhafiz, R. Integrated Clinical Environment Security Analysis Using Reinforcement Learning. Bioengineering 2022, 9, 253. [Google Scholar] [CrossRef] [PubMed]
- Nouraei, H.; Nouraei, H.; Rabkin, S.W. Comparison of unsupervised machine learning approaches for cluster analysis to define subgroups of heart failure with preserved ejection fraction with different outcomes. Bioengineering 2022, 9, 175. [Google Scholar] [CrossRef]
- Sikandar, T.; Rahman, S.M.; Islam, D.; Ali, A.; Al Mamun, A.; Rabbi, M.F.; Ghazali, K.H.; Altwijri, O.; Almijalli, M.; Ahamed, N.U. Walking Speed Classification from Marker-Free Video Images in Two-Dimension Using Optimum Data and a Deep Learning Method. Bioengineering 2022, 9, 715. [Google Scholar] [CrossRef] [PubMed]
- Adam, N.R.; Wieder, R.; Ghosh, D. Data science, learning, and applications to biomedical and health sciences. Ann. N. Y. Acad. Sci. 2017, 1387, 5–11. [Google Scholar] [CrossRef]
- Chadaga, K.; Prabhu, S.; Bhat, V.; Sampathila, N.; Umakanth, S.; Chadaga, R. A Decision Support System for Diagnosis of COVID-19 from Non-COVID-19 Influenza-like Illness Using Explainable Artificial Intelligence. Bioengineering 2023, 10, 439. [Google Scholar] [CrossRef]
- Sun, Z.; Hou, W.; Liu, W.; Liu, J.; Li, K.; Wu, B.; Li, G.; Xue, H.; Pan, J.; Xiao, Y. Establishment of Surgical Difficulty Grading System and Application of MRI-Based Artificial Intelligence to Stratify Difficulty in Laparoscopic Rectal Surgery. Bioengineering 2023, 10, 468. [Google Scholar] [CrossRef]
- Alshagathrh, F.M.; Househ, M.S. Artificial Intelligence for Detecting and Quantifying Fatty Liver in Ultrasound Images: A Systematic Review. Bioengineering 2022, 9, 748. [Google Scholar] [CrossRef]
- Pereira, T.; Cunha, A.; Oliveira, H.P. Special Issue on Novel Applications of Artificial Intelligence in Medicine and Health. Appl. Sci. 2023, 13, 881. [Google Scholar] [CrossRef]
- Battineni, G.; Chintalapudi, N.; Hossain, M.A.; Losco, G.; Ruocco, C.; Sagaro, G.G.; Traini, E.; Nittari, G.; Amenta, F. Artificial Intelligence Models in the Diagnosis of Adult-Onset Dementia Disorders: A Review. Bioengineering 2022, 9, 370. [Google Scholar] [CrossRef]
- Loppini, M.; Gambaro, F.M.; Chiappetta, K.; Grappiolo, G.; Bianchi, A.M.; Corino, V.D. Automatic Identification of Failure in Hip Replacement: An Artificial Intelligence Approach. Bioengineering 2022, 9, 288. [Google Scholar] [CrossRef] [PubMed]
- Aruleba, R.T.; Adekiya, T.A.; Ayawei, N.; Obaido, G.; Aruleba, K.; Mienye, I.D.; Aruleba, I.; Ogbuokiri, B. COVID-19 diagnosis: A review of rapid antigen, RT-PCR and artificial intelligence methods. Bioengineering 2022, 9, 153. [Google Scholar] [CrossRef]
- Saleh, G.A.; Batouty, N.M.; Haggag, S.; Elnakib, A.; Khalifa, F.; Taher, F.; Mohamed, M.A.; Farag, R.; Sandhu, H.; Sewelam, A.; et al. The Role of Medical Image Modalities and AI in the Early Detection, Diagnosis and Grading of Retinal Diseases: A Survey. Bioengineering 2022, 9, 366. [Google Scholar] [CrossRef]
- Qiang, J.; Wu, D.; Du, H.; Zhu, H.; Chen, S.; Pan, H. Review on Facial-Recognition-Based Applications in Disease Diagnosis. Bioengineering 2022, 9, 273. [Google Scholar] [CrossRef]
- Frassineti, L.; Lanatà, A.; Olmi, B.; Manfredi, C. Multiscale entropy analysis of heart rate variability in neonatal patients with and without seizures. Bioengineering 2021, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-García, C.; Sánchez-González, P.; Oropesa, I.; Gómez, E.J. Automatic Assessment of Procedural Skills Based on the Surgical Workflow Analysis Derived from Speech and Video. Bioengineering 2022, 9, 753. [Google Scholar] [CrossRef]
- Pal, R.; Adhikari, D.; Heyat, M.B.B.; Guragai, B.; Lipari, V.; Brito Ballester, J.; De la Torre Díez, I.; Abbas, Z.; Lai, D. A Novel Smart Belt for Anxiety Detection, Classification, and Reduction Using IIoMT on Students Cardiac Signal and MSY. Bioengineering 2022, 9, 793. [Google Scholar] [CrossRef] [PubMed]
- Mirmozaffari, M.; Yazdani, R.; Shadkam, E.; Khalili, S.M.; Tavassoli, L.S.; Boskabadi, A. A novel hybrid parametric and non-parametric optimisation model for average technical efficiency assessment in public hospitals during and post-COVID-19 pandemic. Bioengineering 2021, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Khalid, B.; Abdelwahab, N. Big data and predictive analytics: Application in public health field. Int. J. Comput. Sci. Inf. Technol. Secur. (IJCSITS) 2016, 6, 5. [Google Scholar]
- Liu, X.; Zhao, Y.; Xu, T.; Wahab, F.; Sun, Y.; Chen, C. Efficient False Positive Control Algorithms in Big Data Mining. Appl. Sci. 2023, 13, 5006. [Google Scholar] [CrossRef]
- Zhang, Y.; Hong, J.; Chen, S. Medical Big Data and Artificial Intelligence for Healthcare. Appl. Sci. 2023, 13, 3745. [Google Scholar] [CrossRef]
- Focosi, D.; Maggi, F. How SARS-CoV-2 Big Data Are Challenging Viral Taxonomy Rules. Viruses 2023, 15, 715. [Google Scholar] [CrossRef] [PubMed]
- Gandomi, A.H.; Chen, F.; Abualigah, L. Big Data Analytics Using Artificial Intelligence. Electronics 2023, 12, 957. [Google Scholar] [CrossRef]
- Piovani, D.; Bonovas, S. Real World—Big Data Analytics in Healthcare. Int. J. Environ. Res. Public Health 2022, 19, 11677. [Google Scholar] [CrossRef]
- Philippidis, A. Absci Pursues Google-Sized Ambitions in Drug Discovery, Manufacturing. Genet. Eng. Biotechnol. News 2022, 4, 974–981. Available online: https://www.genengnews.com/topics/drug-discovery/antibodies/absci-pursues-google-sized-ambitions-in-drug-discovery-manufacturing/ (accessed on 18 April 2023). [CrossRef]
- AI Is Dreaming Up Drugs That No One Has Ever Seen. Now We’ve Got to See If They Work; MIT Technology Review: Cambridge, MA, USA, 2023; Available online: https://www.technologyreview.com/2023/02/15/1067904/ai-automation-drug-development/ (accessed on 18 April 2023).
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Shah, M. Artificial intelligence and machine learning in drug discovery and development. Intell. Med. 2022, 2, 134–140. [Google Scholar] [CrossRef]
- Colombo, S. Applications of artificial intelligence in drug delivery and pharmaceutical development. In Artificial Intelligence in Healthcare; Academic Press: Cambridge, MA, USA, 2020; pp. 85–116. [Google Scholar]
- Fleming, N. How artificial intelligence is changing drug discovery. Nature 2018, 557, S55. [Google Scholar] [CrossRef] [PubMed]
- Cerchia, C.; Lavecchia, A. In Silico Drug Design and Discovery: Big Data for Small Molecule Design. Biomolecules 2022, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- De Farias, J.L.C.B.; Bessa, W.M. Intelligent Control with Artificial Neural Networks for Automated Insulin Delivery Systems. Bioengineering 2022, 9, 664. [Google Scholar] [CrossRef]
- The Crucial Role of Predictive Analytics in Precision Medicine. Forbes. Available online: https://www.forbes.com/sites/forbestechcouncil/2023/02/21/the-crucial-role-of-predictive-analytics-in-precision-medicine/?sh=285f2d4a7531 (accessed on 18 April 2023).
- Aggas, J.R.; Abasi, S.; Ton, C.; Salehi, S.; Liu, R.; Brandacher, G.; Lin, G.; Xue, H.; Pan, J.; Guiseppi-Elie, A. Real-Time Monitoring Using Multiplexed Multi-Electrode Bioelectrical Impedance Spectroscopy for the Stratification of Vascularized Composite Allografts: A Perspective on Predictive Analytics. Bioengineering 2023, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- D’Antoni, F.; Petrosino, L.; Sgarro, F.; Pagano, A.; Vollero, L.; Piemonte, V.; Merone, M. Prediction of glucose concentration in children with type 1 diabetes using neural networks: An edge computing application. Bioengineering 2022, 9, 183. [Google Scholar] [CrossRef]
- Caruso, M.; Ricciardi, C.; Paoli, G.D.; Di Dato, F.; Donisi, L.; Romeo, V.; Petretta, M.; Iorio, R.; Cesarelli, G.; Brunetti, A.; et al. Machine Learning Evaluation of Biliary Atresia Patients to Predict Long-Term Outcome after the Kasai Procedure. Bioengineering 2021, 8, 152. [Google Scholar] [CrossRef]
- Hassan, M.; Awan, F.M.; Naz, A.; deAndrés-Galiana, E.J.; Alvarez, O.; Cernea, A.; Fernández-Brillet, L.; Fernández-Martínez, J.L.; Kloczkowski, A. Innovations in genomics and big data analytics for personalized medicine and health care: A review. Int. J. Mol. Sci. 2022, 23, 4645. [Google Scholar] [CrossRef]
- Offit, K. Personalized medicine: New genomics, old lessons. Hum. Genet. 2011, 130, 3–14. [Google Scholar] [CrossRef]
- De Oliveira, M.F.; Levkowitz, H. From visual data exploration to visual data mining: A survey. IEEE Trans. Vis. Comput. Graph. 2003, 9, 378–394. [Google Scholar] [CrossRef]
- Patel, K.; Drucker, S.; Fogarty, J.; Kapoor, A.; Tan, D. Using multiple models to understand data. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI 2011), Catalonia, Spain, 16–22 July 2011; pp. 1723–1728. [Google Scholar]
- Shopova, D.; Yaneva, A.; Bakova, D.; Mihaylova, A.; Kasnakova, P.; Hristozova, M.; Sbirkov, Y.; Sarafian, V.; Semerdzhieva, M. (Bio) printing in Personalized Medicine—Opportunities and Potential Benefits. Bioengineering 2023, 10, 287. [Google Scholar] [CrossRef]
- Kornauth, C.; Pemovska, T.; Vladimer, G.I.; Bayer, G.; Bergmann, M.; Eder, S.; Eichner, R.; Erl, M.; Esterbauer, H.; Exner, R.; et al. Functional Precision Medicine Provides Clinical Benefit in Advanced Aggressive Hematologic Cancers and Identifies Exceptional Responders. Natl. Libr. Med. 2022, 12, 372–387. Available online: https://pubmed.ncbi.nlm.nih.gov/34635570/ (accessed on 18 April 2023). [CrossRef] [PubMed]
- Philippidis, A. AI-Driven Pharma Tech Firm Expands Its Discovery Platform into Biologics: Exscientia intends to double the addressable target universe of its platform by combining generative AI design and virtual screening. Genet. Eng. Biotechnol. News 2022, 43, 10–11. [Google Scholar] [CrossRef]
- Angermueller, C.; Pärnamaa, T.; Parts, L.; Stegle, O. Deep learning for computational biology. Mol. Syst. Biol. 2016, 12, 878. [Google Scholar] [CrossRef] [PubMed]
- Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow, P.-M.; Zietz, M.; Hoffman, M.M.; et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 2018, 15, 20170387. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Mohamed, K.; Zeeshan, S.; Dong, X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020, 2020, baaa010. [Google Scholar] [CrossRef] [PubMed]
- Menke, J.; Eckmann, P.; Ozyurt, I.B.; Roelandse, M.; Anderson, N.; Grethe, J.; Gamst, A.; Bandrowski, A. Establishing institutional scores with the rigor and transparency index: Large-scale analysis of scientific reporting quality. J. Med. Internet Res. 2022, 24, e37324. [Google Scholar] [CrossRef] [PubMed]
- Lovato, L.C.; Hill, K.; Hertert, S.; Hunninghake, D.B.; Probstfield, J.L. Recruitment for controlled clinical trials: Literature summary and annotated bibliography. Control Clin. Trials 1997, 18, 328–352. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallo, C. Artificial Intelligence for Personalized Genetics and New Drug Development: Benefits and Cautions. Bioengineering 2023, 10, 613. https://doi.org/10.3390/bioengineering10050613
Gallo C. Artificial Intelligence for Personalized Genetics and New Drug Development: Benefits and Cautions. Bioengineering. 2023; 10(5):613. https://doi.org/10.3390/bioengineering10050613
Chicago/Turabian StyleGallo, Crescenzio. 2023. "Artificial Intelligence for Personalized Genetics and New Drug Development: Benefits and Cautions" Bioengineering 10, no. 5: 613. https://doi.org/10.3390/bioengineering10050613
APA StyleGallo, C. (2023). Artificial Intelligence for Personalized Genetics and New Drug Development: Benefits and Cautions. Bioengineering, 10(5), 613. https://doi.org/10.3390/bioengineering10050613